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Frobenius light cone and the shift unitary
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We bound the time necessary to implement the shift unitary on a one-dimensional ring, both by using local
Hamiltonians and those with power-law interactions. This time is constrained by the Frobenius light cone; hence
we prove that (for certain power-law exponents) shift unitaries cannot be implemented in the same amount of
time needed to prepare long-range Bell pairs. We note an intriguing similarity between the proof of our results
and the hardness of preparing symmetry-protected topological states with symmetry-preserving Hamiltonians.
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I. INTRODUCTION

The past decade has seen an enormous advance in our un-
derstanding of the limitations of spatial locality in many-body
physics [1–5], including in systems with power-law interac-
tions [6–16] and bosons [17–23]: see [24] for a recent review.
These works often generalize the Lieb-Robinson Theorem [1],
which constrains commutators between space-time distant
local operators

‖[Ax(t ), B0]‖ � C(x, t ). (1.1)

By getting tight bounds on C(x, t ), we can show that, e.g.,
the time it takes to perform state transfer between sites x
and 0 is at least as large as the smallest time τ for which
C(x, τ ) = 2 [25]. For many of the Lieb-Robinson bounds re-
cently discovered, optimal protocols exist which demonstrate
their tightness [20,26–28].

It is also known that Lieb-Robinson bounds can be lousy at
bounding certain tasks: in other words, it might take much
longer to achieve a desired goal than implied by (1.1). In
theories with power-law interactions with a certain range
of exponents, this was first emphasized in [13], where it
was noted that being able to implement a “background-
independent state transfer” that transfers Pauli operators

X0(t ) = Xr, (1.2)

cannot be done in the same amount of time as performing
state transfer between sites 0 and r in one particular state: find
unitary U (t ) such that

U (t )[|ψ〉0 ⊗ |0〉rest] = |ψ〉r ⊗ |0〉rest. (1.3)

Note that these two tasks are not equivalent: fast statetransfer
protocols indeed rely on knowing that the state of other qubits
is |0〉, whereas any protocol obeying (1.2) does not care about
the state of any particular qubit. In this example above, in a
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one-dimensional chain it takes t � r/ ln2 r to achieve criterion
(1.2), whereas (1.3) can be achieved in a time t < rβ for any
β > 0. Since we have protocols that achieve time t < rβ for
task (1.3), and bounds that require t > r/ ln2 r for task (1.2),
the authors of [13] said that there was a “hierarchy of light
cones” with differing “light cones” (i.e., bounds on the time
needed by an optimal protocol) existing for different tasks.

A. Shift unitary

This paper is about another task which we will prove
cannot be performed quickly perform in systems with power-
law interactions then an application of (1.1) would suggest
implementing the shift unitary on a one-dimensional ring of R
sites. We define the shift unitary Ush as

U †
shAxUsh = Ax+1 (1.4)

for any single-qubit operator A. Here and below, site indices x
are integers modulo R. Our goal is to constrain the time nec-
essary to implement Ush using a local Hamiltonian protocol.
Defining

U = T e−i
∫

dtH (t ), (1.5)

subject to locality and boundedness constraints on H (t ), we
will see that it can take a parametrically long time in system
size to obtain U = Ush. Clearly, (1.1) does not give us any
condition on the time it takes for U †

shAxUsh = Ax+1 since this
criterion can be achieved in finite time by using a Hamiltonian
evolution that implements a SWAP gate on x and x + 1.

The shift unitary is an example of a quantum cellular au-
tomaton (QCA), which refers to any unitary operator with a
strict light cone, meaning that C(x, t ) = 0 for large-enough
values of x [29]. In [30], the authors (GNVW) showed that
all QCA can be written as a composition of a finite-depth
quantum circuit and a translation operator. The net flow of
information generated by the translation is a discrete invari-
ant captured by the GNVW index of a QCA. This index is
formally defined in terms of operator algebras on an infinite
lattice, but it can also be understood in finite systems using
tensor network methods [31] or entropic measures [32,33].
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The index theory shows that any QCA with a nonzero index
cannot be implemented as a finite-depth quantum circuit [30].
Indeed, the simplest implementation of the shift unitary re-
quires a circuit of SWAP gates whose depth grows linearly in
system size.

It is not a priori clear whether the index theory of QCA car-
ries over to the case where interactions are only approximately
locality-preserving, corresponding to light cones with decay-
ing tails. This case is important since it is true for generic
time evolutions generated by quasilocal Hamiltonians. In [34],
the authors showed that the index theory was indeed well
defined even for approximately locality-preserving unitaries,
such that the QCA of a nonzero index like Ush cannot be
implemented in finite time even with Hamiltonians having
power-law decaying interactions (for large-enough powers).
However, the authors of [34] noted that their technique was
only applicable to strictly infinite-sized systems. One of the
goals of this paper is to explain a few simple ways to prove
the impossibility of easily implementing the shift on a finite
ring.

B. Main result

The setup of this paper is as follows. We consider a one-
dimensional ring graph, where vertices are labeled by ZN .
We place a qubit on every site of the ring graph, such that
the quantum mechanical Hilbert space H = (C2)⊗N . The dis-
tance between vertices x, y ∈ ZN is

d (x, y) = min(|y − x|, N − |y − x|). (1.6)

For the technical ease later, we focus on the case N = 4L, but
as our results are interesting in the large N limit, this restric-
tion could be easily relaxed. The induced distance between
two sets S, S′ is

d (S, S′) := min
x∈S,y∈S′

d (x, y). (1.7)

The complement of a set S is denoted by Sc. For operator
A ∈ End(H), supp(A) ⊆ ZN denotes the sites on which it acts
nontrivially.

The main result of this paper is the following theorem.
Theorem I.1. Let H (t ) be a two-local Hamiltonian on the

ring

H (t ) =
∑

{x,y}⊂ZN

Hxy(t ), (1.8)

where Hxy(t ) acts nontrivially only on sites x and y (and
identity elsewhere), and for some 0 < K < ∞:

‖Hxy(t )‖ � Kd (x, y)−α. (1.9)

We say that this Hamiltonian has power-law decaying interac-
tions of exponent α.1 Then the two unitaries in (1.4) and (1.5)
are far apart:

‖U − Ush‖ � 1/8, (1.10)

1A strictly local Hamiltonian can, therefore, be thought of as power
law with arbitrarily large α.

so long as

T �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C′L − C, α � 4,

C′L(α−1)/3 − C, 3 < α < 4,

C′L(α−2)(α−1)/(2α−3)−ε, 2 + 1/
√

2 < α � 3,

C′L1/2−ε − C, 2 � α < 2 + 1/
√

2,

C′L(α−1)/2 − C, 1 < α < 2,

(1.11)

for arbitrarily small ε > 0, and for constants 0 < C,C′ < ∞
which do not depend on L, but may depend on ε.

The proof of Theorem I.1 is provided in the proofs of
Theorems II.7 and III.2 in the body of the paper. The proof
of this main result has a bit of a distinct flavor from a standard
Lieb-Robinson bound, where one worries about the time it
takes to saturate (1.1). In a subtle contrast, to bound the time
needed to implement Ush, it makes more sense to find the
state that is hard to prepare via shift. Locality bounds then
are used to constrain the time needed to prepare the shift on
that particular state. The zoo of different bounds in (1.11)
is a consequence of the fact that we have to use somewhat
different methods for differing α: for α > 2 + 1/

√
2 we use

Lieb-Robinson bounds, while for smaller α we use Frobenius
bounds. We conjecture, however, that the Frobenius light cone
[15] always bounds the hardness of implementing shift, sug-
gesting the following conjecture.

Conjecture I.2. (1.11) can be replaced by

T �
{

C′L − C, α � 2,

C′Lα−1 − C, 1 < α < 2.
(1.12)

Lastly, we emphasize an intriguing analogy that we find
somewhat nontrivial. One way to understand that the shift
operator is hard to implement is that it must move a generic
operator on sites 1, 2, . . . , N/2 to sites 2, 3, . . . , N/2 + 1.
This average operator motion can occur only near sites 1 and
N/2. As a consequence, the shift operator is hard to implement
because its implementation requires “signaling” between the
two boundaries of this operator. An analogous idea underlies
the proof that symmetry-protected topological (SPT) states
are hard to prepare using symmetry-preserving Hamiltonian
protocols [35]. The “Super2” formalism that we describe
(which makes the above analogy more precise) can thus help
to give a more physics-based intuition into the hardness of
quantum computational tasks.

II. LIEB-ROBINSON PERSPECTIVE

We now turn to our proof of the main result of this paper,
which will proceed in bits and pieces. In this section, we
first prove bounds on the hardness of implementing the shift
operator by using Lieb-Robinson bounds.

A. Local interactions

For pedagogical purposes, we begin our discussion by re-
laxing the power-law decay assumption of (1.9). Suppose that
the Hamiltonian

H (t ) =
∑

x∈ZN

Hx,x+1(t ), (2.1)
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with

max
x

‖Hx,x+1(t )‖ � 1. (2.2)

The discussion easily generalizes to any finite-range interac-
tion. For such systems, the following Lieb-Robinson bound
holds.

Theorem II.1. [1,24] There exist constants cLR, μ, v > 0,
such that for any pairs of local operators A, B with distance
r = d (suppA, suppB), if A(t ) denotes the Heisenberg evolu-
tion under H (t ) given in (2.1),

‖[A(t ), B]‖ � cLR‖A‖‖B‖eμ(vt−r). (2.3)

Our goal is then to prove the following theorem.
Theorem II.2. Suppose (2.3) holds. If the evolution time T

satisfies

vT � L − C, (2.4)

for some constant C [see (2.7) below], then (1.10) holds.
Proof. To show (1.10), it suffices to find an approximation

Ũ of U such that

‖U − Ũ‖ � 1
8 , (2.5a)

‖Ũ − Ush‖ � 1
4 , (2.5b)

because from the triangle inequality

‖U − Ush‖ �
∥∥Ũ − Ush

∥∥ − ∥∥U − Ũ
∥∥ � 1

4 − 1
8 = 1

8 . (2.6)

We will choose Ũ as a quantum circuit (of very large gate size)
that approximations the Hamiltonian evolution, using ideas
from [36,37]. To this end, we first invoke the following lemma
to cut the coupling between site 0 and 1.

Lemma II.3. If (2.4) holds for constant

C = 1 + ln
16cLR

μv
, (2.7)

there exists a unitary U0 acting on region {2 − L, 3 −
L, . . . , L − 1}, such that

‖U − U0Uop‖ � 1

16
, (2.8)

where

Uop = T e−i
∫ T

0 dt[H (t )−H01(t )], (2.9)

is generated by H with an open boundary.
We will prove this lemma in Sec. III B. We then similarly

cut Uop between sites 2L, 2L + 1:

‖Uop − UI (UL ⊗ UR)‖ � 1

16
, (2.10)

where UL (UR) is supported on the left (right) half chain x =
1, . . . , 2L (x = 2L + 1, . . . , 4L) and generated by the Hamil-
tonian terms inside the half chain. Analogous to U0, UI is
supported on sites x = L + 2, . . . , 3L − 1, where the meaning
of subscripts 0, I will become clear later. To summarize, we
choose

Ũ = (UI ⊗ U0)(UL ⊗ UR), (2.11)

as shown by the four blue blocks in Fig. 1 and the following
corollary holds by the triangle inequality from Lemma II.3
and the analogous (2.10).

FIG. 1. Sketch of the quantum circuit Ũ = (UI ⊗ U0 )(UL ⊗ UR )
that cannot achieve the shift operator. In the initial state (2.13), the
top half of the figure is |0〉〈0| while the bottom half is I on each site.

Corollary II.4. (2.7) leads to (2.5a).
To conclude the proof, it remains to show (2.5b). We focus

on a particular initial state ρi and show it is hard to prepare the
target final state

ρ f := UshρiU
†
sh, (2.12)

using Ũ . The state ρi is defined as follows. We choose identi-
ties on spin L + 1, . . . , 3L, and |0〉 otherwise

ρi =
L⊗

x=1−L

|0〉x〈0| ⊗
3L⊗

x=L+1

Ix

2
, (2.13)

so that

ρ f =
L−1⊗

x=−L

|0〉x〈0| ⊗
3L−1⊗
x=L

Ix

2
. (2.14)

As a result, UI acts inside the identity region, for either ρi or
ρ f ; similarly for U0, which justifies the subscripts. For these
states, we prove the following lemma in Sec. III C.

Lemma II.5. Ũ does not efficiently implement shift∥∥ŨρiŨ
† − ρ f

∥∥
1 � 1/2. (2.15)

With these two lemmas in hand, (2.15) then leads to (2.5b)
because

‖ŨρiŨ
† − UshρiU

†
sh‖1

= ‖(Ũ − Ush )ρiŨ
† + Ushρi(Ũ − Ush )†‖1

� ‖(Ũ − Ush )ρiŨ
†‖1 + ‖Ushρi(Ũ − Ush )†‖1

� ‖Ũ − Ush‖ + ‖Ũ − U †
sh‖ = 2‖Ũ − Ush‖. (2.16)

We use the triangle inequality in the first line and Hölder’s
inequality ‖AB‖1 � ‖A‖‖B‖1 with ‖ρi‖1 = ‖U‖ = 1 in the
second line. This concludes the proof: We show (2.5a), and
how (1.10) follows from (2.5a) and (2.5b). �
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B. Circuit approximation of Hamiltonian evolution

Proof of Lemma II.3. For notational simplicity we assume
H is time independent in this proof because the time-
dependent case generalizes immediately. In the interaction
picture,

UU †
op = e−iT H eiT (H−H01 ) = T̃ e−i

∫ T
0 H01(t )dt , where

H01(t ) := e−it (H−H01 )H01eit (H−H01 ), (2.17)

and T̃ is antitime ordering. This can be verified by taking the
time derivative.

H01(t ) obeys the Lieb-Robinson bound (2.3), so it is
largely supported inside the region Sr := {x : d (x, {0, 1}) �
r} = {2 − L, . . . , L − 1} with r = L − 2 (namely, Sr is the

initial support {0, 1} expanded by distance r). More precisely,
Theorem II.1 implies (see, e.g., Proposition 4.1 in [24])

‖H01(t ) − PrH01(t )‖ � cLReμ(vt−L+1), (2.18)

where we use ‖H01‖ � 1 from (2.2), and

PrH01(t ) :=
∫

Sc
r

dVV †H01(t )V, (2.19)

with V being a Haar random unitary acting on the comple-
ment Sc

r . Pr is a superoperator (linear transformation on the
vector space of operators) that selects the part PrH01(t ) whose
support is contained inside Sr . Define

U0 := T̃ e−i
∫ T

0 dt Pr H01(t ), (2.20)

supported in S. By the Duhamel identity

∥∥UU †
op − U0

∥∥ =
∥∥∥∥∥ − i

∫ T

0
dt T̃ e−i

∫ t
0 H01(t1 )dt1 [H01(t ) − PrH01(t )]e−i

∫ T
t Pr H01(t2 )dt2

∥∥∥∥∥
�

∫ T

0
dt‖H01(t ) − PrH01(t )‖ � cLR

μv
eμ(vT −L+1), (2.21)

where we use (2.18). Because ‖U − U0U †
op‖ = ‖UU †

op − U0‖,
(2.8) holds by setting

cLR

μv
eμ(vT −L+1) � 1

16
, (2.22)

which is equivalent to (2.7). This lemma is, therefore, remi-
niscent of the HHKL algorithm [37]. �

C. Quantum circuit approximation does not shift
the particular state

Proof of Lemma II.5. We manipulate the goal (2.15) as
follows:

1

2
� ‖ŨρiŨ

† − ρ f ‖1

= ‖(UL ⊗ UR)ρi(UL ⊗ UR)† − (UI ⊗ U0)†ρ f (UI ⊗ U0)‖1

= ‖(UL ⊗ UR)ρi(UL ⊗ UR)† − U †
0 ρ f U0‖1. (2.23)

In the second line we use ‖V OV †‖1 = ‖O‖1 for any uni-
tary V . In the last line we use the fact that UI acts trivially
on the identity region in ρ f . Taking the partial trace in the
last line of (2.23) and using monotonicity of trace distance
‖trR(ρ − ρ ′)‖1 � ‖ρ − ρ ′‖1, it then suffices to show

1
2 � ‖ULρi,LU †

L − trR(U †
0 ρ f U0)‖1. (2.24)

ρi,L is the restriction of ρi in the left half chain that contains
L identities, so the density matrix has 2L nonzero eigenvalues
(Schmidt values) that are all equal to 2−L. In other words,
there is a basis {| j〉 : j = 1, . . . , 22L} such that

ULρi,LU †
L = 2−L

(
I 0
0 0

)
, (2.25)

where each block is 2L × 2L. However, ρ f has L + 1 identities
in the left half chain and U0 acts on an all-zero region of ρ f

(across the left and right half chain). As a result∥∥trR
(
U †

0 ρ f U0
)∥∥ = 2−L−1

∥∥I ⊗ trR
(
U †

0 |0〉〈0|U0
)∥∥ � 2−L−1,

(2.26)

because the operator inside the norm is a density matrix ρ

with ‖ρ‖ � 1. In other words, this holds because in region R
ρ f already is a mixed state with L + 1 bits and the unitary U0

can only further increase the entanglement between R and L
as it acts only on the sites where ρ f is pure.

Such spectral difference leads to large 1-norm of operator
O := ULρi,LU †

L − trR(U †
0 ρ f U0) because

‖O‖1 = max
V

|trOV | �
∑

j

|Oj j | �
∑
j�2L

O j j

=
∑
j�2L

2−L − [trR(U †
0 ρ f U0)] j j

�
∑
j�2L

(2−L − 2−L−1) = 1

2
. (2.27)

Here in the first inequality, we choose the particular unitary
V that is diagonal in the basis (2.25), with the jth diagonal
element Vj j = sign(Oj j ). In the second line, we use (2.25)
in this basis. The last line comes from [trR(U †

0 ρ f U0)] j j �
‖trR(U †

0 ρ f U0)‖ and (2.26). This proves (2.24), which then
leads to (2.15). �

D. Long-range interactions

Having gained the key intuition for why the shift is hard to
implement using local interactions, we now turn to our main
goal, namely, the study of implementing shift using power-law
interactions. In what follows, we assume (1.9) and fix units of
time by setting K = 1.
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To proceed we will need the following Lieb-Robinson
bound.

Theorem II.6. [12,16,24] Assuming (1.9), there exists con-
stants cLR, v, ε > 0 where ε can be arbitrarily small, such that

for any local operator A,

‖A(t ) − PrA(t )‖ � ‖A‖gα (t, r), (2.28)

where

gα (t, r) := cLR

{
t2(r − vt )1−α, (t � r/v), α > 3,(

t
rα−2−ε

) α−1
α−2 − ε

2 , (t � rα−2−ε/v), 2 < α � 3.
(2.29)

Here PrA(t ) is supported only on sites of distance � r to the initial local operator A.

Proof. Equation (2.28) is contained in the literature except
for the point α = 3, which we focus on here. For any ε ∈
(0, 1), a system with α = 3 also satisfies (1.9) with exponent

α′ := 3 − ε/2 ∈ (2, 3). Then one can use (2.28) with α set to
α′ and ε set to ε′ := ε/2, so that

‖A(t ) − PrA(t )‖ � cLR‖A‖
(

t

rα′−2−ε′

) α′−1
α′−2

− ε′
2

= cLR‖A‖
(

t

rα−2−ε

) α′−1
α′−2

− ε′
2

= c′
LR‖A‖

(
vt

rα−2−ε

) α′−1
α′−2

− ε′
2

� c′
LR‖A‖

(
vt

rα−2−ε

) α−1
α−2 − ε

2

, for t � rα′−2−ε′
/v = rα−2−ε/v. (2.30)

Here c′
LR = cLRv− α′−1

α′−2
+ ε′

2 in the first line, and we use the
base vt/rα−2−ε � 1 and α′−1

α′−2 � α−1
α−2 in the second line. Equa-

tion (2.30) then becomes (2.28) at α = 3 by redefining the
constant c′

LRv
α−1
α−2 − ε

2 → cLR. �
Theorem II.2 can now be generalized to power-law

interactions.
Theorem II.7. For power-law interaction (1.9), if L � L0

for some constant L0, and the evolution time T satisfies

vT �

⎧⎪⎨⎪⎩
L − C, α � 4,

CL
α−1

3 , 3 < α < 4,

CL
[α−1−ε(α/2−1)](α−2−ε)

2α−3−ε(α/2−1) , 2 < α � 3,

(2.31)

for any ε > 0, and constant 0 < C < ∞ that may depend on
ε, then (1.10) holds: namely, U is far from Ush.

Proof. Following the proof of Theorem II.2, we construct
a circuit approximation Ũ still of the form (2.11), as shown
by the four blue blocks in Fig. 1. Equation (2.5b) continues
to hold because it only depends on the geometry of the circuit
Ũ . Therefore, due to (2.6), we only need to prove Ũ is a good
approximation for U , i.e., (2.5a), in time window (2.31).

We follow [8], which generalizes [37] to “circuitize”
power-law Hamiltonian dynamics. The complication is that
when cutting the chain open between site 0 and 1, there are
many couplings Hxy to deal with instead of just one H01 in the
local case. We separate the couplings into two groups.

The first group of couplings are highly long-range ones that
we can ignore directly. More precisely, we ignore Hamiltonian
terms

Hfar =
∑

1�x�2L,2L<y�N :
d (x,y)��

Hxy, (2.32)

that couple the left and right half-chain and act on spins
of distance � �. The remaining Hamiltonian terms gener-
ate U−far := T̃ e−i

∫ T
0 dt[H (t )−Hfar (t )]. To choose �, we bound the

error in a similar way as (2.21)

‖U − U−far‖ � T ‖Hfar‖ � T
∑

1�x�2L,2L<y�N :
d (x,y)��

∥∥Hxy

∥∥
� 2T

∑
x>0,y<0:x−y��

(x − y)−α = 2T
∑
r��

r · r−α

� cαT �2−α, (2.33)

for a constant cα if α > 2. To get the second line, we use
(1.9) and relax the sum to 2 cuts each for an infinite chain.
We therefore choose

� := (16cαT )1/(α−2), (2.34)

such that

‖U − U−far‖ � 1

16
. (2.35)

Moreover, assuming (2.31), one can verify that � � Lβ for
some β < 1, for all α regimes considered. Therefore, at suffi-
ciently large L � L0, (2.31) implies

� � 0.1L. (2.36)

In other words, one can always ignore the longest-scale ∼L
couplings.

Due to (2.35) and triangle inequality, it remains to prove∥∥U−far − Ũ
∥∥ � 1

16
. (2.37)

Since there are two cuts between the left and right, we focus
on one cut to show∥∥U−far − U0Uop

∥∥ � 1

32
, (2.38)
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where Uop is generated by open-boundary Hamiltonian H −
Hfar − Hcut with

Hcut :=
∑

x<0,y>0:
y−x<�

Hxy. (2.39)

Following the proof of Lemma II.3 where H is assumed time
independent for simplicity,

‖U−far − U0Uop‖ � T max
t

‖Hcut (t ) − PSHcut (t )‖

� T max
t

∑
x<0,y>0:

y−x<�

‖Hxy(t ) − PSHxy(t )‖

� T
∑

x<0,y>0:
y−x<�

(y − x)−αg(T, 0.9L)

� c′
αT g(T, 0.9L), (2.40)

for some constant c′
α because the sum over x, y converges for

α > 2. Here in the first line, PSHcut (t ) is the part of Hcut (t )
acting inside S = {2 − L, . . . , L − 1}. The second line comes
from (2.28), (1.9), and that the distance from any Hxy included
to the outside of S is larger than L − � � 0.9L from (2.36). We
then demand c′

αT gα (T, 0.9L) � 1/32, which for α ∈ (2, 3]
becomes

T
1+ 1

α−1
α−2 − ε

2 � C′Lα−2−ε, (2.41)

for some constant C′, which reduces to the third line of (2.31)
for some constant C. The first two lines work similarly, be-
cause for 3 < α, the error is large so long as T 3/(L − vT )α−1

is small.
To summarize, (2.31) guarantees (2.38), which implies

(2.37) by treating the other cut similarly, and further (2.5a)
by combining (2.35). Finally, this yields (1.10) following the
proof of Lemma II.3. �

The bound (2.31) is probably not qualitatively tight for
realizing the shift unitary at α < 4 since we only compared
the unitary action on a particular state ρi. In the next section,
we will present tighter bounds than (2.31) at sufficiently small
α. Conceptually, the previous proof argues that entanglement
(or purity) stored in identities cannot be transported easily,
and it is conjectured in [15] that entanglement is governed by
Frobenius light cone for power-law interactions, which cares
about all states; this conjecture is compatible with [7].

For the specific task of mapping ρi to ρ f , i.e., transferring
an identity local density matrix, it can be achieved by state-
transfer protocols U :

U (α|0〉x + β|1〉x ) ⊗ |0〉x+1,...,y = |0〉x,...,y−1

⊗ (α|0〉y + β|1〉y), (2.42)

that transfers a qubit information from x = −L to y = L in
a background of 0s. Such protocols were constructed [27]
that asymptotically matches the Lieb-Robinson bound (2.28);
however, these protocols did not saturate (2.31) because of
the extra T factor in (2.40). As stated in the Introduction, we
conjecture that our bounds are not optimal.

III. FROBENIUS PERSPECTIVE

As we now show, Theorem II.7 is not optimal at small α.
To show this result, we will need to take a rather different
perspective, based on the Frobenius light cone [15]. Intu-
itively, Frobenius bounds study the Frobenius norm, which we
define as

‖A‖F =
√

tr(A†A)

tr(1)
. (3.1)

This object may be interpreted more physically as bounding
the size of the typical matrix elements of A, rather than the
largest matrix element of A possible (the latter is the definition
of the operator norm ‖A‖). If we can successfully implement
Ush, we must implement it in a typical state, so it is natural to
expect that the time needed to implement a shift operator can
be bounded by studying Frobenius light cones.

A. Operator growth formalism

We now introduce a useful notation for developing these
Frobenius bounds. The key is to view operator growth as a
quantum walk in the Hilbert space of operators. An operator
basis for the operator space is Pauli strings, with the local
basis on each site being the four Pauli matrices denoted by
{|I ), |X ), |Y ), |Z )}. The inner product between the operators
and the induced Frobenius norm are defined by

(O|O′) := 2−N tr(O†O′), (3.2)

where the normalization ensures that each Pauli string has
norm 1. Notice that ‖O‖F = √

(O|O). For comparison, in this
section we denote the usual operator norm as ‖O‖∞ � ‖O‖F.

Superoperators are defined as linear maps acting within
this operator Hilbert space. We already encountered the super-
projector P in (2.19). In addition, we will use the superidentity
on a site

I = |I )(I| + |X )(X | + |Y )(Y | + |Z )(Z|, (3.3)

which makes I/4 into a superdensity matrix. The evolution
superoperators

U |O) = |U †OU ), Ush|O) = |U †
shOUsh ), (3.4)

are still unitary because (O|U†U |O) =
2−N tr[(U †OU )†U †OU ] = (O|O). The distance between
two superunitaries U ,V can be quantified by, e.g., the ∞
norm induced by the operator Frobenius norm

‖U − V‖∞,F := max
O:‖O‖F=1

‖(U − V )|O)‖F. (3.5)

As its dual, the trace distance between two superdensity ma-
trices R,R′ is

‖R − R′‖1,F := max
O:‖O‖∞,F=1

Tr[O(R − R′)], (3.6)

where Tr is the supertrace in operator space.
The evolution

U = e
∫ T

0 dt L(t ) (3.7)
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is generated by the Liouvillian L(t ) = ∑
a La(t ) where

La(t )|O) := i|[Ha(t ), O]), (3.8)

with Ha being the local terms of H .

B. Frobenius bound on realizing shift with long-range
interactions

For power-law interaction (1.9), now we further assume
K = 1 and

tr[Hxy(t )] = 0, (3.9)

which is satisfied easily by subtracting an identity operator
for each term. There is a Frobenius light cone that can be
asymptotically slower than Lieb-Robinson (i.e., the light cone
for ∞-norm bound).

Theorem III.1. [15] Given (1.9), there exists constants cFB

determined by α, such that for any local operator A,

‖A(t ) − PrA(t )‖F � ‖A‖F fα (t, r), (3.10)

where

fα (t, r) := cFB t ·

⎧⎪⎨⎪⎩
ln(r)/r, α > 2,

ln2(r)/r, α = 2,

r1−α, 1 < α < 2.

(3.11)

Using this result, we can improve Theorem II.7 to the
following theorem.

Theorem III.2. For power-law interaction (1.9), if L � L0

for some constant L0, and the evolution time T satisfies

T � CFB ·

⎧⎪⎨⎪⎩
√

L/ ln L, α > 2,√
L/ ln2 L, α = 2,

L(α−1)/2, 1 < α < 2,

(3.12)

for some constant CFB, then

‖U − Ush‖F � 1/8, (3.13)

so that U does not realize shift operation.
Before the proof, let us compare Theorems III.2 and II.7.

The distance metric is stronger here because ‖U − Ush‖F �
‖U − Ush‖; namely, in the time window (3.12), U does not
perform shift for a typical state. Comparing the time win-
dow, the previous upper bound (2.31) is parametrically larger
(stronger) for sufficiently large α, and vice versa for small α.
In particular, there is an exponential separation at α ∈ (0, 1),
where T is algebraic with L in (3.12), while (2.31) would
become T = O[polylog(L)] if using the Lieb-Robinson bound
gα (t, r) ∼ eμt r−α [2] in this α regime. The critical αc ∈ (2, 3)
where (3.12) and (2.31) coincide is

[α − 1 − ε(α/2 − 1)](α − 2 − ε)

2α − 3 − ε(α/2 − 1)
= 1

2
− ε′ ⇒

α ≈ αc = 2 + 1/
√

2, (3.14)

where we set ε, ε′ → 0. The Frobenius bound Theorem III.2
is then stronger for α < αc; for α > αc, the two Theorems are,
in general, not comparable because the metric is different.

Proof. The proof mimics that of Theorems II.2 and II.7,
where we basically replace all ‖V − V ′‖ with the Frobenius

norm ‖V − V ′‖F. This is valid because one still has triangle
inequality for the Frobenius norm

‖A − B‖F � ‖A‖F + ‖B‖F. (3.15)

As one can verify, we only need to prove the following three
inequalities:

‖U − U−far‖F � 1/16, (3.16a)

‖U−far − Ũ‖F � 1/16, (3.16b)

‖Ũ − Ush‖F � 1/4. (3.16c)

Here U−far is generated by H − Hfar with Hfar defined in (2.32)
where the parameter � is determined shortly.

We proceed one by one. For (3.16a), similar to (2.33) we
have

‖U − U−far‖F � T ‖Hfar‖F

� T
√√√√ ∑

1�x�2L,2L<y�N :
d (x,y)��

∥∥Hxy

∥∥2
F

� 2T
√ ∑

x>0,y<0:x−y��

(x − y)−2α

= 2T
√∑

r��

r · r−2α � c̃αT �1−α, (3.17)

for some constant c̃α if α > 1. Here the second line comes
from orthogonality (Hxy|Hx′y′ ) = 0 if (x, y) �= (x′, y′) due to
(3.9). To get the third line, we used ‖Hxy‖F � ‖Hxy‖. We
therefore choose

� := (16cαT )1/(α−1), (3.18)

such that (3.16a) holds. Moreover, one can verify that (3.12)
implies � � 0.1L (2.36) for sufficiently large L � L0.

Equation (3.16b) just comes from (2.40) with ∞ norms
changed to the Frobenius norm, gα (t, r) substituted by
fα (t, r), and direct computation of T fα (T, 0.9L) = O(1).

For (3.16c), observe that, in the proof of Lemma II.5, we
only demand the S := {1 − L, . . . , L} subsystem in ρi to be
a pure direct product state [see arguments around (2.25) and
(2.26)]. Therefore Lemma II.5 actually proves that

‖Ũρi(z)Ũ † − ρ f (z)‖1 � 1

2
, (3.19)

for any string z ∈ {0, 1}2L, where

ρi(z) :=
L⊗

x=1−L

|zx〉x〈zx| ⊗
3L⊗

x=L+1

Ix

2
(3.20)

[so that the previous ρi = ρi(0 · · · 0)], and ρ f (z) :=
Ushρi(z)U †

sh. We need to relate (3.19) to (3.16c).
For each z string, one can purify the system by a 22L-

dimensional ancilla (labeled by A) so that

ρi(z) = trA|	i(z)〉〈	i(z)|. (3.21)

Equation (3.19) then bounds the fidelity between pure states
Ũ |	i(z)〉 and |	 f (z)〉 := Ush|	i(z)〉 (here Ũ , for example, is
shorthand notation for Ũ ⊗ IA acting on the enlarged Hilbert
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space)

2(1 − |〈	i(z)|U †
shŨ |	i(z)〉|)

� 1 − |〈	i(z)|U †
shŨ |	i(z)〉|2

= 1
4‖Ũ |	i(z)〉〈	i(z)|Ũ † − Ush|	i(z)〉〈	i(z)|U †

sh‖2
1

� 1
4‖Ũρi(z)Ũ † − ρ f (z)‖2

1 � 1
16 . (3.22)

Here the first line comes from 1 + |〈	i(z)|U †
shŨ |	i(z)〉| � 2,

the second line comes from the relation between fidelity and
the trace-norm for pure states, and the last line comes from
monotonicity under partial trace over the ancilla, together with
(3.19).

However, the target

‖Ũ − Ush‖2
F = ‖Ũ‖2

F + ‖Ush‖2
F − [(Ush|Ũ ) + c.c.]

= 2 − 2−4L[tr(U †
shŨ ) + c.c.]

= 2 − 2−4L

[ ∑
z

tr((ISc ⊗ |z〉S〈z|)U †
shŨ ) + c.c.

]

� 2 ×2−2L
∑

z

1 −|2−2Ltr((ISc ⊗ |z〉S〈z|)U †
shŨ )|

= 2 × 2−2L
∑

z

1 − |〈	i(z)|U †
shŨ |	i(z)〉| � 2

× 1

32
= 1

16
. (3.23)

Here all traces work in the physical system without the ancilla.
We use ‖V ‖F = 1 for any unitary V in the first line of (3.23),
and inserted I = ISc ⊗ ∑

z |z〉S〈z| in the second line, where
Sc = {L + 1, . . . , 3L} is the complement of S. To get the last
line, observe that when computing the fidelity in the enlarged
Hilbert space, one can first trace over the ancilla because U †

shŨ
does not act on it, which leaves the density matrix 2−2LISc

in Sc that exactly matches the third line. Equation (3.23) is
just (3.16c) by taking the square root; the inequality is simply
(3.22).

To summarize, we prove all inequalities in (3.16), and
plugging them into the proof of Theorem II.7 establishes
(3.13) by considering Frobenius norms throughout. �

C. Super2 formalism: Alternate proof

Here we present an alternative proof that shift cannot be
realized in time (2.31). The idea is to more seriously promote
from the state Hilbert space to the operator space, as described
in Sec. III A. Note that similar ideas also appear in bound-
ing Frobenius light cones [15], and quantifying information
scrambling [38,39]. For example, the superdensity matrices
defined later in (3.29) correspond to subalgebras to be scram-
bled in [38].

Theorem III.3. Given the same conditions in Theorem
III.2, the superunitaries are far. There exists an operator O
with

‖O‖∞ = 1, (3.24)

such that

‖(U − Ush )|O)‖F � 1
8 . (3.25)

Therefore, U does not realize the shift operation.
Theorem III.3 implies Theorem III.2 with a weaker con-

stant 1/8 → 1/16 in (3.13) because

‖(U − Ush )|O)‖F = ‖U †OU − U †
shOUsh‖F

� ‖U †O(U − Ush )‖F +‖(U †− U †
sh )OUsh‖F

� ‖U †‖∞‖O‖∞‖U − Ush‖F

+ ‖U † − U †
sh‖F‖O‖∞‖Ush‖∞

= 2‖U − Ush‖F, (3.26)

where we use the triangle inequality in the first line, and
Hölder’s inequality ‖AB‖F � ‖A‖∞‖B‖F in the second line.
Equation (3.25) also implies the more compact version
‖U − Ush‖∞,F � 1/8 from ‖O‖F � ‖O‖∞ and the definition
(3.5).

Proof. The idea is to promote the proof of Theorem II.2
from state (density matrix) space to operator (superdensity
matrix) space since the shift Ush is also the supershift Ush.
We call this approach the Super2 picture. The benefit is that
some steps in the proof of Theorem II.2 (e.g., Lemma II.5)
generalizes trivially after promotion, while now we can use
the slower Frobenius light cone (3.10) as in Theorem III.2.

Since the triangle inequality still holds for the function
‖ · |O)‖F of superoperators, to prove (3.25) it suffices to show
the analog of (3.16):

‖(U − U−far )|O)‖F � 1/16, (3.27a)

‖(U−far − Ũ )|O)‖F � 1/16, (3.27b)

‖(Ũ − Ush )|O)‖F � 1/4, (3.27c)

for the to-be-determined operator O. Here U−far, Ũ are the
superoperator versions of U−far, Ũ constructed in the proof
of Theorem III.2. In particular, Ũ has the circuit geometry in
Fig. 1.

We first prove (3.27a) and (3.27b) for any O normalized by
(3.24). Similar to (3.26), we have

‖(U − U−far )|O)‖F � 2‖U − U−far‖F. (3.28)

Following the proof of (3.16a), one has ‖U − U−far‖F � 1/32
with a slightly different constant 1/16 → 1/32 in (3.18), thus
(3.28) implies (3.27a). (3.27b) follows similarly from adjust-
ing the constant 1/16 → 1/32 in (3.16b).

It remains to find an operator O with (3.24) that satisfies
(3.27c). Analogous to (2.13) and (2.14), we introduce super-
density matrices

Ri :=
L⊗

x=1−L

|I )x(I| ⊗
3L⊗

x=L+1

Ix

4
, (3.29)

so that

R f := UshRiU†
sh =

L−1⊗
x=−L

|I )x(I| ⊗
3L−1⊗
x=L

Ix

4
. (3.30)

The superidentity region is frozen in dynamics, as we used
previously; now the other |I ) region is also frozen from (3.35).
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Nevertheless, we do not need this extra observation:
Lemma II.5 generalizes verbatim to

‖ŨRiŨ† − R f ‖1,F � 1/2, (3.31)

since the operator space is just isomorphic to the state space
of qudits.

Moreover, the superdensity matrix has a nice property
Ri = 4−2L

∑
P |P)(P| expanded as 42L Pauli strings P, so that

(3.31) becomes

1/2 � 4−2L

∥∥∥∥∥∑
P

Ũ |P)(P|Ũ† − Ush|P)(P|U†
sh

∥∥∥∥∥
1,F

� 4−2L
∑

P

‖Ũ |P)(P|Ũ† − Ush|P)(P|U†
sh‖1,F

� 4−2L
∑

P

2‖(Ũ − Ush )|P)‖F � 2 max
P

‖(Ũ − Ush )|P)‖F

:= 2‖(Ũ − Ush )|O)‖F. (3.32)

Here the first line follows from the triangle inequality. To get
the second line of (3.32), we use

‖|O1)(O1| − |O2)(O2|‖1,F

� ‖[|O1) − |O2)](O1|‖1,F + ‖|O2)[(O1| − (O2|]‖1,F

= ‖|O1) − |O2)‖F‖O1‖F + ‖O2‖F‖|O1) − |O2)‖F

� 2‖|O1) − |O2)‖F, (3.33)

where |O1) = Ũ |P), |O2) = Ush|P), the first line uses the tri-
angle inequality, and the second line uses the Super2 analog of
‖|ψ〉〈ψ ′|‖1 = ‖|ψ〉‖‖|ψ ′〉‖ together with ‖O1‖F = ‖P‖F =
1. Therefore, in the last line of (3.32), the desired O is chosen
as the maximum Pauli string P achieving the second line,
which satisfies (3.24) and (3.27c).

This finishes the proof because we established (3.27). Note
that the difference to the proof of Theorem III.2, in addition
to adjusting constants, is merely in showing (3.16c) versus
(3.27c). �

D. Analogy to SPT physics

Lastly, let us comment on an interesting analogy that fol-
lows from the previous subsection. Returning to our general
operator growth formalism, observe that L cannot be a general
super-Hamiltonian. Not only is it a sum over local super-
Hamiltonians that act nontrivially only on certain subsets:
L = ∑

S LS where

LS|AS ⊗ BSc ) = i|[HS, AS] ⊗ BSc ), (3.34)

but moreover for any LS acting on set S,

LS|IS ⊗ ASc ) = 0. (3.35)

L is moreover real for Hermitian elements O, O′:

(O|L|O′)∗ = 2−N [tr(Oi[H, O′])]∗ = 2−N tr(i[H, O′]O)

= 2−N tr(Oi[H, O′]) = (O|L|O′). (3.36)

In the crudest sense, these requirements can be understood as
the imposition of symmetries on the dynamics in the operator

Hilbert space. Indeed, our proof of Theorem III.3 closely
resembles the proof that symmetry-preserving Hamiltonians
cannot prepare states belonging to nontrivial symmetry-
protected topological in finite time [35]. Therein, one
considers the evolution of string order parameters under a time
evolution that potentially generates the SPT phase. Exactly as
in our proof of Theorem III.3, only the endpoints of the string
order parameter evolve under symmetry-preserving dynamics,
which can be used to show that the evolution cannot be done
in finite time.

From these observations, it is compelling to draw a con-
nection between the hardness of implementing Ush and the
hardness of generating SPT phases. However, despite the
above similarities, the analogy to SPT physics is not com-
pletely satisfying. For example, the operator Ri, which plays
the same role in our proof that the string order parameter
does in the SPT proof, is not obviously related to any unitary
symmetry. Furthermore, in the SPT case, the time evolution
should become easy to implement when the symmetries are
not preserved, but this is not straightforwardly true in our
proof. The rest of this section is meant to give an alternative
proof of the hardness of Ush which more closely mirrors the
proof that SPT states are hard to create, in order to strengthen
the conceptual link between Ush and SPT phases.

To start, we consider two copies of the one-dimensioanl
(1D) many-body Hilbert space, labeling sites on the first
(second) copy as [x]A ([x]B) with x ∈ [1, 4L]. The operator
which we will want to implement is Ush ⊗ U −1

sh , i.e., we shift
one copy to the left and the second copy to the right. The
symmetries we impose are the following. First, we impose
a kind of inversion symmetry R which interchanges the two
copies and then implements the bond-centered inversion of
the periodic 1D system, such that

R :

{
[x]A �→ [4L + 1 − x]B,

[x]B �→ [4L + 1 − x]A.
(3.37)

Clearly Ush ⊗ U −1
sh respects this symmetry. The second

symmetry is less conventional: we only allow “seperable”
interactions which do not couple the two chains. This is not
a traditional symmetry in the sense that it does not corre-
spond to dynamics that commute with some unitary operator.
Nevertheless, it is a well-defined restriction we can place on
the dynamics. This unconventional symmetry is the one place
where the analogy to SPT physics is not as direct.

It is straightforward to see that implementing Ush ⊗ U −1
sh

subject to these symmetries is equally as difficult as imple-
menting Ush without symmetry constraints since one protocol
can be easily used to construct the other. However, the first
has a clearer interpretation in terms of SPT physics. First, we
observe that Ush ⊗ U −1

sh is easy to implement in the absence
of symmetries using a depth-2 circuit of SWAP operations
[29]. These SWAPs exchange sites between the two copies, and
therefore violate the separability constraint of the dynamics.
This is in alignment with the fact that SPT phases are easy to
create when symmetry is not enforced.

Now, we can reformulate the proof of Theorem III.3 in a
way that is more closely connected to symmetry and string
order parameters. The operator whose evolution we consider,
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generalizing (3.29), is

Si =
L⊗

x=1−L

I[x]A

2

I[x]B

2
⊗

3L⊗
x=L+1

SWAP[x]A,[4L+1−x]B , (3.38)

where SWAPi, j exchanges the two Hilbert spaces at sites i and
j. This has a clear interpretation in terms of symmetry since
Si corresponds to applying the reflection symmetry R to the
region x ∈ [L + 1, 3L], similar to a string order parameter
[40]. In fact, Si is exactly the order parameter that is used to
detect SPT phases with inversion symmetry [40].

Evolving this under Ush ⊗ U −1
sh gives

S f =
L⊗

x=1−L

I[x−1]A

2

I[x+1]B

2
⊗

3L⊗
x=L+1

SWAP[x−1]A,[4L+1−(x+1)]B .

(3.39)

As required, only the boundaries between the identity region
and inversion region in Si evolve under inversion-symmetric
and separable dynamics. Using this, one can straightforwardly
prove the same results as in Theorem III.3 using Si and S f

in place of Ri and R f and considering symmetry-preserving
dynamics. Therefore, if not for the unconventional separa-
bility condition we enforced, this alternative proof would
exactly resemble that of the hardness of generating SPT
phases.

As a final remark on the connection between the shift
operation and SPT phases, we note that the shift is in fact
an SPT entangler, meaning that acting with shift on a state
belonging to a trivial phase can result in a state belonging
to a nontrivial SPT phase [35,41]. Using the known results
on the hardness of preparing SPT states, this implies that
the shift is hard to implement when certain symmetries are
enforced. However, as we demonstrate, the shift is hard to
implement even without enforcing symmetries, and this does
not follow immediately from its status as an SPT entangler. In
a sense, the discussion in this section is meant to interpret this

unconditional hardness of implementing the shift in terms of
SPT physics. Going forward, we believe that there are more
connections to be made between quantum cellular automata
and SPT phases.

IV. OUTLOOK

In this paper, we proved that the shift unitary Ush can-
not be implemented in a system-size-independent time in
one dimension, with power-law interactions that decay faster
than 1/r. This result is not surprising, based on the earlier
work [34] that proved this result for infinite one-dimensional
lattices. Our work fills in a missing piece of the story by
showing that their result holds, as expected, for finite lattices.
Due to finiteness, our proof relied on somewhat different
techniques.

Our work also provides another practical application of the
Frobenius light cone [13,15] in constraining the time neces-
sary to implement a particular quantum unitary on all states
(as opposed to just one state). It would be interesting to under-
stand if a similar approach applies to, e.g., more general tasks
of quantum routing [5,42], and if the Frobenius light cone
is still too weak of a bound on the implementation time of
certain unitaries. Such a result may require a qualitatively new
approach to proving the hardness of implementing particular
unitaries, which we leave to future work. It would also be
interesting to construct explicit protocols for implementing
shift using power-law Hamiltonians, as has been done for state
transfer.
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