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Correcting biased noise using Gottesman-Kitaev-Preskill repetition code with noisy ancilla
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Concatenation of a bosonic code with a qubit code is one of the promising ways to achieve fault-tolerant
quantum computation. As one of the most important bosonic codes, the Gottesman-Kitaev-Preskill (GKP) code
is proposed to correct small displacement errors in phase space. If the noise in phase space is biased, the square-
lattice GKP code can be concatenated with the repetition code that promises a high fault-tolerant threshold to
suppress the logical error. In this work, we study the performance of GKP repetition codes with finite-energy
ancillary GKP qubits in correcting biased noise. We find that there exists a critical value of noise variance for the
ancillary GKP qubit such that the logical Pauli error rate decreases when increasing the code size. Furthermore,
one round of GKP error correction has to be performed before concatenating with the repetition code. Our study
paves the way for practical implementation of error correction by concatenating the GKP code with low-level
qubit codes.
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I. INTRODUCTION

Noise is the main hindrance to achieve large-scale fault-
tolerant quantum computation. A quantum error correcting
code is introduced to correct errors by using redundancy in the
Hilbert space [1–3]. Bosonic codes protect finite-dimensional
logical space by encoding it in an infinite-dimensional bosonic
quantum system [4,5], e.g., a simple harmonic oscillator.
Compared to the standard qubit codes that encode a sin-
gle logical qubit using many physical qubits, the bosonic
code is more hardware efficient and is subject to a smaller
number of noisy channels [6,7]. Currently well-established
bosonic codes include the Gottesman-Kitaev-Preskill (GKP)
code [8,9], cat code [10,11], binomial code [6,12–14], and
rotation-symmetric code [15,16]. The GKP code is one of
the most promising bosonic codes, which corrects small dis-
placement errors in phase space and also photon loss [6,17].
Although the GKP code has been proposed for two decades
[8], it was prepared only recently in ion-trapped [18,19] and
superconducting [20] platforms, and was used to extend the
coherence time of the logical qubit through error correction
[21]. The GKP code has promising advantages in optical
quantum information processing [22], however, optical GKP
states have not been experimentally generated due to the
stringent requirement for strong nonlinearity, though various
preparation schemes have been proposed [23–27].

To achieve fault tolerance, the common strategy is to con-
catenate the GKP code with qubit codes to further suppress
the logical error. Examples include concatenation with sur-
face or toric codes [28–33], color code [34–36], and so on.
Concatenation with qubit codes with a high threshold en-
ables a low squeezing threshold for the GKP states around
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10 dB [28], which is within the reach of near-term tech-
nologies. A variant of the original surface code, known as
the XZZX surface code [37], has recently been shown to
have a higher threshold for biased noise. It is expected that
concatenation of GKP code with XZZX surface code would
enable a lower squeezing threshold if the displacement error
is biased [38]. This can happen in two cases, either the noise
is biased and a square-lattice (isotropic) GKP code is used, or
the noise is isotropic and a biased GKP code is used. However,
syndrome measurement and decoding are still complicated
for the XZZX surface code [39], which therefore consume
more physical and computational resources. A relatively eas-
ier scheme to suppress biased noise is to concatenate the GKP
code with the repetition code [40], which requires easier syn-
drome measurement and decoding and has a higher threshold.
In Ref. [40], the error threshold was estimated for biased GKP
repetition code with isotropic noise, which outperformed the
biased planar surface code [30]. However, both the data and
ancillary GKP qubits were assumed to be ideal, namely, with
infinite energy. The error threshold as derived in Ref. [40],
therefore, only provided an upper bound, and the requirement
was more stringent when the imperfections from the ancillary
GKP qubits were taken into account.

In this work, we study the concatenation of a square-lattice
GKP code with a repetition code to correct biased displace-
ment errors, where both the data and ancillary GKP qubits
have finite energy. The error correction procedure consists
of four steps: encoding; one round of GKP error correction;
syndrome measurement on the repetition code; and recovery
operation according to the measurement outcomes. We find
that the GKP error correction with finite-energy ancillary
GKP qubits, in general, increases the logical Pauli error rate
of the GKP code as compared to that with ideal ancillary
GKP qubits. However, this does not ruin the error correction
procedure but is actually necessary to exploit the power of
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code concatenation. We also find that the logical Pauli error
rate decreases when increasing the size of the repetition code
if the noise variance of the ancillary GKP qubits is sufficiently
small, while the the logical Pauli error rate increases when
increasing the size of the repetition code if the noise variance
is too large. This implies that there exists a critical value
of noise variance for the ancillary GKP qubits below which
the code concatenation shows advantages. Our results set an
upper bound for the noise variance of the ancillary GKP qubits
such that the concatenation with repetition code is useful.

The paper is organized as follows. In Sec. II we briefly
review the ideal (infinite-energy) and finite-energy GKP states
and introduce the biased noise model. We then discuss the
GKP error correction with finite-energy ancillary GKP qubits
to correct small displacement errors in position space in
Sec. III. In Sec. IV we concatenate the GKP code with the
repetition code to reduce the logical Pauli error rate in position
space and estimate the critical value of noise variance for the
ancillary GKP qubit. Then in Sec. V we use GKP repetition
code to correct biased noise to reduce the overall logical error
rate, taking into account the effects of displacement errors in
momentum space. We finally conclude in Sec. VI.

II. GKP STATES AND NOISE MODEL

Ideal GKP states are common eigenstates of two com-
muting operators, Ŝq = X̂ (2

√
π ) and Ŝp = Ẑ (2

√
π ) [8],

where X̂ (u) = e−iup̂ and Ẑ (v) = eivq̂ are displacements along
position and momentum, respectively. They form a two-
dimensional code subspace of an infinite-dimensional Hilbert
space of a bosonic system, the computational bases of which
can be chosen as

| j̄〉 =
+∞∑

n=−∞
|(2n + j)

√
π〉q , (1)

where j = 0, 1, and the subscript “q” indicates a position
eigenstate.

Ideal GKP states have infinite energy and cannot be pre-
pared in practice. A finite-energy GKP state can be obtained
by applying an envelope operator to an ideal GKP state [41]
or through coherently superposing randomly displaced ideal
GKP states [8,9], namely,

|ψ̃〉 = N
∫

dudv η(u, v)D̂(u, v) |ξ̄ 〉 , (2)

where |ξ̄〉 is an ideal GKP state, D̂(u, v) = e−iup̂+ivq̂ is a dis-
placement operator, N is a normalization factor, and η(u, v) is
the probability amplitude that is chosen as a bivariate Gaus-
sian distribution

η(u, v) = 1√
πκ�

exp

[
−1

2

(
u2

�2
+ v2

κ2

)]
, (3)

with � and κ the standard deviations. It can be shown that the
finite-energy GKP state defined in Eq. (2) is normalizable (see
Appendix A for details) and therefore contains a finite amount
of energy.

The noise model that we consider is an anisotropic Gaus-
sian displacement channel (GDC), namely, the noise in one
quadrature and its conjugate quadrature are generally not the

same. Since we use the square-lattice GKP code, a biased
logical error will be induced due to the anisotropic GDC,
which is further corrected by concatenating with the repetition
code. This is mathematically equivalent to the scheme where
an isotropic GDC is considered while the GKP code is biased
[40]. We consider the first because it is experimentally easier
to generate the square-lattice GKP code states with biased
noise.

The density matrix transforms as

ρ̂ → N f (ρ̂) =
∫

dudv f (u, v)D̂(u, v)ρ̂D̂†(u, v), (4)

when the bosonic system is acted upon by a GDC, where
f (u, v) is a bivariate Gaussian distribution. According to the
definition (4) the input state is imposed on a random displace-
ment D̂(u, v) each time and the output state is an incoherent
mixture of all possible displacements. This results in a blurred
output Wigner function.

The GDC is different from the coherent superposition of
random displacements that involved in defining finite-energy
GKP states in Eq. (2), in particular, a finite-energy GKP state
cannot be generated by simply passing an ideal GKP state
through a GDC (see Appendix A for details). However, these
two sets of states have exactly the same noise property if
f (u, v) = |η(u, v)|2, except that the finite-energy GKP state
has an envelope. Therefore, we can treat the noise in the
finite-energy GKP state in the same way as we treat the noise
from the GDC when the envelope is irrelevant.

Since the displacement errors in position and momen-
tum spaces are independent, the error distribution f (u, v) =
fq(u) fp(v), with

fq(u) = 1√
π�

e− u2

�2 , fp(v) = 1√
πκ

e− v2

κ2 . (5)

For unbiased noise, we have � = κ . In this paper, we consider
biased noise where the noise in one quadrature is suppressed
while that in the conjugate quadrature is amplified. The error
distribution of biased noise can be parameterized as

fq(u) = 1√
π r�

e− u2

(r�)2 , fp(v) = r√
π �

e
− v2

(�/r)2 , (6)

where r is a real positive number and represents the bias
level. By choosing r > 1, the noise in momentum space is
suppressed while that in position space is amplified. We then
concatenate the GKP code with the repetition code to suppress
the logical Pauli error induced by the large displacement error
in position space. The Wigner function of the GKP code with
unbiased and biased noise is shown in Fig. 1.

III. GKP ERROR CORRECTION WITH FINITE-ENERGY
ANCILLARY QUBITS

In this section, we discuss the correction of displacement
error in position space using the GKP code with ideal and
finite-energy ancillary GKP qubits.

A. GKP error correction with ideal ancilla

The quantum error correction circuit using the SUM gate is
shown in Fig. 2. An ancillary qubit couples with the data qubit
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(a) (b)

FIG. 1. Wigner function for finite-energy GKP states. (a) Wigner
function of GKP state with unbiased noise, where � = 0.25, r = 1.
(b) Wigner function of GKP state with biased noise, where � =
0.25, r = √

2. The noise of momentum quadrature is suppressed,
while the noise of position quadrature is amplified.

via the SUM gate, then its position quadrature is measured
and the measurement outcome is fed forward to the data qubit
[8]. Suppose the data qubit is prepared in a finite-energy GKP
state |ψ̃〉 with η(u, v) given by Eq. (3). Now we only consider
correcting the displacement in position space and rewrite |ψ̃〉
as

|ψ̃〉 =
∫

dv η(v)eivq̂
∫

du η(u)e−iuv/2 |ψ (u)〉 , (7)

where |ψ (u)〉 is an ideal GKP state with position shifted by u,

|ψ (u)〉 = α
∑

s

|2s
√

π + u〉q1 + β
∑

s

|(2s + 1)
√

π + u〉q1 .

The ancillary qubit is assumed to be in the ideal GKP |+̄〉 state

|+̄〉 =
∑

k

|k√
π〉q2 . (8)

The SUM gate is e−iq̂1 p̂2 , which preserves the position of the
data GKP qubit while adds it to the position of the ancillary
GKP qubit. The state after the SUM gate is therefore given by∫

dv η(v)eivq̂
∫

du η(u)e−iuv/2

×
[
α

∑
s,k

|2s
√

π + u〉q1
|(2s + k)

√
π + u〉q2

+ β
∑
s,k

|(2s+ 1)
√

π+ u〉q1
|(2s+ k + 1)

√
π+ u〉q2

]

=
∫

dv η(v)eivq̂
∫

du η(u)e−iuv/2

× |ψ (u)〉
( ∑

k

|k√
π + u〉q2

)
. (9)

The homodyne measurement of the ancillary qubit gives a
fixed value for q̂2,

q2 = k
√

π + u, (10)

with k an integer. This implies that the superposition of dif-
ferent displacements is destroyed and the state in Eq. (9)

FIG. 2. Quantum circuit for GKP error correction. The ancillary
GKP qubit is prepared in state |+̄〉 and then couples with the data
GKP qubit via a SUM gate. The position shift of the data qubit
propagates to the ancillary qubit and is detected by measuring the
position of the ancillary qubit. Recovery is finally executed according
to the measurement outcome.

collapses to a component with a fixed u. However, the su-
perposition between GKP states |0̄〉 and |1̄〉 (shifted by u) is
preserved since they cannot be distinguished by the measure-
ment outcome.

Since we consider small displacement errors, so with a
high probability q2 deviates from k

√
π in a small amount.

Therefore, we infer the true value of u by subtracting from
q2 the nearest k

√
π . Define a function g(x), which gives the

distance between x and its nearest k
√

π ,

g(x) = x − k
√

π, for
(
k − 1

2

)√
π � x <

(
k + 1

2

)√
π.

(11)
Our guess for the value of u is g(q2) and we apply a dis-
placement −g(q2) to the data qubit to correct the error. With
a high probability the displacement error can be corrected
successfully, while sometimes the error correction procedure
could introduce a large displacement error and therefore result
in a logical Pauli error. Define the residual displacement of the
GKP state after the SUM gate and feed forward as

u′ = u − g(q2) = u − g(u). (12)

If |u − 2k
√

π | <
√

π/2, then g(u) = u − 2k
√

π and u′ =
u − (u − 2k

√
π ) = 2k

√
π , which means a stabilizer is ap-

plied to the GKP state and no error occurs. If |u − (2k +
1)

√
π | <

√
π/2, then g(u) = u − (2k + 1)

√
π and u′ = u −

[u − (2k + 1)
√

π ] = (2k + 1)
√

π , which means a stabilizer
and a logical Pauli operator X̄ that flips the computational
basis states are applied to the GKP state and a logical Pauli
error occurs. We divide the displacement error in position
space into two different zones, denoted as the Pauli error zone
(PZ) and no Pauli error zone (NPZ), according to whether they
lead to a logical Pauli error or not,

PZ =
{

u : |u − (2k + 1)
√

π | <

√
π

2
, k ∈ Z

}
,

NPZ =
{

u : |u − 2k
√

π | <

√
π

2
, k ∈ Z

}
. (13)

For narrative convenience we define a serial number for PZ
and NPZ,

PZm =
[(

2m − m

|m| − 1

2

)√
π,

(
2m − m

|m| + 1

2

)√
π

)
,

NPZm =
[

2m
√

π −
√

π

2
, 2m

√
π +

√
π

2

)
, (14)

with m ∈ Z. Note that PZ0 is not defined for the sake of
symmetry. The location of NPZm and PZm is shown in Fig. 3.
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FIG. 3. Distribution of no Pauli error zone (NPZ) and Pauli error
zone (PZ). PZ0 is not defined for the sake of symmetry.

With these definitions the error correction procedure can be
summarized as follows:

u ∈ NPZ ⇒ u′(mod 2
√

π ) = 0 ⇒ perfect correction,

u ∈ PZ ⇒ u′(mod 2
√

π ) = √
π ⇒ Pauli X̄ error.

The failure probability of error correction PX̄ , which is also
known as the logical Pauli X̄ error rate, is the probability that
u falls in the PZ

PX̄ =
∫

PZ
fq(u)du =

+∞∑
n=−∞

∫ 3
√

π/2+2n
√

π

√
π/2+2n

√
π

fq(u)du

= 1

2

+∞∑
n=−∞

[
erf

(
4n + 3

2�

√
π

)
− erf

(
4n + 1

2�

√
π

)]
. (15)

The relation between PX̄ and � is plotted in Fig. 4. We can
see that a smaller �, which corresponds to a higher degree of
squeezing, leads to a lower logical Pauli X̄ error rate.

B. GKP error correction with finite-energy ancilla

We now consider a more realistic error correction pro-
cedure with finite-energy ancillary GKP qubits. We use the
same GKP error correction circuit, as shown in Fig. 2, with
the ancillary qubit prepared in a finite-energy GKP state. The
SUM gate, which is designed for ideal GKP codes, distorts the
envelopes of both the data and ancillary finite-energy GKP
qubits [42], in particular, it increases the envelope width in
position space for the ancillary qubit and that in momentum

FIG. 4. Relation between the logical Pauli X̄ error rate and the
standard deviation of the probability distribution of the finite-energy
GKP state.

space for the data qubit. It is therefore advantageous to use
the envelope-preserving SUM gate [43,44]. However, the ac-
curacy of inferring the position displacement error of the data
qubit depends on the peak width rather than the envelope
width of the ancillary qubit. It is expected that the use of the
ideal SUM gate would give the same logical error rate as the
use of the envelope-preserving SUM gate. We therefore use
the ideal SUM throughout the paper.

Suppose the variances of the data and ancillary qubit of
the position quadrature are �2 and �̃2, and the displacement
errors in position space are u1 and u2, respectively. The prob-
ability distribution of u1 and u2 are given by

fq1 (u1) = 1√
π�

e− u2
1

�2 , fq2 (u2) = 1√
π�̃

e− u2
2

�̃2 . (16)

According to the transformation rule of the SUM gate, one
can show that the measurement outcome of the ancillary qubit
is

q2 = k
√

π + u1 + u2. (17)

However, both u1 and u2 are unknown. By using the same pro-
cedure as before, we infer the true value of u1 by subtracting
from q2 the nearest k

√
π . This means our guess for the error in

the data qubit is g(u1 + u2). This is not exactly the same as u1

except that u2 = m
√

π . However, this procedure is acceptable
when u2 is sufficiently small. We then apply a displacement
−g(u1 + u2) to the data qubit to correct its displacement error.
The residual displacement in the data qubit is

u′ = u1 − g(u1 + u2) = k
√

π − u2,

for
(
k − 1

2

)√
π � u1 + u2 <

(
k + 1

2

)√
π. (18)

It is evident that the residual displacement u′ is continuous,
contrary to the ideal case where u′ is discrete. However, one
can still define whether a logical Pauli error occurs or not.
When u′ is close to 2k

√
π , no logical Pauli error occurs; when

u′ is close to (2k + 1)
√

π , a Pauli X̄ error occurs.
To understand the error correcting property with finite-

energy ancillary qubit and to evaluate the logical Pauli error
rate, one needs to compute the probability distribution of u′,
which is given by (see Appendix B for details)

F (u′) = 1

2
√

π�̃

[
erf

(
u′ +

√
π

2

�

)
− erf

(
u′ −

√
π

2

�

)]

×
∑

t

exp

[
− (u′ − t

√
π )2

�̃2

]
. (19)

We can see that F (u′) is determined by a modulating
term erf[(u′ + √

π/2)/�] − erf[(u′ − √
π/2)/�] and a wave

packet term
∑

t exp[− (u′−t
√

π )2

�̃2 ]. The first is determined by
the degree of squeezing of the data qubit, while the second is
determined by the degree of squeezing of the ancillary qubit.

To have an intuitive feeling of the probability distribution,
we plot several examples of F (u′) in Fig. 5. It can be seen
that the distribution has a high peak at u′ = 0 and two low
peaks that are located symmetrically with respect to u′ = 0.
The peaks outside the PZ±1 are strongly suppressed by the
modulating term, so the residual displacement outside the
PZ±1 can be neglected. Additionally, a smaller �̃ leads to
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FIG. 5. Error distribution of GKP state after error correction with
a finite-energy ancillary qubit. We choose � = 0.5 and compare
results with several different �̃. The peaks outside PZ±1 are strongly
suppressed and a smaller �̃ leads to a narrower peak in NPZ0,
indicating a better correction to the small displacement error.

a narrower distribution of u′ in the NPZ0, showing a better
performance of error correction. This can be understood in an
intuitive way: error correction using the SUM gate is basically
substituting the error of the data qubit by the error of the
ancillary qubit, hence an ancillary qubit with higher quality
naturally leads to a better performance of error correction. If
the ancillary qubit is ideal, i.e., �̃ = 0, then the distribution of
u′ approaches to a delta function, which means the state can
be perfectly corrected.

The error correction is successful when u′ is in NPZ and
fails when u′ is in PZ. Therefore, the failure probability of
error correction, namely, the logical Pauli error rate is given
by

PF (�, �̃) =
+∞∑

n=−∞

∫ 3
√

π/2+2n
√

π

√
π/2+2n

√
π

F (u′)du′

≈ 2
∫ 3

√
π/2

√
π/2

F (u′)du′. (20)

The relation between PF (�, �̃) and �̃ for a fixed � is plotted
in Fig. 6. We can see that PF monotonically decreases as �̃

decreases, showing that an ancillary GKP qubit with higher
quality naturally leads to lower logical Pauli error rate. In
addition, it can be shown that

PF (�, �̃ → 0) = PX̄ (�). (21)

It is an important property that error correction by SUM gate
with a finite-energy ancillary qubit always increases logical
Pauli error rate as compared to that with an ideal ancillary
qubit. In the case of ideal ancillary qubit, a logical Pauli error
occurs when u1 ∈ PZ and no error occurs when u1 ∈ NPZ.
While in the case of finite-energy ancillary qubit, u1 ∈ NPZ
may lead to a logical Pauli error because of the presence of an
additional displacement u2. Although u1 ∈ PZ may not lead to
a logical Pauli error due to the same reason, its probability is
much less than the previous one.

FIG. 6. Relation between the failure probability PF (�, �̃) with
finite-energy ancillary qubit and �̃, with � fixed for each curve.

IV. CONCATENATION WITH REPETITION CODE

In the previous section, we discuss GKP error correction
with ideal and finite-energy ancillary GKP qubits, and find
that small displacement error can be effectively corrected. The
logical Pauli error rate with finite-energy ancillary GKP qubits
is generally higher than that with ideal ancillary GKP qubits.
To further suppress the logical Pauli error, we concatenate
the GKP code with repetition code [40,45,46]. Note that by
concatenating with the repetition code we only correct the
displacement error in position space.

A. Concatenation with three-qubit repetition code

The repetition code is a kind of error-correcting code re-
alized by redundancy encoding (see Appendix C for details
if you are not familiar with classical repetition code). To
concatenate the GKP code with repetition code, one needs to
replace the standard qubits by the GKP qubits and find a CV
gate that corresponds to the CNOT gate. It turns out that the
SUM gate we used to perform GKP error correction plays the
role as a CNOT gate. The quantum circuit of encoding is shown
in Fig. 7, which is a generalization of the encoding circuit
for repetition code. Before encoding, the first GKP qubit is
prepared in the state |ξ 〉 = α |0̄〉 + β |1̄〉, and the other two
data qubits are prepared in the same state |ξ1〉 = |ξ2〉 = |0̄〉.

FIG. 7. Quantum circuit of encoding for three-qubit GKP repe-
tition code. The three GKP states before encoding are assumed to
be ideal. After the encoding, three data qubits entangle with each
other. A finite-energy GKP repetition code state is constructed by
coherently superposing the ideal GKP states undergoing random
displacements.
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FIG. 8. Quantum error correction circuit of three-qubit GKP repetition code. It consists of one round of GKP error correction, syndrome
measurement of repetition code, and recovery operation according to the measurement outcomes M1 and M2. Three data qubits D1, D2, and
D3 are all finite-energy GKP states with noise variance �2 in position quadrature. Ancillary qubits A1, A2, and A3 are prepared in the state |+̃〉,
ancillary qubits A′

1 and A′
2 are prepared in the state |0̃〉, and we assume noise variances in position quadrature of all ancillary qubits to be �̃2.

Residual displacements of three data qubits D1, D2, and D3 after the GKP error correction are denoted as u′
1, u′

2, and u′
3, respectively.

After the encoding procedure, namely, the application of two
SUM gates, three GKP states become entangled with each
other

|ξ, ξ1, ξ2〉 = (α |0̄〉 + β |1̄〉) |0̄〉 |0̄〉 → |ψ̄3〉
= α |0̄0̄0̄〉 + β |1̄1̄1̄〉 . (22)

The state |ψ̄3〉 as defined is an ideal GKP repetition code state.
One way to construct a finite-energy GKP repetition code state
is to coherently superpose the randomly displaced ideal GKP
repetition code states, namely,

|�̃3〉 =
∫

du1dv1du2dv2du3dv3 η(u1, v1)η(u2, v2)

× η(u3, v3)ei(−u1 p̂1+v1q̂1 )ei(−u2 p̂2+v2 q̂2 )ei(−u3 p̂3+v3q̂3 ) |ψ̄3〉 .

(23)

Here we assume that the displacement in each ideal GKP qubit
is independent and follows the same probability distribution.
This definition of the finite-energy code state is similar to the
definition of a single-qubit finite-energy GKP state in Eq. (2).
The GKP repetition code state defined in Eq. (23) is different
from the state generated by applying two SUM gates to three
single-qubit finite-energy GKP states, since the second of
these would generate correlated noise between different GKP
qubits. We use the GKP repetition code state (23) only to seek
convenience for calculation, and we will leave the discussion
on its experimental preparation for future work.

Error correction is performed after the encoding, which is
implemented by the quantum circuit shown in Fig. 8. The
full process of error correction consists of three steps: one
round of GKP error correction, syndrome measurement and
feed forward based on the measurement outcome. The three
data GKP qubits, denoted as D1, D2, D3, have finite energy
and their noise variances of the position quadrature are the

same, which is assumed to be �2. Three ancillary GKP qubits,
denoted as A1, A2, and A3, are introduced to perform the GKP
error correction, and they are prepared in the GKP |+̃〉 state.
Another two ancillary GKP qubits, denoted as A′

1 and A′
2, are

introduced to perform the syndrome measurement, and they
are prepared in the GKP |0̃〉 state. The noise variances of the
position quadrature of all ancillary GKP qubits are assumed
to be the same and is �̃2. The residual displacements of the
three data qubits after the GKP error correction are denoted as
u′

1, u′
2, u′

3, respectively. Their probability distribution is given
by Eq. (19). Denote the displacement errors of the ancillary
qubits A′

1 and A′
2 as α1 and α2, respectively, whose probability

distribution is given by

fq′
i
(αi ) = 1√

π�̃
e− α2

i
�̃2 , i = 1, 2. (24)

The purpose of the syndrome measurement is to compare the
states of three data GKP qubits, which is implemented by
applying four SUM gates that act on the data qubits and the
ancillary qubits in an appropriate way, as shown in Fig. 8.
After these SUM gates, the displacement errors of the ancil-
lary qubits A′

1 and A′
2 become u′

1 + u′
2 + α1 and u′

1 + u′
3 + α2,

respectively. Then measurement of the ancillary qubits A′
1 and

A′
2 gives M1 = 2k1

√
π + u′

1 + u′
2 + α1 and M2 = 2k2

√
π +

u′
1 + u′

3 + α2, with k1 ∈ Z and k2 ∈ Z.
The way to identify the bit-flip error through the

syndrome in three-qubit GKP repetition code is similar
to that of three-qubit repetition code (see Appendix C).
The correspondence between measurement outcomes
{M1, M2} and the logical Pauli X̄ error on different GKP
qubits is summarized in Table I. However, this decoding
procedure has a subtle difference from that of the repetition
code: sometimes a single-qubit Pauli X̄ error could be
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misidentified. As an example, if u′
1 = √

π ∈ PZ, u′
2 =√

π/3 ∈ NPZ, u′
3 = √

π/3 ∈ NPZ, α1 = α2 = √
π/3, then

M1 = 2k1
√

π + u′
1 + u′

2 + α1 = 2k1
√

π + 5
√

π/3 ∈ NPZ,
M2 = 2k2

√
π + u′

1 + u′
3 + α2 = 2k2

√
π + 5

√
π/3 ∈ NPZ,

from which we infer that no Pauli X̄ error occurs but in fact
a Pauli X̄ error did occur in the qubit D1. Continuity of the

phase space is what makes GKP repetition code different
from the classical repetition code [45].

Considering all the circumstances where decoding proce-
dures fail, we can give the total failure probability of the
three-qubit GKP repetition code as follows (see Appendix D
for details):

Pf ,3-rep(�, �̃) = P1
f ,3-rep + P2

f ,3-rep + P3
f ,3-rep + P4

f ,3-rep + P5
f ,3-rep

≈
∫ √

π/2

u′
1=−√

π/2

∫ √
π/2

u′
2=−√

π/2

∫ √
π/2

u′
3=−√

π/2
F (u′

1, u′
2, u′

3)
[
1 − P1

α (u′
1, u′

2, u′
3)

]
du′

1du′
2du′

3

+ 6
∫ 3

√
π/2

u′
1=

√
π/2

∫ √
π/2

u′
2=−√

π/2

∫ √
π/2

u′
3=−√

π/2
F (u′

1, u′
2, u′

3)
[
1 − P2

α (u′
1, u′

2, u′
3)

]
du′

1du′
2du′

3 + 3P2
F (1 − PF ) + P3

F , (25)

where

P1
α (u′

1, u′
2, u′

3) ≈ 1

4

[
erf

( √
π

2 −u′
1−u′

2

�̃

)
−erf

(
−

√
π

2 −u′
1−u′

2

�̃

)][
erf

( √
π

2 −u′
1−u′

3

�̃

)
−erf

(
−

√
π

2 −u′
1−u′

3

�̃

)]
,

and

P2
α (u′

1, u′
2, u′

3) ≈ 1

4

[
erf

(
3
√

π

2 −u′
1−u′

2

�̃

)
−erf

( √
π

2 −u′
1−u′

2

�̃

)][
erf

(
3
√

π

2 −u′
1−u′

3

�̃

)
−erf

( √
π

2 −u′
1−u′

3

�̃

)]
,

and F (u′
1, u′

2, u′
3) = F (u′

1)F (u′
2)F (u′

3). The last two terms
correspond to the failure probability of the classical three-
qubit repetition code, and the first two terms correspond to
the failure probability when error occurs on no more than one
data qubit, which is what makes GKP repetition code different
from the classical repetition code.

The relation between the failure probability Pf ,3-rep(�, �̃)
and �̃ for � = 0.5 is shown in Fig. 9, in which PF (�, �̃) is
also included for comparison. From Fig. 9 we can see that
Pf ,3-rep(�, �̃) is monotonically decreasing as �̃ decreases.
This implies that ancillary qubits with higher quality lead to
a lower logical Pauli error rate. When �̃ → 0, the logical
Pauli error rate approaches to that of the classical three-qubit
repetition code, namely,

Pf ,3-rep(�, �̃ → 0) = 3P2
X̄ (�)[1 − PX̄ (�)] + P3

X̄ (�)

= Pclass
f ,3-rep(�). (26)

This can be understood as follows. The probability distribu-
tion of u′

1, u′
2, u′

3, α1, and α2 are determined by �̃, and when
�̃ → 0 the distribution is highly localized and is close to a

TABLE I. Correspondence between syndromes and single-qubit
bit-flip errors for the three-qubit GKP repetition code. The syn-
dromes are defined according to whether M1 and M2 belong to PZ
or NPZ.

Measurement outcome Error

M1 ∈ NPZ, M2 ∈ NPZ No error
M1 ∈ PZ, M2 ∈ PZ X̄ on data qubit 1
M1 ∈ PZ, M2 ∈ NPZ X̄ on data qubit 2
M1 ∈ NPZ, M2 ∈ PZ X̄ on data qubit 3

δ function. As a result, the probability of misidentifying no
error and single-qubit Pauli X̄ errors is almost zero. When �̃

is large, the failure probability Pf ,3-rep(�, �̃) is greater than
PF (�, �̃). However, the first decreases faster than the second
as �̃ decreases. There exists a critical value for �̃, denoted
as �̃cr, such that Pf ,3-rep(0.5, �̃cr ) = PF (0.5, �̃cr ), and from
Fig. 9 we can see that �̃cr ≈ 0.3. When �̃ < �̃cr, the logical
Pauli error rate of the three-qubit GKP repetition code is lower

FIG. 9. Comparison of logical Pauli error rate Pf ,3-rep(�, �̃)
and PF (�, �̃) for a fixed �, where we choose � = 0.5 as an
example. When �̃ → 0, the failure probability of the three-qubit
GKP repetition code approaches to that of the classical three-qubit
repetition code. There exists a critical value at �̃ = �̃cr , below
which Pf ,3-rep(�, �̃) < PF (�, �̃) and above which Pf ,3-rep(�, �̃) >

PF (�, �̃).
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FIG. 10. Encoding circuit for n-qubit GKP repetition code. The n
GKP states before encoding are assumed to be ideal. After encoding,
n data qubits entangle with each other. Then a finite-energy GKP
n-qubit repetition code state is constructed by coherently superposing
the ideal GKP states undergoing random displacements.

than that of the GKP code with finite-energy ancillary qubits.
The concatenation with repetition code, therefore, shows its
advantage in this regime. Furthermore, the failure probabil-
ity Pf ,3-rep(�, �̃) can be even lower than that of the GKP
code with ideal ancillary qubits, namely, Pf ,3-rep(0.5, �̃) <

PX̄ (0.5).

B. Concatenation with n-qubit repetition code

In the theory of quantum error correction, introducing more
qubits would allow more errors to be corrected and there-
fore achieve a lower logical error rate [1–3]. In this section,
we generalize the previous scheme and concatenate the GKP
code with n-qubit repetition code, with n an odd integer. We
are going to show that increasing the size of the GKP repeti-
tion code can further reduce the logical Pauli error rate, though
one needs to prepare ancillary GKP qubits with higher quality.
We now concatenate the GKP code with the n-qubit repetition
code. The quantum circuit of encoding is shown in Fig. 10,
where we assume all input GKP states are ideal. Before encod-
ing, the first GKP qubit is prepared in the state α |0̄〉 + β |1̄〉,
and all other GKP qubits are prepared in the state |0̄〉. After the

encoding procedure, namely, the application of (n − 1) SUM
gates, the n GKP qubits become entangled with each other,

|ξ, ξ1, ξ2, . . . , ξn−1〉 → |ψ̄n〉 = α |0̄0̄0̄ · · · 0̄〉 + β |1̄1̄1̄ · · · 1̄〉 .

(27)

We then construct a finite-energy GKP repetition code state
by coherently superposing the randomly displaced ideal GKP
repetition code states, namely,

|�̃n〉 =
∫

du1dv1 · · · dundvn η(u1, v1) · · · η(un, vn)

× exp

{
−i

n∑
k=1

(uk p̂k − vkq̂k )

}
|ψ̄n〉 . (28)

We assume that the displacement in each ideal GKP qubit is
independent and follows the same probability distribution.

The quantum circuit of error correction is shown in Fig. 11,
which is a direct generalization to that of the three-qubit GKP
repetition code, and the procedure of quantum error correction
is also similar. The residual displacements of the n data qubits
after the GKP error correction are denoted as {u′

i}n
i=1, and their

probability distribution is given by Eq. (19). The displacement
errors of the (n − 1) ancillary qubits for syndrome measure-
ment are denoted as {αi}n−1

i=1 , and their probability distribution
is given by Eq. (24). The outcomes of the syndrome measure-
ment are given by

Mi = 2ki
√

π + u′
1 + u′

i+1 + αi, i = 1, 2, . . . , n − 1, (29)

with ki ∈ Z. Similarly, there is a one-to-one correspondence
between the syndromes and correctable errors, which is sum-
marized in Table II.

Using the same method, we can calculate the failure proba-
bility of the n-qubit GKP repetition code (see Appendix E for
details). We calculate the failure probability Pf ,n-rep(�, �̃) for
the GKP repetition code with the number of data quabits up to
n = 9. The results for a fixed � are shown in Fig. 12, in which
we choose � = 0.5 as an example. First, it can be seen that

FIG. 11. Quantum error correction circuit for n-qubit GKP repetition code. It consists of one round of GKP error correction, syndrome
measurement of repetition code, and recovery operation according to the measurement outcomes {Mi}n−1

i=1 . Here {Di}n
i=1 denote the data qubits

and {A′
i}n−1

i=1 denote the ancillary qubits introduced to perform syndrome measurement.
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TABLE II. Correspondence between syndromes and single-qubit
bit-flip errors for the n-qubit GKP repetition code.

Measurement outcome Error

M1, M2, . . . , Mn−1 ∈ NPZ No error
M1, M2, . . . , Mn−1 ∈ PZ D1

M1 ∈ PZ, M2, . . . , Mn−1 ∈ NPZ D2

M1 ∈ NPZ, M2 ∈ PZ, M3, . . . , Mn−1 ∈ NPZ D3

· · · · · · · · · · · ·
M1 ∈ NPZ, M2, . . . , Mn−1 ∈ PZ D1, D2

M1 ∈ PZ, M2 ∈ NPZ, M3, . . . , Mn−1 ∈ PZ D1, D3

· · · · · · · · · · · ·
M1, M2 ∈ NPZ, M3, . . . , Mn−1 ∈ PZ D1, D2, D3

· · · · · · · · · · · ·

the failure probability Pf ,n-rep(�, �̃) for all n monotonically
decreases as �̃ decreases. This implies that ancillary qubits
with higher quality lead to a lower logical Pauli error rate. In
the limit of �̃ → 0, the logical Pauli error rate approaches to
that of the classical n-qubit repetition code, namely,

Pf ,n-rep(�, �̃ → 0) =
n∑

i= n+1
2

Ci
nPi

X̄ (�)[1 − PX̄ (�)]n−i

= Pclass
f ,n-rep(�). (30)

The second observation is that when �̃ is sufficiently large,
the logical Pauli error rate increases as the size of the code
increases; when �̃ is sufficiently small, the logical Pauli error
rate decreases as the size of the code increases. This implies
that the concatenation of GKP code with repetition code can
reduce the logical Pauli error rate under the condition that the
quality of the ancillary qubit is sufficiently high. Figure 12
indicates that there exists some threshold for �̃, below which
the concatenation shows advantages. However, the location
of the threshold is not sharp. Define the critical noise vari-
ance �̃2

nm as the variance of the ancillary qubit when the

FIG. 12. Comparison of logical Pauli error rate Pf ,n-rep(�, �̃) of
n-qubit GKP repetition codes for n from 3 to 9, with � = 0.5 as an
example. The inset shows the location of various critical values.

FIG. 13. Relation between �̃nm and �. The ratio �̃nm/� is upper
bounded by 0.5 and lower bounded by 0.25 for the code size n from
3 to 9.

n-qubit GKP repetition code and the m-qubit GKP repetition
code have the same logical Pauli error rate for a fixed �.
From Fig. 12 it can be seen that �̃97 < �̃75 < �̃53. They are
close but not the same. When �̃ > �̃53, we have Pf ,9-rep >

Pf ,7-rep > Pf ,5-rep > Pf ,3-rep. Therefore, �̃2
53 can be considered

as the minimal noise variance that the concatenation with
repetition code is completely useless. When �̃ < �̃97, we
have Pf ,9-rep < Pf ,7-rep < Pf ,5-rep < Pf ,3-rep. Therefore, �̃2

97 is
the noise variance that one needs to achieve to realize the
power of repetition code concatenation with at least nine GKP
qubits.

The critical noise variance �̃2
nm depends on the noise vari-

ance of the data qubits. The relation between �̃nm and �

is shown in Fig. 13. We can see that �̃nm increases mono-
tonically as � increases. This implies that a lower-quality
GKP repetition code requires lower quality ancillary qubits
to achieve its advantage. This is rather surprising and counter-
intuitive. However, one should keep in mind that this does not
imply that a low-quality GKP repetition code is preferred in
the experimental realization. This is because one also needs
to take into account the displacement error in momentum
space, which we will discuss later in Sec. V. From Fig. 13
it can be seen that the relation between �̃nm and �̃ is almost
linear, we therefore define an approximate ratio �̃nm/� (or an
average ratio). The ratio depends on the size of the code, and is
upper bounded by 0.5 and lower bounded by 0.25 for the code
size that we consider. This means if we choose �̃ = 0.5�,
the logical Pauli error rate increases as the size of the code
increases, implying that concatenation with repetition code
is useless; while if we choose �̃ = 0.25�, the logical Pauli
error rate decreases as the size of the code increases, implying
that concatenation with repetition code with at least nine GKP
qubits is useful.

We are not able to calculate the failure probability for
arbitrarily large n since it involves a very high-dimensional in-
tegral, which is a rather challenging task. Based on the results
with n up to nine, we conjecture that there exists a nonzero
threshold for �̃ such that for sufficiently small � the logical
Pauli error rate can be exponentially suppressed by increasing
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FIG. 14. Failure probabilities for GKP repetition codes without
one round of GKP error correction before concatenation. Here we
choose � = 0.5.

the size of the code. This threshold can be calculated by using
the Monte Carlo simulation and we leave it for future work.

C. Comparison with no GKP error correction

Although the GKP error correction increases the proba-
bility of Pauli X̄ error for all values of �̃, it narrows down
the error distribution of the GKP state when �̃ < � such
that the concatenation with repetition code is advantageous.
However, the GKP error correction requires the same number
of ancillary GKP qubits as the data qubits. A question arises
as to whether the GKP error correction is necessary to reduce
the logical Pauli error rate. If the GKP error correction is
not necessary, then we only need to supply ancillary GKP
qubits for syndrome measurement and therefore can save a
substantial amount of physical resources.

We calculate the failure probability P ′
f ,n-rep(�, �̃) for the

GKP repetition code without one round of GKP error cor-
rection, with the number of data qubits up to n = 9 (see
Appendix F for details). The results for a fixed � are shown
in Fig. 14, in which we choose � = 0.5 as an example. We
can see that GKP repetition code without one round of GKP
error correction cannot reduce the logical Pauli error rate even
when �̃ → 0, and increasing the size of the code leads to a
higher logical Pauli error rate. We confirm that this is true for
� � 0.2, and we expect that this should also be the case when
� < 0.2. This is in contrast to the GKP repetition code with
one round of GKP error correction, for which increasing the
code size can lead to a lower logical Pauli error rate, as shown
in Fig. 12. Therefore, one round of GKP error correction
before concatenation is necessary.

V. BIASED NOISE CORRECTED BY GKP
REPETITION CODE

Until now we have only considered correcting dis-
placement errors in position space and neglected those in
momentum space. Therefore, previous results are only valid
in the limit of no errors in momentum space. However, a
finite-energy GKP state does have noise in both position and
momentum spaces. In this section, we take into account the

FIG. 15. Scheme to correct biased noise using GKP repetition
code. Ideal GKP repetition code is first generated by injecting ideal
GKP states into the encoding circuit. Biased noise is then imposed to
the ideal GKP repetition code to produce a finite-energy GKP repe-
tition code. The error correction consists of one round of GKP error
correction, syndrome measurement on repetition code, and decoding.

effects of momentum displacement error and assume a biased
noise model, namely, with unequal position and momentum
noise, and introduce a GKP repetition code to suppress the
logical error. Note that concatenating with repetition code
does not correct momentum displacement error. We assume
the momentum displacement error is suppressed when the
GKP states are generated and by going through an anisotropic
GDC. Equivalently, one considers isotropic noise and uses an
anisotropic GKP code [40] in which the spacing between two
adjacent peaks in momentum space is stretched, to effectively
suppress the momentum displacement error.

The scheme of correcting biased noise using GKP rep-
etition code is schematically shown in Fig. 15, where
“q-GKP-EC” represents GKP error correction in position
space, “q-rep code” represents error correction in position
space by concatenating with the repetition code. The GKP
states before encoding are assumed to be ideal. Biased noise
is imposed to the data qubits after encoding, with the error
probability distribution given by Eq. (6). By choosing r > 1,
the error in momentum space is suppressed at the expense of
amplifying the error in position space. Fortunately, this is not
a problem because the displacement error in position space
can be efficiently corrected by concatenating the GKP code
with repetition code.

However, it should be noted that further error correction
in position space will contaminate the momentum quadrature.
After applying the SUM gate, the momentum displacement
error of the ancillary qubits can propagate to the momentum
space of the data qubits, therefore, the variance of the error
distribution in momentum space will be amplified. The initial
noise variance of the finite-energy GKP state in momentum
space is (�/r)2. After one round of GKP error correction,
the momentum displacement error of the ancillary GKP qubit
propagates to the data qubit, resulting in a noise variance
(�/r)2 + �̃2. Concatenation with the repetition code will
further increase the noise in momentum space because of
the sequential application of SUM gates during the syndrome
measurement. By concatenating with an n-qubit repetition
code, the noise variance of the first data qubit in momentum
space becomes (�/r)2 + n�̃2 since it couples with (n − 1)
ancillary qubits via the SUM gate; while the noise variance of
all other data qubits in momentum space becomes (�/r)2 +
2�̃2 since each of them couples with only one ancillary qubit.

The logical information is protected when the momentum
displacement is in NPZ and the correction of the posi-
tion displacement using the GKP repetition code succeeds.
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(a) (b)

(c) (d)

FIG. 16. Relation between the overall logical error rate Pfail and bias level r for � = 0.5 and (a) �̃ = 0, (b) �̃ = 0.05, (c) �̃ = 0.13, and
(d) �̃ = 0.2.

The overall logical error rate after the error correction is given
by

Pfail = 1 − [1 − PZ̄ (
√

(�/r)2 + 2�̃2)]n−1

× [1 − PZ̄ (
√

(�/r)2 + n�̃2)][1 − Pf ,n-rep(r�, �̃)],
(31)

where the expression for PZ̄ (�) is the same as PX̄ (�), which
is given by Eq. (15).

The calculation of the exact threshold for �̃ is chal-
lenging and we leave it for future work. Here, we provide
evidence showing that there exists a nonzero threshold for
�̃. The relation between the overall logical error rate Pfail

and bias level r is shown in Fig. 16 with � = 0.5 and �̃ =
0.0, 0.05, 0.13, 0.2. We can see that, for every n, the logical
error rate has a minimum corresponding to the optimal bias
level ropt. When r < ropt, the displacement error from momen-
tum space dominates; while when r > ropt, the displacement
error from position space dominates. In addition, the opti-
mal bias level increases when the code size increases. For
a sufficiently small �̃, the minimal overall logical error rate
decreases as the code size n increases, as shown in Fig. 16(a)
with �̃ = 0 and in Fig. 16(b) with �̃ = 0.05. This implies
that for these values of �̃, the concatenation of GKP code
with repetition code shows advantages. While for a large �̃,

say, �̃ = 0.2, we can see from Fig. 16(d) that the minimal
overall logical error rate increases as the code size n increases.
As shown in Fig. 16(c) with �̃ = 0.13, the minimal overall
logical error rate first decreases and then increases as the code
size n increases. This implies the threshold of �̃ should be
between 0.05 and 0.13. But one should note that, according to
the authors of Ref. [40], � has a threshold above which the
concatenation with repetition code shows no advantages even
when �̃ = 0. The threshold is estimated to be 0.599 × √

2 ≈
0.847 (note that the variance of error distribution of GKP
state in our work is twice of that in Ref. [40]). Therefore,
both � and �̃ have to be below their thresholds so that the
concatenation of the GKP code with the repetition code can
show advantages.

The case for �̃ = 0.13, which is a slightly smaller than
�̃97 ≈ 0.139 given in Sec. IV B where only error correction
in position space is considered, tells us that when we take into
account momentum noise, the condition required to exploit
the power of code concatenation is more stringent. This is
not limited to the special case where � = 0.5, but is valid
in general, which can be explained qualitatively as follows.
The overall logical error rate can be approximated as Pfail ∼
1 − (1 − PZ̄ )n(1 − Pf ,n−rep), where (1 − PZ̄ )n decreases expo-
nentially with increasing n. In the regime of �̃ where Pf ,n−rep

increases with increasing n, Pfail becomes higher for a larger
code, indicating that concatenation with repetition code shows
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no advantages. In the regime of �̃ where Pf ,n−rep decreases
with increasing n, Pf ,n−rep has to decrease fast enough with
increasing n, so that the decreasing of (1 − PZ̄ )n can be com-
pensated and Pfail decreases with increasing n. Hence the
threshold of �̃ must be lower than the case where only error
correction in position space is considered.

For biased noise, concatenating GKP codes with the repeti-
tion code significantly reduces the logical error rate. To further
suppress the logical error, in particular, to correct the momen-
tum displacement error, one can consider the GKP repetition
code as an elementary code block and further concatenate
it with other qubit codes. Concatenating the GKP repetition
code, which achieves a low logical error rate with low over-
head, with other high-level codes could potentially reduce
the resource overhead for fault tolerant computation. For the
isotropic noise or not highly biased noise, one can either
introduce an anisotropic GKP code and concatenate it with
repetition code [40], or directly concatenate the GKP code
with quibt codes that can correct both bit-flip and phase-flip
errors, e.g., the surface code [28–33] or color code [34–36].

VI. CONCLUSION AND OUTLOOKS

We study the concatenation of GKP code with repetition
code to correct biased random displacement errors with finite-
energy ancillary GKP qubits. The error correction procedure
consists of one round of GKP error correction, concatenation
with repetition code, syndrome measurement, and recovery
operation. The purpose of the GKP error correction is to
correct displacement errors before concatenation to alleviate
the heavy burden of the repetition code.

We find that there exists a critical value for the noise vari-
ance of the ancillary qubits, below which the logical Pauli X̄
error rate decreases as the size of the repetition code increases;
and there is a slightly different critical value for the noise vari-
ance of the ancillary qubits, above which the logical Pauli X̄
error rate increases as the size of the repetition code increases.
These critical values for the noise variance of the ancillary
qubits depend on the noise variance of the data qubits, and
they increases monotonically as the noise variance of the data
qubits increases. Their ratio is lower bounded by 1/16 and
upper bounded by 1/4. We also show that the GKP error
correction before concatenation with the repetition code is
necessary, otherwise the logical Pauli X̄ error rate cannot be
reduced even for ideal ancillary GKP qubits

We then use the GKP repetition code to correct biased
noise, for which the random displacement errors in momen-

tum space are assumed to be smaller than that in position
space, and therefore, no further concatenation is introduced to
correct them. We provide a qualitative analysis showing that
there exists a nonvanishing threshold for the noise variance of
the ancillary GKP qubit, below which the concatenation with
repetition code of larger size can lead to lower overall logical
error rate, albeit with a higher level of noise bias. Therefore,
the concatenation with the repetition code shows advantages
when both �̃ and � are below the corresponding thresholds.

Although we take into account the effects of finite-energy
ancillary GKP qubits, there are still assumptions needed to
be relaxed in future work. For example, quantum opera-
tions (SUM gates and recovery operations) are assumed to
be ideal, measurement is assumed to be unbiased, and most
importantly, the generation of the encoded states of the GKP
repetition code is not well studied. Actually, the n input GKP
states before encoding are nonideal states, so the degree of
squeezing of the n data qubits after encoding are not the
same. However, we use an encoded state with equal degree
of squeezing only to facilitate calculations, and focus on the
relation between performance of the error correction and the
quality of the ancillary qubits. Hence, our work only provides
a lower limit of the logical error rate of the error correction
code. There are some other aspects needed to further explore.
It is interesting and important to check whether there is a
noninfinite squeezing threshold for the ancillary GKP qubits
for an arbitrarily large GKP repetition code. This can be
estimated, for example, by using the Monte Carlo simulation.
In addition, one needs to consider the finite-energy encoded
states that can be efficiently prepared in the experiment, and
the envelope-preserving SUM gate.
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APPENDIX A: FINITE-ENERGY GKP STATE

By discussing some examples, we can see that the GKP
states defined in Eq. (2) are finite-energy. In the first example,
we assume |ξ̄〉 = |0̄〉, then

|0̃〉 = N0

∫
dudv η(u, v)e−iup̂+ivq̂ |0̄〉 . (A1)

Consider the wave function of state |0̃〉 in position space

ψ̃0(q) = 〈q |0̃〉 = N0

∫
dudv η(u, v) 〈q| e−iup̂+ivq̂ |0̄〉 = N0

+∞∑
n=−∞

∫
dudv η(u, v)e−iuv/2eivq〈q |2n

√
π + u〉q

= N0

+∞∑
n=−∞

∫
dv η(q − 2n

√
π, v)e−i(q−2n

√
π )v/2eivq =

√
2N0

√
κ

�

+∞∑
n=−∞

e− (q−2n
√

π )2

2�2 e− κ2 (q+2n
√

π )2

8

=
√

2N0

√
κ

�

+∞∑
n=−∞

exp

{
− 4πn2κ2

2(1 + �2κ2/4)

}
exp

{
−1 + �2κ2/4

2�2

[
q −

(
1 − �2κ2/4

1 + �2κ2/4

)
2n

√
π

]2
}

. (A2)
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It is evident that the wave function ψ̃0(q) is a sum of a
sequence of Gaussian functions weighted by a function that
rapidly decreases when n increases, therefore, the wave func-
tion is normalizable and is finite-energy. Note that the spacing
between the Gaussian peaks is slightly modified

2
√

π → 2
√

π

(
1 − �2κ2/4

1 + �2κ2/4

)
, (A3)

and the variance is also slightly changed

�2 → �2

1 + �2κ2/4
. (A4)

When both � and κ are sufficiently small, the higher-order
term �2κ2 can be neglected, then the wave function ψ̃0(q)

can be approximated as

ψ̃0(q) ≈
√

2N0

√
κ

�

+∞∑
n=−∞

e−2πn2κ2
e−(q−2n

√
π )2

/2�2

≈
(

4κ2

π�2

)1/4 +∞∑
n=−∞

e−2πn2κ2
e−(q−2n

√
π )2

/2�2
,

where we used the approximation that N2
0 ≈ 1/

√
π when �

and κ are small.
Then the wave function of state |0̃〉 in the momentum space

can be calculated in a similar way

ψ̃0(p) = 〈p |0̃〉 = N0

∫
dudv η(u, v) 〈p| e−iup̂+ivq̂ |0̄〉 = N0

+∞∑
n=−∞

∫
dudv η(u, v)eiuv/2e−iup〈p |n√

π + v〉p

= N0

+∞∑
n=−∞

∫
dv η(u, p − n

√
π )ei(p−n

√
π )u/2e−iup =

√
2N0

√
�

κ

+∞∑
n=−∞

e− (p−n
√

π )2

2κ2 e− �2 (p+n
√

π )2

8

=
√

2N0

√
�

κ

+∞∑
n=−∞

exp

{
− πn2�2

2(1 + �2κ2/4)

}
exp

{
−1 + �2κ2/4

2κ2

[
p −

(
1 − �2κ2/4

1 + �2κ2/4

)
n
√

π

]2
}

. (A5)

Note that the spacing between the Gaussian peaks is slightly modified

√
π → √

π

(
1 − �2κ2/4

1 + �2κ2/4

)
, (A6)

and the variance is also slightly changed

κ2 → κ2

1 + �2κ2/4
. (A7)

When both � and κ are small, the higher-order term �2κ2 can be neglected, then the wave function ψ̃0(p) can be approximated
as

ψ̃0(p) ≈
(

4�2

πκ2

)1/4 +∞∑
n=−∞

e−πn2�2/2e−(p−n
√

π )2
/2κ2

. (A8)

In the second example, we consider |ξ̄〉 = |1̄〉, then

|1̃〉 = N1

∫
dudv η(u, v)e−iup̂+ivq̂ |1̄〉 . (A9)

Using the expression of |1̄〉 = ∑
n |(2n + 1)

√
π〉q in position space, we can similarly derive its wave function

ψ̃1(q) = 〈q |1̃〉 = N1

∫
dudv η(u, v) 〈q| e−iup̂+ivq̂ |1̄〉 =

√
2N1

√
κ

�

+∞∑
n=−∞

e− [q−(2n+1)
√

π ]2

2�2 e− κ2[q+(2n+1)
√

π]2

8

=
√

2N1

√
κ

�

+∞∑
n=−∞

exp

{
− π (2n + 1)2κ2

2(1 + �2κ2/4)

}
exp

{
−1 + �2κ2/4

2�2

[
q −

(
1 − �2κ2/4

1 + �2κ2/4

)
(2n + 1)

√
π

]2
}

. (A10)

When both � and κ are sufficiently small, the higher-order term �2κ2 can be neglected, then the wave function ψ̃1(q) can be
approximated as

ψ̃1(q) ≈
√

2N1

√
κ

�

+∞∑
n=−∞

e− (2n+1)2πκ2

2 e− [q−(2n+1)
√

π]2

2�2 ≈
(

4κ2

π�2

)1/4 +∞∑
n=−∞

e− (2n+1)2πκ2

2 e− [q−(2n+1)
√

π]2

2�2 , (A11)

where we use the approximation that N2
1 ≈ 1/

√
π when � and κ are small.
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The wave function in momentum space can be calculated in a similar way,

ψ̃1(p) = 〈p |0̃〉 = N1

∫
dudv η(u, v) 〈p| e−iup̂+ivq̂ |1̄〉 =

√
2N1

√
�

κ

+∞∑
n=−∞

(−1)ne− (p−n
√

π )2

2κ2 e− �2 (p+n
√

π )2

8

=
√

2N1

√
�

κ

+∞∑
n=−∞

(−1)n exp

{
− πn2�2

2(1 + �2κ2/4)

}
exp

{
−1 + �2κ2/4

2κ2

[
p −

(
1 − �2κ2/4

1 + �2κ2/4

)
n
√

π

]2
}

. (A12)

When both � and κ are small, the higher-order term �2κ2 can be neglected, then the wave function ψ̃1(p) can be approximated
as

ψ̃1(p) ≈
(

4�2

πκ2

)1/4 +∞∑
n=−∞

(−1)ne−πn2�2/2e−(p−n
√

π )2
/2κ2

. (A13)

According to the definition of the Wigner function and the expression for ψ̃0(q), it is straightforward to calculate the Wigner
function of the finite-energy GKP state |0̃〉,

W (q, p; |0̃〉 〈0̃|) = √
πN2

0

∑
m,n

e−π�2
s m2/4−4πκ2

s n2
exp

{
− (p − m

√
πγ /2)2

κ2
s

− (q − 2n
√

πγ )2

�2
s

}

+√
πN2

0

∑
m,n

(−1)me−π�2
s m2/4−πκ2

s (2n+1)2
exp

{
− (p − m

√
πγ /2)2

κ2
s

− [q − (2n + 1)
√

πγ ]2

�2
s

}
, (A14)

where �s = �/
√

1 + �2κ2/4, κs = κ/
√

1 + �2κ2/4 and γ = 1−�2κ2/4
1+�2κ2/4 . When both � and κ are sufficiently small, the higher-

order term �2κ2 can be neglected, namely, �s → �, κs → κ , and γ → 1. The Wigner function of the finite-energy GKP state
can be approximated as

W (q, p; |0̃〉 〈0̃|) ≈
∑
m,n

e−π�2m2/4−4πκ2n2
exp

{
− (p − m

√
π/2)2

κ2
− (q − 2n

√
π )2

�2

}

+
∑
m,n

(−1)me−π�2m2/4−πκ2(2n+1)2
exp

{
− (p − m

√
π/2)2

κ2
− [q − (2n + 1)

√
π ]2

�2

}
. (A15)

Consider the Wigner function of the ideal GKP state |0̄〉 after going through a GDC. The density matrix is

ρ̂ =
∫

dudv f (u, v)D̂(u, v) |0̄〉 〈0̄| D̂†(u, v) =
∑
n,m

∫
dudv f (u, v)e2i

√
πv(n−m) |2n

√
π + u〉q 〈2m

√
π + u| . (A16)

then the Wigner function can be calculated as

W (q, p; ρ̂ ) = 1

4π
√

π�κ

∑
m,n

exp

{
− (p − m

√
π/2)2

δ2
p

− (q − 2n
√

π )2

δ2
q

}

+ 1

4π
√

π�κ

∑
m,n

(−1)m exp

{
− (p − m

√
π/2)2

δ2
p

− [q − (2n + 1)
√

π ]2

δ2
q

}
. (A17)

After the action of GDC, the new Wigner function W (q, p) is related to the old Wigner function W0(q, p) via

W (q, p) =
∫

dudv f (u, v)W0(q + u, p + v) =
∫

dudv f (u − q, v − p)W0(u, v), (A18)

which implies that the new Wigner function is the convolution of the old Wigner function and the noise distribution function
f . Although the finite-energy GKP state is not Gaussian, their Wigner function can be written as a sum of a sequence of
Gaussian functions. Since the convolution of two Gaussian functions gives also a Gaussian function, the Wigner function
of a finite-energy GKP state after going through a GDC is still a sum of a sequence of Gaussian functions. Furthermore,
the variances of the new Gaussian functions are the sum of the variances of the old Gaussian functions and those of noise
distribution function. Suppose W0(q, p) = W (q, p; |0̃〉 〈0̃|), then the Wigner function after going through the GDC is given
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by

WGDC(q, p; |0̃〉 〈0̃|) ≈ �κ√
(δ2

q + �2)(δ2
p + κ2)

{∑
m,n

e−π�2m2/4−4πκ2n2
exp

[
− (p − m

√
π/2)2

κ2 + δ2
p

− (q − 2n
√

π )2

�2 + δ2
q

]

+
∑
m,n

(−1)me−π�2m2/4−πκ2(2n+1)2
exp

[
− (p − m

√
π/2)2

κ2 + δ2
p

− (q − (2n + 1)
√

π )2

�2 + δ2
q

]}
. (A19)

APPENDIX B: ERROR DISTRIBUTION OF GKP STATE
AFTER SUM GATE WITH FINITE-ENERGY

ANCILLARY QUBIT

We give the detailed calculation of the error distribution
of GKP state after GKP error correction with a finite-energy
ancillary qubit, i.e., we calculate the probability distribution
of the variable u′ given by Eq. (18), with the probability
distribution of u1 and u2 given by Eq. (16). We first need to
calculate the probability P(u′ � x) for a given x,

P(u′ � x) =
∑

k

P

[
u2 � k

√
π − x and

(
k − 1

2

)√
π

� u1 + u2 < (k + 1

2
)
√

π

]

=
∑

k

∫ +∞

k
√

π−x
fq2 (u2)du2

∫ (k+1/2)
√

π−u2

(k−1/2)
√

π−u2

fq1 (u1)du1

= 1

2

∑
k

∫ +∞

k
√

π−x
du2 fq2 (u2)

×
[

erf

(
(k + 1/2)

√
π − u2

�

)

− erf

(
(k − 1/2)

√
π − u2

�

)]
. (B1)

Then the probability distribution of u′ is obtained by taking
derivative with respect to x,

F (u′ = x) = dP(u′ � x)

dx

= 1

2

∑
k

fq2 (u2 = k
√

π − x)

[
erf

(√
π/2 + x

�

)

− erf

(−√
π/2 + x

�

)]

= 1

2
√

π�̃

[
erf

(√
π/2 + x

�

)

− erf

(−√
π/2 + x

�

)]
∑

t

exp

[
− (x − t

√
π )2

�̃2

]
.

(B2)

Finally Eq. (19) is obtained by simply rewriting the above
result.

APPENDIX C: CLASSICAL n-QUBIT BIT-FLIP
REPETITION CODE

In the n-qubit bit-flip repetition code [47,48], n physical
qubits are introduced to encode one logical qubit, in particular,
the single-qubit state α |0〉 + β |1〉 is encoded as follows:

|ψ〉 = α |0〉 + β |1〉 → |ψ̄〉 = α |00 . . . 0〉 + β |11 . . . 1〉 .

(C1)
If one of these n qubits was flipped, the flipped qubit can be
detected by comparing any two of these n qubits and then
applying the majority rule, which is known as the syndrome
measurement. Once the flipped qubit is identified, it can be
corrected by applying a Pauli X operator. The n-qubit repe-
tition code is able to correct any m-qubit bit-flip error, with
1 � m � (n − 1)/2. Denote the bit-flip error rate of a single
physical qubit as p, then the failure probability of the n-qubit
repetition code is given by

Pclass
f ,n-rep =

n∑
i=(n+1)/2

Ci
n pi(1 − p)n−i. (C2)

To realize the comparison between physical qubits without
collapsing the encoded state, one needs to introduce ancillary
qubits to perform the syndrome measurement. There are C0

n +
C1

n + · · · + C(n−1)/2
n = 2n−1 possibilities that up to (n − 1)/2

quibts are flipped, i.e., 2n−1 correctable errors. Therefore, 2n−1

syndromes are needed to decode these errors, which implies
(n − 1) ancillary GKP qubits are required to perform syn-
drome measurement. The comparison of states of two qubits
is implemented by the CNOT gate.

The qubit with bit-flip error is identified through the
measurement outcome of the ancillary qubits, known as
the syndrome. Take the simplest three-qubit repetition code
as an example, the one-to-one correspondence between the
syndrome and the single-qubit bit-flip error of classical three-
qubit repetition code [47,48] is summarized in Table III. As
an example, if the ancillary qubit A′

1 is flipped while A′
2 is

not, then the states of the data qubits D1 and D2 are different,
while the states of the data qubits D1 and D3 are the same.
This implies that the data qubit D2 is flipped.

TABLE III. Correspondence between syndromes and single-
qubit bit-flip errors for the classical three-qubit repetition code.

Syndrome Final state Error

0 0 α |000〉 + β |111〉 No error
1 1 α |100〉 + β |011〉 Bit flip on data qubit 1
1 0 α |010〉 + β |101〉 Bit flip on data qubit 2
0 1 α |001〉 + β |110〉 Bit flip on data qubit 3
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APPENDIX D: CALCULATION OF THE FAILURE PROBABILITY OF THREE-QUBIT GKP REPETITION CODE

The correspondence between measurement outcomes and the logical Pauli X̄ error on different GKP qubits of three-qubit
GKP repetition code is summarized in Table I. However, this decoding procedure may result in misidentification of the error,
which is different from that of the classical three-qubit repetition code. To calculate the failure probability of three-qubit GKP
repetition code, we need to reverse the decoding process and impose some conditions to be satisfied instead. For example, if no
error occurs, we need M1 ∈ NPZ and M2 ∈ NPZ to give the correct identification, and the area outside M1 ∈ NPZ and M2 ∈ NPZ
must lead to failure. Similar rules apply for other cases. All possible circumstances are summarized as follows:

(1) Case 1: If no error occurs ⇒ we require M1 ∈ NPZ, M2 ∈ NPZ;
(2) Case 2: If X̄ applies on data qubit D1 ⇒ we require M1 ∈ PZ, M2 ∈ PZ;
(3) Case 3: If X̄ applies on data qubit D2 ⇒ we require M1 ∈ PZ, M2 ∈ NPZ;
(4) Case 4: If X̄ applies on data qubit D3 ⇒ we require M1 ∈ NPZ, M2 ∈ PZ;
(5) Case 5: If errors occur on more than one data qubit, with probability 3P2

F (1 − PF ) + P3
F ⇒ error correction fails.

Now we calculate the failure probability for the above five cases, the sum of which gives the total failure probability. Consider
case 1, there are five constraints needed to be satisfied simultaneously,

No Pauli X̄ error ⇒ |u′
1 − 2m1

√
π | <

√
π

2
, |u′

2 − 2m2
√

π | <

√
π

2
, |u′

3 − 2m3
√

π | <

√
π

2
,

M1 ∈ NPZ, M2 ∈ NPZ ⇒ |u′
1 + u′

2 + α1 − 2n1
√

π | <

√
π

2
, |u′

1 + u′
3 + α2 − 2n2

√
π | <

√
π

2
, (D1)

where mi ∈ Z and ni ∈ Z. The probability of success is obtained by integrating the probability distribution of five variables
in the domain defined by these five inequalities. However, it is challenging to derive an analytic expression for the success
probability, which requires a five-dimensional linear programming. Therefore, a numerical integration method is used instead,
which proceeds in two steps. We first fix a point (u′

1, u′
2, u′

3) in the domain defined by the first three inequalities in Eq. (D1), then
the success probability at this given point is

P1
α (u′

1, u′
2, u′

3) =
⎛
⎝∑

n1

∫ √
π/2+2n1

√
π−u′

1−u′
2

−√
π/2+2n1

√
π−u′

1−u′
2

fq′
1
(α1)dα1

⎞
⎠

⎛
⎝∑

n2

∫ √
π/2+2n2

√
π−u′

1−u′
3

−√
π/2+2n2

√
π−u′

1−u′
3

fq′
2
(α2)dα2

⎞
⎠

≈ 1

4

[
erf

( √
π

2 − u′
1 − u′

2

�̃

)
− erf

(
−

√
π

2 − u′
1 − u′

2

�̃

)][
erf

( √
π

2 − u′
1 − u′

3

�̃

)
− erf

(
−

√
π

2 − u′
1 − u′

3

�̃

)]
,

(D2)

where we have only kept one term with n1 = n2 = 0 in the summation because the contribution from other terms is negligible.
Then the failure probability of case 1 is given by integrating the failure probability 1 − P1

α (u′
1, u′

2, u′
3) over all points satisfying

the first three constraints in Eq. (D1), weighted by the probability distribution F (u′
1, u′

2, u′
3) = F (u′

1)F (u′
2)F (u′

3),

P1
f ,3-rep =

∫
u′

1∈NPZ

∫
u′

2∈NPZ

∫
u′

3∈NPZ
F (u′

1, u′
2, u′

3)
[
1 − P1

α (u′
1, u′

2, u′
3)

]
du′

1du′
2du′

3

≈
∫ √

π/2

u′
1=−√

π/2

∫ √
π/2

u′
2=−√

π/2

∫ √
π/2

u′
3=−√

π/2
F (u′

1, u′
2, u′

3)
[
1 − P1

α (u′
1, u′

2, u′
3)

]
du′

1du′
2du′

3, (D3)

where we only kept one term with m1 = m2 = m3 = 0 in the summation because the contribution from other terms is negligible.
In a similar way, we can derive the failure probability for case 2 by taking into account the condition that u′

1 ∈ PZ, u′
2 ∈ NPZ

and u′
3 ∈ NPZ,

P2
f ,3-rep =

∫
u′

1∈PZ

∫
u′

2∈NPZ

∫
u′

3∈NPZ
F (u′

1, u′
2, u′

3)
[
1 − P2

α (u′
1, u′

2, u′
3)

]
du′

1du′
2du′

3

≈ 2
∫ 3

√
π/2

u′
1=

√
π/2

∫ √
π/2

u′
2=−√

π/2

∫ √
π/2

u′
3=−√

π/2
F (u′

1, u′
2, u′

3)
[
1 − P2

α (u′
1, u′

2, u′
3)

]
du′

1du′
2du′

3, (D4)

where P2
α (u′

1, u′
2, u′

3) is the success probability for a given point (u′
1, u′

2, u′
3) when M1 ∈ PZ and M2 ∈ PZ,

P2
α (u′

1, u′
2, u′

3) =
⎛
⎝∑

n1

∫ 3
√

π/2+2n1
√

π−u′
1−u′

2

√
π/2+2n1

√
π−u′

1−u′
2

fq′
1
(α1)dα1

⎞
⎠

⎛
⎝∑

n2

∫ 3
√

π/2+2n2
√

π−u′
1−u′

3

√
π/2+2n2

√
π−u′

1−u′
3

fq′
2
(α2)dα2

⎞
⎠

≈ 1

4

[
erf

(
3
√

π

2 − u′
1 − u′

2

�̃

)
− erf

( √
π

2 − u′
1 − u′

2

�̃

)][
erf

(
3
√

π

2 − u′
1 − u′

3

�̃

)
− erf

( √
π

2 − u′
1 − u′

3

�̃

)]
. (D5)

052420-16



CORRECTING BIASED NOISE USING … PHYSICAL REVIEW A 109, 052420 (2024)

P3
α (u′

1, u′
2, u′

3) and P4
α (u′

1, u′
2, u′

3) can also be calculated by the similar way, and it can be shown that the failure probabilities of
cases 3 and 4 are the same as that of the case 2, namely,

P2
f ,3-rep = P3

f ,3-rep = P4
f ,3-rep. (D6)

The failure probability of case 5 is

P5
f ,3-rep = 3P2

F (1 − PF ) + P3
F . (D7)

Finally, the total failure probability of the three-qubit GKP repetition code is

Pf ,3-rep(�, �̃) = P1
f ,3-rep + P2

f ,3-rep + P3
f ,3-rep + P4

f ,3-rep + P5
f ,3-rep

≈
∫ √

π/2

u′
1=−√

π/2

∫ √
π/2

u′
2=−√

π/2

∫ √
π/2

u′
3=−√

π/2
F (u′

1, u′
2, u′

3)
[
1 − P1

α (u′
1, u′

2, u′
3)

]
du′

1du′
2du′

3

+ 6
∫ 3

√
π/2

u′
1=

√
π/2

∫ √
π/2

u′
2=−√

π/2

∫ √
π/2

u′
3=−√

π/2
F (u′

1, u′
2, u′

3)
[
1 − P2

α (u′
1, u′

2, u′
3)

]
du′

1du′
2du′

3 + 3P2
F (1 − PF ) + P3

F . (D8)

APPENDIX E: CALCULATION OF THE FAILURE PROBABILITY OF n-QUBIT GKP REPETITION CODE

The correspondence between measurement outcomes and correctable errors of GKP n-qubit repetition code is given by
Table II. In the same way as we discuss in the three-qubit GKP repetition code, this decoding procedure may result in
misidentification of the error, which is different from that of the classical n-qubit repetition code. Here we provide the detailed
calculation of the failure probability of n-qubit GKP repetition code. Similar to the discussion in Appendix D, we need to reverse
the decoding process and impose some conditions to be satisfied. All possible cases are summarized as follows:

(1) Case 1: If no error occurs ⇒ we require M1, M2, . . . , Mn−1 ∈ NPZ;
(2) Case 2: If X̄ applies on data qubit D1 ⇒ we require M1, M2, . . . , Mn−1 ∈ PZ. We find that this failure probability is the

same as all C1
n cases where X̄ applies on a single data qubit;

(3) Case i (3 � i � n+1
2 ): If X̄ applies on data qubit D1, D2, . . . , Di−1 ⇒ we require M1, . . . , Mi−2 ∈ NPZ, Mi−1, . . . , Mn−1 ∈

PZ. This failure probability is the same as all Ci−1
n cases where X̄ applies on i − 1 data qubits;

(4) Case n+3
2 : If errors occur on more than (n − 1)/2 data qubits, with probability

∑n
j= n+1

2
C j

n P j
F (1 − PF )n− j ⇒ the error

correction fails.
Note that we incorporate all Cs

n possibilities where errors occur on s data qubits into one case, and we consider a representative
where errors occur on the first s data qubits D1, D2, . . . , Ds, for all possibilities have the same failure probability.

Now we calculate the failure probability for these (n + 3)/2 cases, the sum of which gives the total probability of failure.
Consider case 1, there are 2n − 1 constraints needed to be satisfied simultaneously,

No Pauli X̄ error ⇒ ∣∣u′
1 − 2s1

√
π

∣∣ <

√
π

2
,
∣∣u′

2 − 2s2
√

π
∣∣ <

√
π

2
, . . . ,

∣∣u′
n − 2sn

√
π

∣∣ <

√
π

2
,

M1, M2, . . . , Mn−1 ∈ NPZ ⇒ ∣∣u′
1 + u′

2 + α1 − 2t1
√

π
∣∣ <

√
π

2
, . . . ,

∣∣u′
1 + u′

n + αn−1 − 2tn−1
√

π
∣∣ <

√
π

2
, (E1)

where si ∈ Z and ti ∈ Z. The probability of success is obtained by integrating the probability distribution of 2n − 1 variables in
the domain defined by these 2n − 1 inequalities. Similar to the discussion in Sec. IV A, we use the numerical method to calculate
the integration. We first fix a point (u′

1, u′
2, . . . , u′

n) defined by the first n inequalities in Eq. (E1), then the success probability at
this given point is

P1
α (u′

1, . . . , u′
n) =

⎛
⎝∑

t1

∫ √
π/2+2t1

√
π−u′

1−u′
2

−√
π/2+2t1

√
π−u′

1−u′
2

fq′
1
(α1)dα1

⎞
⎠ × · · · ×

⎛
⎝∑

tn−1

∫ √
π/2+2tn−1

√
π−u′

1−u′
n

−√
π/2+2tn−1

√
π−u′

1−u′
n

fq′
n−1

(αn−1)dαn−1

⎞
⎠

≈ 1

2n−1

n∏
k=2

[
erf

(√
π/2 − u′

1 − u′
k

�̃

)
− erf

(−√
π/2 − u′

1 − u′
k

�̃

)]
, (E2)

where we only keep one term t1 = t2 = · · · = tn−1 = 0 in the summation because the contribution from other terms is negligible.
Then the failure probability of case 1 is given by integrating the failure probability 1 − P1

α (u′
1, . . . , u′

n) over all points satisfying
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the constraints in Eq. (E1), weighted by the probability distribution
∏n

i=1 F (u′
i ),

P1
f ,n-rep =

∫
u′

1∈NPZ
· · ·

∫
u′

n∈NPZ

[
n∏

i=1

F (u′
i )

][
1 − P1

α (u′
1, . . . , u′

n)
]
du′

1 . . . du′
n

≈
∫ √

π/2

u′
1=−√

π/2
· · ·

∫ √
π/2

u′
n=−√

π/2

[
n∏

i=1

F (u′
i )

][
1 − P1

α (u′
1, . . . , u′

n)
]
du′

1 . . . du′
n, (E3)

where we only keep one term with s1 = s2 = · · · = sn = 0 in the summation because the contribution form other terms is
negligible.

Similarly, we can derive the failure probability of case 2 by taking into account the condition that u′
1 ∈ PZ, u′

2 ∈
NPZ, . . . , u′

n ∈ NPZ,

P2
f ,n-rep =

∫
u′

1∈PZ

∫
u′

2∈NPZ
· · ·

∫
u′

n∈NPZ

[
n∏

i=1

F (u′
i )

][
1 − P2

α (u′
1, . . . , u′

n)
]
du′

1 . . . du′
n

≈ 2
∫ 3

√
π/2

u′
1=

√
π/2

∫ √
π/2

u′
2=−√

π/2
· · ·

∫ √
π/2

u′
n=−√

π/2

[
n∏

i=1

F (u′
i )

][
1 − P2

α (u′
1, . . . , u′

n)
]
du′

1 . . . du′
n, (E4)

where P2
α (u′

1, . . . , u′
n) is the success probability for a given point (u′

1, u′
2, . . . , u′

n) when M1, M2, . . . , Mn−1 ∈ PZ,

P2
α (u′

1, . . . , u′
n) =

⎛
⎝∑

t1

∫ 3
√

π/2+2t1
√

π−u′
1−u′

2

√
π/2+2t1

√
π−u′

1−u′
2

fq′
1
(α1)dα1

⎞
⎠ × · · · ×

⎛
⎝∑

tn−1

∫ 3
√

π/2+2tn−1
√

π−u′
1−u′

n

√
π/2+2tn−1

√
π−u′

1−u′
n

fq′
n−1

(αn−1)dαn−1

⎞
⎠

≈ 1

2n−1

n∏
k=2

[
erf

(
3
√

π/2 − u′
1 − u′

k

�̃

)
− erf

(√
π/2 − u′

1 − u′
k

�̃

)]
. (E5)

Note that there are C1
n cases giving the same result as case 2, so we need to plus P2

f ,n-rep with C1
n in the total failure probability.

In a similar way, the failure probability of case i (3 � i � n+1
2 ) is given by taking into account the condition that u′

1, . . . , u′
i−1 ∈

PZ, u′
i, . . . , u′

n ∈ NPZ,

Pi
f ,n-rep =

∫
u′

1∈PZ
· · ·

∫
u′

i−1∈PZ

∫
u′

i∈NPZ
· · ·

∫
u′

n∈NPZ

[
n∏

i=1

F (u′
i )

][
1 − Pi

α (u′
1, . . . , u′

n)
]
du′

1 . . . du′
n

≈ 2i−1
∫ 3

√
π/2

u′
1=

√
π/2

· · ·
∫ 3

√
π/2

u′
i−1=

√
π/2

∫ √
π/2

u′
i=−√

π/2
· · ·

∫ √
π/2

u′
n=−√

π/2

[
n∏

i=1

F (u′
i )

][
1 − Pi

α (u′
1, . . . , u′

n)
]
du′

1 . . . du′
n, (E6)

where Pi
α (u′

1, . . . , u′
n) is the success probability for the point (u′

1, u′
2, . . . , u′

n) when M1, . . . , Mi−2 ∈ NPZ, Mi−1, . . . , Mn−1 ∈ PZ,

Pi
α (u′

1, . . . , u′
n) = 1

2n−1

i−1∏
k1=2

[
erf

(
5
√

π/2 − u′
1 − u′

k1

�̃

)
− erf

(
3
√

π/2 − u′
1 − u′

k1

�̃

)]

= ×
n∏

k2=i

[
erf

(
3
√

π/2 − u′
1 − u′

k2

�̃

)
− erf

(√
π/2 − u′

1 − u′
k2

�̃

)]
. (E7)

There are Ci−1
n cases giving the same result as the case i, so we need to add a factor Ci−1

n in the expression of the failure
probability.

The failure probability of case n+3
2 is given by

P
n+3

2
f ,n-rep =

n∑
j= n+1

2

C j
n P j

F (1 − PF )n− j . (E8)

Finally, the total failure probability of the n-qubit GKP repetition code is summation of the failure probabilities of all (n +
3)/2 cases

Pf ,n-rep = P1
f ,n-rep + C1

n P2
f ,n-rep +

n+1
2∑

i=3

Ci−1
n Pi

f ,n-rep + P
n+3

2
f ,n-rep. (E9)
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APPENDIX F: FAILURE PROBABILITY OF GKP REPETITION CODE WITHOUT GKP ERROR CORRECTION

To calculate the failure probability of the GKP repetition code without one round of GKP error correction, we only need to
replace {u′

i} with distribution F (u′
1, . . . , u′

n) in Eq. (E9) by {ui} with distribution fq(u1, . . . , un) given by Eq. (5), and replace PF

by PX̄ , where {ui} are displacement errors of n data qubits without GKP error correction. The result is then given by

P ′
f ,n-rep(�, �̃) =

∫ √
π/2

u1=−√
π/2

· · ·
∫ √

π/2

un=−√
π/2

fq(u1, · · · , un)[1 − P1
α (u1, . . . , un)]du1dun

+
n−1

2∑
m=1

Cm
n 2m

∫ 3
√

π/2

u1=√
π/2

· · ·
∫ 3

√
π/2

um=√
π/2

∫ √
π/2

um+1=−√
π/2

· · ·
∫ √

π/2

un=−√
π/2

fq(u1, . . . , un)[1 − Pm+1
α (u1, . . . , un)]du1 · · · dun

+
n∑

i= n+1
2

Ci
nPi

X̄ (1 − PX̄ )n−i. (F1)
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