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Estimating the eigenvalue or energy gap of a Hamiltonian H is vital for studying quantum many-body systems.
Particularly, many of the problems in quantum chemistry, condensed-matter physics, and nuclear physics
investigate the energy gap between two eigenstates. Hence, how to efficiently solve the energy gap becomes
an important motive for researching new quantum algorithms. In this work, we propose a hybrid nonvariational
quantum algorithm that uses the Monte Carlo method and real-time Hamiltonian simulation to evaluate the
energy gap of a general quantum many-body system. Compared to conventional approaches, our algorithm does
not require controlled real-time evolution, thus making its implementation much more experimental friendly for
near-term quantum devices and early fault-tolerant quantum computers. To verify the efficiency of our algorithm,
we conduct numerical simulations for the Heisenberg model and molecule systems on a classical emulator.
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I. INTRODUCTION

Solving the many-body Schrödinger’s equation remains a
challenge across various fields. In the past years, efforts have
been made to develop methods for a solution to the many-
body systems. However, using classical methods to handle
this task becomes increasingly difficult as the size of the sys-
tem increases. Quantum computing arises as an alternative to
solve such problems with the potential to surpass its classical
counterpart. The quantum phase estimation (QPE) algorithm
[1,2] is one of the most influential quantum algorithms that
can find the energy eigenvalues of a given Hamiltonian. How-
ever, implementing the algorithm requires a deep circuit and
thus makes it infeasible for near-term quantum devices [3].
There is an improved version of the QPE [4] algorithm aimed
at evaluating the energy gap on a quantum computer. This
approach belongs to the category of pure quantum algorithms,
which only considers the case with specific input states, i.e.,
a superposition of two eigenstates, and still requires a deep
circuit. In recent years, many new methods suitable for the
noisy intermediate-scale quantum devices and early fault-
tolerant quantum computers have been developed, most target
finding the ground state of a given Hamiltonian [5–7], such
as quantum subspace diagonalization [8–11], imaginary-time
evolution [12–15], variational algorithms [16–19], hybrid
quantum Monte Carlo methods [20–22], etc. These meth-
ods come with unique advantages yet also limitations. For
example, some algorithms mentioned above are based on vari-
ational principles for finding the ground-state energy. Those
algorithms suffer from the “barren-plateau” problem [23] and
their efficiency largely depends on the ansatz. There is a range
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of other algorithms [24–27] that have a more ambitious goal
than the ground-state energy estimation and aim to estimate
the distribution of all eigenvalues started from a given initial
state.

On the other hand, finding the energy gap of a physical
system, especially in the low-lying subspace, is important
for fields including quantum chemistry [28–31], condensed-
matter physics [32,33], and nuclear physics [34–36]. To find
the difference between different energy levels, one approach
is to evaluate the corresponding eigenvalues and then deduct
the two. Doing so requires more quantum resources, and the
results may not be accurate in the presence of noise. Hence,
it is important to explore a more resource-efficient quantum
algorithm that can directly evaluate the energy gap.

This paper introduces a hybrid nonvariational algorithm
that can efficiently find energy gaps in the low-lying subspace.
While there exists prior research [28,37,38] that focuses
on estimating energy gaps, our approach follows a distinct
paradigm. In our method, we use quantum computing to simu-
late real-time evolution, and the classical Monte Carlo method
is used to evaluate a Fourier integral. Hence, our method can
avoid the sign problem. Our method could be regarded as an
extension of the recently proposed algorithms [39–46], which
applies postprocessing to estimate Hamiltonian eigenstates
and eigenenergies more efficiently. Our work introduces a
more general framework that can both evaluate energy eigen-
states and gaps. Our method is a resource-efficient algorithm
that uses even shallower circuits, i.e., a shorter evolution time,
without requiring the implementation of the controlled time
evolution. It is thus more practical for near-term quantum de-
vices and early fault-tolerant quantum computers. One special
case of our method can also be used to find energy eigenstates,
which is reduced to the case discussed in Ref. [44].

This paper is organized as follows. In Secs. II and III, we
respectively introduce our method to evaluate the energy gaps
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and energy eigenvalues for a given Hamiltonian H . In Sec. IV,
we discuss the case with degenerate energy levels. We present
the numerical simulation results in Sec. V, and we perform
error analysis in Sec. VI. Section VII is the conclusion of this
paper.

II. ENERGY GAP AND ENERGY EVALUATION

To better illustrate our idea, we introduce our method with
the assessment of the energy gaps for a given Hamiltonian
H . The time evolution operator in the Schrödinger picture
writes e−iHt , which can be decomposed into the diagonal
matrix e−iHt = ∑

i e−iEit |i〉 〈i| with energy eigenvalues Ei and
eigenstates {|i〉}. To extract the information of the energy gaps
from this operator, we consider C(E ) as the Fourier transform
of function f (t ):

C(E ) =
∫ ∞

−∞
f (t )eiEt dt, (1)

with f (t ) being a function that contains e−iHt as

f (t ) = p(t )Tr[O |ψ (t )〉 〈ψ (t )|], (2)

where |ψ (t )〉 = e−iHt |ψ0〉 (h̄ = 1) and |ψ0〉 is the initial state.
Here, p(t ) is a cooling function adopted from Ref. [44]
to guarantee that C(E ) can be efficiently sampled within a
finite sampling range, which we discuss later. As defined,
p(τ ) monotonically increases as τ increases and satisfies
limE→∞ p(τE )/p(τE ′) = 0 for any E > E ′ > 0.

The function C(E ) could be rewritten as follows:

C(E ) =
∫ ∞

−∞
p(t )Tr[O |ψ (t )〉 〈ψ (t )|]eiEt dt

= Tr

[
O

N∑
i, j=0

|i〉 〈i|ψ0〉〈ψ0| j〉 〈 j|

×
∫ ∞

−∞
e−i(Ei−Ej−E )t p(t )dt

]
. (3)

Here, N denotes the dimension of Hilbert space. Note that
when p(t ) is a Lorentz function, p(t ) = β

π
1

β2+t2 , its Fourier

transform P (ω) = ∫ ∞
−∞ p(t )eiωt dt = e−β|ω| has exactly the

same form of imaginary evolution for ω > 0. In general, p(t )
could be any function that satisfies the convergent condition
described above. Since it is shown that the Gaussian function
has the best performance among several other example func-
tions, in this work, we also assume that p(t ) is the Gaussian
function as an example in the further analysis, i.e.,

p(t ) = e−a2t2
, (4)

where 0 < a < 1 is a tuning parameter.
Therefore, Eq. (3) becomes

C(E ) = Tr

⎡
⎣O

N∑
i, j=0

|i〉 〈i|ψ0〉〈ψ0| j〉 〈 j|
√

π

a
e− [E−(Ei−E j )]2

4a2

⎤
⎦.

(5)

By gradually increasing E from 0, C(E ) exhibits a local
maximum or peak when E = Ei − Ej . For convenience, in the
following discussions, we assume Ei > Ej .

One could tell from the expression of C(E ) that two condi-
tions should hold to make it work.

(i) The overlaps between the initial state and the eigen-
states |i〉 and | j〉 must not be small.

(ii) The observable O should be carefully chosen such that
〈i|O| j〉 is not small.

In most of the applications where people are interested
in the energy gap between two eigenstates [28,29,35,36], the
energy of one eigenstate is roughly known, and thus a natural
choice for the initial state |ψ0〉 is a state close to the i-level
eigenstate. In such s case, the overlaps satisfy 〈i|ψ0〉 � 〈 j|ψ0〉
for all i 	= j. By doing so, the energy gaps between level i
and all other levels stand out in the full energy eigenvalues,
making it easier to identify the gaps between i and other levels.
Following the same logic, we can make the observable O =
|ψ0〉 〈ψ0|; therefore, 〈i|O| j〉 is transformed into the overlaps
between the eigenstates and the initial state.

We can then summarize our method as follows.
(i) Select an initial guess state |ψini〉 as an approximation

of the ground state by approximation theories, e.g., Hartree
Fock state for molecular structures, or by a variational quan-
tum eigensolver for general quantum systems.

(ii) Apply an excitation operator U , |ψ0〉 = U |ψini〉, to
ensure that the initial state |ψ0〉 has a significant overlap with
both the ground state and the target excited state. Make the
observable O = |ψ0〉 〈ψ0|.

(iii) Choose time t randomly according to p(t ).
(iv) Evolve the selected initial state |ψ0〉 with Hamiltonian

H and time t , measure O to obtain Tr[O |ψ (t )〉 〈ψ (t )|], and
multiply it by eiEt for parameter E .

(v) Repeat steps (iii) and (iv) and compute the average
result to obtain C(E ).

In our method, we utilize the Monte Carlo method to
compute C(E ). During the process, we choose the importance
sampling technique to reduce the variance of the final re-
sults. Note that the state |ψ (t )〉 = e−iHt |ψ0〉 can be efficiently
prepared with Trotterization [12] using a quantum computer.
While the integral for t is from [−∞,∞], we could consider
a cutoff to be within a finite range [−T, T ] with the sacrifice
of an error ε ∼ O(e−(aT )2

). The detailed error analysis is pre-
sented later.

So far we have considered the case to find the energy
gaps between different energy levels of the same physical
system described by a single Hamiltonian. In many cases, es-
pecially condensed-matter physics [32], people are interested
in finding out energy differences between two eigenstates of
the physical system under different conditions, i.e., with two
different Hamiltonians H (1) and H (2). Our method also fits this
scenario. We need to rewrite the function f (t ) as

f (t ) = p(t )Tr[Oe−iH (1)t |ψ0〉 〈ψ0| eiH (2)t ]

= p(t )Tr

[
O

∑
m,n

e−i(E (1)
m −E (2)

n )t |m(1)〉

× 〈m(1)|ψ0〉〈ψ0|n(2)〉 〈n(2)|
]
. (6)

Here {|m(1)〉} and {|n(2)〉} are eigenstates of the Hamiltonians
H (1) and H (2), respectively.
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As we are interested in the energy difference of the two
eigenstates, they should have a nonzero overlap with |ψ0〉 to
make the method work. The initial state |ψ0〉 could be a state
close to the eigenstates, and O can be chosen as |ψ0〉 〈ψ0|.
By doing so, we need the quantum computer to evaluate the
transition function Tr[Oe−iH (1)t |ψ0〉 〈ψ0| eiH (2)

t], which can
be realized with the Hadamard test circuit (needs controlled
evolution).

Our method can also be used to find the energy eigenvalues.
We can write the function

C(x, x′) =
∫∫ ∞

−∞
f (t, t ′)eixt eixt ′

dtdt ′, (7)

where f (t, t ′) = p(t )p′(t )Tr[O |ψ (t )〉 〈ψ (t ′)|], such that one
can also evaluate the energies instead of the energy gaps by
tuning the parameters E and E ′:

C(E , E ′)

= Tr

⎡
⎣O

N∑
i, j=0

|i〉 〈i|ψ0〉〈ψ0| j〉 〈 j| π

a2
e− (E−Ei )2

4a2 e− (E ′−E j )2

4a2

⎤
⎦.

(8)

Here we have chosen p(t ) = p′(t ) = e−a2t2
. But we note that

p(t ) and p′(t ) do not need to be the same function, instead
they could be different functions for better differentiating the
two energies. Besides, with E ′ = 0, Eq. (7) can be simplified
as

C(E , 0) =
∫ ∞

−∞
f (t, 0)eiEt dt, (9)

where f (t, 0) = p(t )Tr[O |ψ (t )〉 〈ψ0|], such that we have

C(E , 0) = Tr

[
O

N∑
i=0

|i〉 〈i|ψ0〉 〈ψ0|
√

π

a
e− (E−Ei )2

4a2

]
. (10)

This enables us to obtain the whole energy eigenvalues of
the Hamiltonian. In this case, we can make O = I such that
Tr[

∑
i=0 |i〉 〈i|ψ0〉 〈ψ0|] is simply the overlap between |ψ (t )〉

and |ψ0〉. When |ψ0)〉 is an approximation of the ground
state with a nonvanishing overlap, we can efficiently find the
ground-state energy, which corresponds to the highest peak
of C(E , 0). Note that the term Tr[

∑
i=0 |i〉 〈i|ψ0〉 〈ψ0|] can

be evaluated without using controlled time evolution if the
Hamiltonian has an efficiently preparable eigenstate with a
known eigenvalue, such as the vacuum state in quantum chem-
istry. This has been discussed in Refs. [40,43,44,47,48].

When dealing with systems with degenerate energy levels,
several peaks appear at the same place and make the peak
higher. This in theory will not affect the result; instead, it
makes the peak better recognizable. In practice, however,
these several peaks may not overlap perfectly due to errors
and noise, resulting in several peaks that are very close to
each other and thus making it hard to distinguish whether
they refer to degenerate energy or several different energy
levels. Degeneracy stems from some symmetry of the sys-
tem. Therefore, for a Hamiltonian with degenerate states,
there must exist an operator S satisfying [S, H] = 0; thus, the
degenerate states are eigenstates of S with different eigen-
values, i.e., S |ψl〉 = sl |ψl〉, where sl is different for each

method

(hartree)

FIG. 1. Energy gaps of the four-qubit Heisenberg model. The
energy gap is defined as the energy difference between the ground
state and other eigenstates. The red vertical line in the figure indicates
the exact value of the energy gap, while the light blue line represents
C(E ) as obtained by our method.

degenerate state |ψl〉. Therefore, one could further measure
p(t )Tr[OS |ψ (t )〉 〈ψ (t )|] to identify degenerate energy levels
with noisy experimental data when the shape of certain peaks
has notably changed.

III. NUMERICAL SIMULATION

A. Energy gap evaluation for the Heisenberg model

To demonstrate the efficiency of our method, we con-
sider a four-qubit Heisenberg model and evaluate the energy
gaps between the ground state and all other eigenstates. The
Hamiltonian is given by

H = −J
NS−1∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1) − h
NS∑
i=1

Zi, (11)

where the number of spins is NS = 4, and J = h = 1. Xi, Yi,
and Zi are the Pauli operators acting on the ith site. We set the
observable in Eq. (3) to be O = |ψ0〉 〈ψ0|, where the state |ψ0〉
represents the initial state. This leads to the transformation of
Eq. (3) into

C(E ) =
∫ ∞

−∞
|〈ψ0|ψ (t )〉|2e−a2t2

eiEt dt . (12)

To evaluate C(E ) in Eq. (12), we employ the Monte Carlo
method. As the Monte Carlo summation comes with a finite
variance depending on the sampling approach, we apply the
importance sampling method, which involves generating ran-
dom samples of the evolution time t that follow a Gaussian
distribution function p(t ) ∝ e−a2t2

on a classical computer.
This helps to minimize the variance. The formula of the Monte
Carlo summation is given by

C(E ) ≈ 1

Nt

Nt∑
s=1

f (ts)

p(ts)
, (13)

where Nt denotes the number of samples and f (ts) =
|〈ψ0|ψ (ts)〉|2e−a2t2

s eiEts . Subsequently, we obtain |〈ψ0|ψ (t )〉|2
using a classical emulator of a quantum computer and finally
evaluate the entire integral.

The results are shown in Fig. 1. We can see that C(E )
reaches a maximum value when E = Ei − E0, where E0 and
Ei denote the ground-state energy and the energy of the ith
eigenstate, respectively. With degenerate eigenstates, in total
13 peaks are visible in the figure. The height of a peak depends
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FIG. 2. The energy gaps between the ground state and low-lying
energy states of the H4 molecule. In the figure, the red vertical line
denotes the exact value of the energy gap, while the light blue (the
first peak is on the left) and the gray-blue line (the first peak is on
the right) represent the C(E ) values obtained using two initial states
with our method.

on the overlap between the initial state and the corresponding
eigenstate, as well as the level of degeneracy. We set the
parameter a = 1/(25

√
2) and sample 10 000 times using the

Monte Carlo method. The initial state is chosen as a superposi-
tion state of a randomly generated basis state, like |+ + +−〉,
and the HF state. The process is repeated 10 times, and an
average result is taken. As we can see from the figure, the
location of the peaks matches well with the exact value of the
energy gaps.

Note that the choice of the initial state |ψ0〉 can signifi-
cantly impact the results obtained through our method. For
small quantum systems, selecting certain initial states that
have a reasonable overlap with all eigenstates can lead to valid
energy gaps between the ground state and other eigenstates.
However, as the system size increases, the number of eigen-
states of a quantum system grows exponentially, making it
practically impossible to identify such states. Fortunately, in
most cases, the energy gaps between the ground state and low-
lying excited states are of primary interest. In such cases, we
can prepare an initial state that has a reasonable overlap with
the ground state and low-lying excited states. This enables us
to evaluate the energy gaps between these states. Below, we
present an example of such a case for the H4 molecule.

B. Energy gap evaluation for the H4 molecule

In this section, we consider a one-dimensional open-chain
H4 molecule with a bond length of 0.89 Å. The Hamiltonian
is obtained in a second-quantized form using OPENFERMION

[49], an open-source quantum chemistry package. The
Hamiltonian can be encoded using an eight-qubit quantum
circuit. We then evaluate the energy gaps between the ground
state and several low-lying excited eigenstates by calculating
C(E ) using Eq. (12). The process is the same as described
above, and the results are presented in Fig. 2.

To ensure that the initial state has a reasonable overlap
with the low-lying excited eigenstates, we can generate the
initial states by applying different single- or double-excitation
operators on the Hartree-Fock state. In this example, we
choose two states, |ψ1〉 = U1 |HF〉 and |ψ2〉 = U2 |HF〉, as

FIG. 3. The energy eigenvalues of a H2 molecule, as determined
by our method. In the figure, the red vertical line indicates the exact
value of the eigenstate energy, while the light blue line represents
C(E ) as evaluated with our method.

the initial states. Here, |HF〉 denotes the Hartree-Fock state
of the H4 molecule, and U1 = ea7a†

4−a4a†
7 and U2 = ea6a†

4−a4a†
6

are two single-excitation operators. Here, ai and a†
i are the

annihilation operator and the creation operator acting on the
ith qubit, respectively. The choice of U1 and U2 is based on
the mean-field approximation method used to solve the low-
lying eigenstates of a quantum many-body system.

In Fig. 2, we find that C(E ) reaches a peak when E =
Ei − E0, where E0 is the ground-state energy and Ei is the
energy of the ith eigenstate. The height of a peak depends
on the overlap between the initial state and the corresponding
eigenstate. We set the parameter a = 1/(50

√
2) and sample

50 000 times using the Monte Carlo method. As shown in
Fig. 2, the locations of peaks match well with the exact values
of energy gaps.

C. Energy evaluation

To evaluate the eigenenergies of a Hamiltonian, we can use
Eq. (10) with O = I . Then, the equation is transformed into

C(E ) =
∫ ∞

−∞
〈ψ0|ψ (t )〉e−a2t2

eiEt dt . (14)

We can use a quantum computer to measure 〈ψ0|ψ (t )〉 in
Eq. (14) and evaluate the integral with a classical computer
using the Monte Carlo method. We perform simulations for
a range of molecules including H2, H4, LiH, CH2, and NH.
Particularly, we obtain the whole energy eigenvalues of a H2

molecule in the sto-3g basis, as shown in Fig. 3. For larger
molecules, we evaluate their ground states, and the results are
shown in Table I.

In Fig. 3, we consider the H2 molecule with a bond length
of 0.74 Å. The initial state is chosen to be |− − −+〉. As
shown in the figure, C(E ) reaches a peak when E = Ei, where
Ei denotes the ith eigenstate energy. The parameter a is fixed
to be 1/(50

√
2), and the number of samples is 10 000. In

Table I, E0 is the exact ground-state energy of molecules,
and E ′

0 is the energy obtained with our method. We find that
our method can find the ground state of molecules with high
accuracy.
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TABLE I. The ground-state energy of multiple molecules. E0

represents the exact ground-state energy, and E ′
0 denotes the energy

obtained by our method.

Systems E ′
0/Hartree E0/Hartree Basis

H2 −1.137 −1.137 284 sto-3g
H4 −2.181 −2.180 501 sto-3g
LiH −7.864 −7.864 266 sto-3g
NH −54.950 −54.950 45 6-31g
CH2 −38.904 −38.904 354 6-31g

IV. ERROR ANALYSIS

Using our method, one applies Monte Carlo sampling to
obtain C(E ) = ∫ ∞

−∞ p(t )Tr[O |ψ (t )〉 〈ψ (t )|]eiEt dt and effec-
tively evaluates

C(E ) =
Nt∑

n=−Nt

p(nτ )Tr[O |ψ (nτ )〉 〈ψ (nτ )|]eiEnτ , (15)

where Nt is the number of samples. The averaged results
generate a curve with peaks appearing at E = Ei − Ej = �i j .
Whether one can accurately determine �i j depends on two
factors: (i) the position of the peak is accurate, and (ii) the
width of the peaks is small enough that one can distinguish
two neighboring peaks. For the first factor, the accuracy of
the location of a certain peak is mostly affected by the peaks
next to it. For example, when evaluating the ground state, the
accuracy scales with the energy gap of the ground and first
excited states (details can be found in Appendix A); thus, our
method is most suitable for systems with finite energy levels.

The shape of the curve depends on the Fourier transform of
the function p(t ), and in our case, it is the Gaussian function

e− (E−Ei )2

4a2 . In the frequency domain, we want to make the curve
around each peak sharp to better locate the crest, i.e., a small
a is preferred; this on the other hand leads to a broader curve
distribution in the time domain. To limit the evolution time,
we can use a cutoff of the sampling range from [−∞,∞]
to [−T, T ] when evaluating Eq. (15). We define C(E )∞ and
C(E )T as obtained from an infinite range and a cutoff range,
respectively. The cutoff error ε = |C(E )∞ − C(E )T | can be
shown to be ε � 2

a e−a2T 2
. Therefore, if we want to constrain

the error ε to εc, the sampling range should be no smaller than
1
a

√
In 2

aεc
(details are provided in Appendix B).

In Fig. 4, we illustrate how the error changes with the
sampling range T . Here, the error is defined as the difference
between the exact energy gap value and the value with a cutoff
when evaluating the energy gap between the ground state and
the first excited state of the H2 molecule. We fix the parameter
a = 1/(50

√
2), and the number of sampling times using the

Monte Carlo method is 50 000. As shown in Fig. 4, when
the sampling range T is greater than 50, the error decreases
rapidly to 0.

The complexity of our algorithm depends on two factors:
(i) the sampling range T and (ii) the sampling noise with the
Monte Carlo method. As discussed above, the sampling range

T can be bounded by 1
a

√
In 2

aεc
, when given a constant error

FIG. 4. The error in the energy gap between the ground state
and the first excited state of the H2 molecule, as a function of the
sampling range. The light blue line represents the error caused by the
cutoff, while the green horizontal line indicates the error-free case.
The position of the dashed line marks the lower bound of the cutoff
time.

εc. When measuring Tr[O |ψ (nτ )〉 〈ψ (nτ )|] with a quantum
computer, one can decompose O into Pauli operators O =∑

i αiPi and measure each term. The sampling noise exists
with a variance bounded by 1

4Nt

∑
i |αi|2 (details are given in

Appendix B).
Besides, our method depends on the realization of the time

evolution operator e−iHt . When utilizing the Trotter formula
to implement the evolution operator, the Trotter error can
influence the final results. In Fig. 5, we take the H2 molecule
as an example and evaluate the energy gap between the ground
state and the first excited state. We use the first-order Trotter
formula to simulate the time evolution operator and set the
sample range T = 60; thus, the cutoff error can be neglected
according to Fig. 4. We fix the parameter a = 1/(50

√
2), and

the number of sampling times using the Monte Carlo method
is 100 000. As shown in Fig. 5, when the maximum Trotter
step size = T/Trotter step is approximate to 1, we can still
obtain a good approximation of the energy gap.

FIG. 5. The energy gap between the ground state and first excited
states of the H2 molecule. The different color lines denote results
with different Trotter steps. The dashed vertical line marks the exact
location of the energy gap.
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V. DISCUSSION AND CONCLUSION

In this work, we introduce a hybrid nonvariational algo-
rithm to evaluate energy gaps for a given Hamiltonian H .
Here, “nonvariational” specifically refers to our approach for
calculating the energy gap, rather than the process of generat-
ing an initial guess. We mainly focus on exploring the spectral
gap between the ground state and low-lying excited states.
In our algorithm, we use real-time evolution simulation to
obtain the value of function f (t ) on a quantum computer and
evaluate the entire Fourier integral with a classical computer.
The Fourier transform is defined by C(E ) = ∫ ∞

−∞ f (t )eiEt dt ,
where the specific form of the function f (t ) depends on the
observable that we want to evaluate. Here, when E equals a
certain energy gap or an eigenvalue, depending on the prob-
lem, C(E ) reaches a local maximum.

During the process, as the entire evolution simulation is
performed on a quantum computer, our algorithm is free from
the sign problem. Furthermore, the evolution time is con-
strained as we consider a cutoff of the sampling range from
[−∞,∞] to [−T, T ] to reduce the circuit depth. We show the
energy gap error can be close to 0 when a reasonable T is
taken. Note that our algorithm may still require a deep quan-
tum circuit for evaluating very small spectral gaps, which can
only be implemented using fault-tolerant quantum computers.
For algorithmic errors, i.e., Trotter errors, when the maximum
Trotter step size approximates 1, numerical results show only
a small deviation from the exact value. When considering
the impact of gate noise, it is shown in Ref. [50] that the
algorithm employing Fourier transform to read spectral peaks
is robust to noise when the circuit error rate ξ = λNgates is
approximate to 1. Here, λ denotes the average gate error rate
and Ngates is the total number of gates. Therefore, our method
can be implemented with shallow circuits and is suitable for
near-term devices.

Note added. Recently, we found a similar work posted
some months ago [50]. Reference [50] evaluates the ex-
pected value of an observable 〈�(t )|O|�(t )〉 with the classical
shadow and applies classical postprocessing to obtain the
energy gaps. In our work, we introduce a converging term
p(t ) and apply the importance sampling technique of the
Monte Carlo method, where the evolution time t is generated
randomly according to the distribution of p(t ). Besides, our
method provides a general framework that can also obtain
the energy eigenvalues of a given Hamiltonian. Compared
to another work [51], the basic methodology is similar to
ours. We became aware of each other while preparing the
manuscript, so we decided to post the two works concurrently.
Compared with Ref. [51], our method provides a more general
framework; besides, we also consider the case with degenerate
energy levels.
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APPENDIX A: ACCURACY OF THE LOCATION
OF THE PEAKS

In this section, we discuss the accuracy of the peaks ap-
pearing at the correct location. We first consider the case to
evaluate the energy using Eq. (10). The peaks in the curve of
C(E ) occur at ∂C(E )

∂E = 0:

∂C(E )

∂E
= ∂

∂E

(
Tr

[
O

N∑
i=0

|i〉 〈i|ψ0〉 〈ψ0|
√

π

a
e− (E−Ei )2

4a2

])

= −Tr

[
O

N∑
i=0

|i〉 〈i|ψ0〉 〈ψ0|
√

π (E − Ei )

2a3
e− (E−Ei )2

4a2

]

= 0. (A1)

Let us write |i〉 〈i|ψ0〉 〈ψ0| = Di, so we have

N∑
i=0

Di(E − Ei )e
− (E−Ei )2

4a2 = 0. (A2)

In most applications we want to find the ground state E0, so we
consider the extreme point around E = E0. As the contribu-
tion from peaks far away from E0 scales down exponentially,
the peak of E1 attributes the largest contribution to Eq. (A2):

D0(E − E0)e− (E−E0 )2

4a2 + D1(E − E1)e− (E−E1 )2

4a2 = 0

⇒ E = D0E0e− (E−E0 )2

4a2 + D1E1e− (E−E1 )2

4a2

D0e− (E−E0 )2

4a2 + D1e− (E−E1 )2

4a2

. (A3)

Therefore, the error of the location is bounded by

|E − E0| ≈
∣∣∣∣∣∣
D1(E1 − E0)e− (E0−E1 )2

4a2

D0 + D1e− (E0−E1 )2

4a2

∣∣∣∣∣∣ <
D1(E1 − E0)

D0
, (A4)

as D0 > D1. We can see that the accuracy of the result depends
on the gap between the ground state and the first excited state.
Therefore, for physical systems with finite energy gaps, e.g.,
molecules, our method can be quite accurate.

Next, we consider the case when evaluating the energy
gaps. The peaks in the curve of C(E ) occur at ∂C(E )

∂E = 0:

∂C(E )

∂E
= ∂

∂E

⎛
⎝Tr

⎡
⎣O

N∑
i, j=0

|i〉 〈i|ψ0〉〈ψ0| j〉 〈 j|
√

π

a
e− (E−Ei−E j )2

4a2

⎤
⎦

⎞
⎠

=Tr

⎡
⎣O

N∑
i, j=0

|i〉 〈i|ψ0〉〈ψ0| j〉 〈 j| −
√

π (E − Ei − Ej )

2a3
e− (E−Ei−E j )2

4a2

⎤
⎦. (A5)
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Let us write |i〉 〈i|ψ0〉〈ψ0| j〉 〈 j| = Di, j and Ei − Ej = �i, j ; then the above function changes into

∂C(E )

∂E
= −Tr

⎡
⎣O

N∑
i, j=0

Di, j

√
π (E − �i, j )

2a3
e− (E−�i, j )2

4a2

⎤
⎦ = 0, (A6)

and then
N∑

i, j=0

Di, j (E − �i, j )e
− (E−�i, j )2

4a2 = 0. (A7)

We focus on the peak around E = �i, j and consider a general case where the peak has two neighboring peaks at E = �1 and
E = �2, with �1 < �i, j < �1. Therefore, the location of the target peak is mostly affected by these two peaks:

Di, j (E − �i, j )e
− (E−�i, j )2

4a2 + D1(E − �1)e− (E−�1 )2

4a2 + D2(E − �2)e− (E−�2 )2

4a2 = 0

⇒

E = D1�1e− (E−�1 )2

4a2 + D2�2e− (E−�2 )2

4a2 + Di, j�i, je
− (E−�i, j )2

4a2

D1e− (E−�1 )2

4a2 + D2e− (E−�2 )2

4a2 + Di, je
− (E−�i, j )2

4a2

. (A8)

Therefore, the accuracy is bounded by

|E − �i, j | ≈

∣∣∣∣∣∣∣
−D1(�i, j − �1)e− (�i, j −�1 )2

4a2 + D2(�2 − �i, j )e
− (�i, j −�2 )2

4a2

D1e− (�i, j −�1 )2

4a2 + D2e− (�i, j −�2 )2

4a2 + Di, j

∣∣∣∣∣∣∣. (A9)

|E − �i, j | is mostly affected by the nearest neighboring peak. Besides, in any case, we have |E − �i, j | < �i, j − �1 and |E −
�i, j | < �2 − �i, j so that all the peaks can be distinguished from each other.

APPENDIX B: ERROR ANALYSIS

We consider two dominant error sources that affect the
precision of our method: cutoff error and sampling error.

1. Cutoff error

Using our method, C(E ) is evaluated using the Monte
Carlo method. In practice, one cannot sample from minus
infinity to infinity. Here we consider a cutoff to the sampling
range from [−∞,∞] to [−T, T ]. Then, we can define

C(E )∞ = Tr

⎡
⎣O

N∑
i, j=0

|i〉 〈i|ψ0〉〈ψ0| j〉 〈 j|
∫ ∞

−∞
e−i(Ei−Ej−E )t ∗ p(t )dt

⎤
⎦ = Tr

⎡
⎣O

N∑
i, j=0

|i〉 〈i|ψ0〉〈ψ0| j〉 〈 j| G(Ei, j )

⎤
⎦, (B1)

where we make G(Ei, j )∞ = ∫ ∞
−∞ e−i(Ei−Ej−E )t ∗ p(t )dt , p(t ) = e−a2t2

and O = |ψ0〉 〈ψ0|. Then the cutoff error is

|C(Ei, j )
∞ − C(Ei, j )

T | � |G(Ei, j )
∞ − G(Ei, j )

T | =
∫ ∞

−∞
e−i(�i, j−E )t p(t )dt −

∫ T

−T
e−i(�i, j−E )t p(t )dt

=
∫ −T

−∞
e−i(�i, j−E )t p(t )dt +

∫ ∞

T
e−i(�i, j−E )t p(t )dt �

∫ −T

−∞
p(t )dt +

∫ ∞

T
p(t )dt = 2

a
erfc(aT ). (B2)

erfc(x) is the error function which satisfies erfc(x) � e−x2
. For x � 0, |C(Ei, j )∞ − C(Ei, j )T | � 2

a e−a2T 2
. Therefore, if we want

to constrain the error by εc, the sample range should be no smaller than 1
a

√
In 2

aεc
.

2. Sampling noise

As described in the main text, we take finite samples to generate C(E ) using the Monte Carlo method:

C(E ) =
Nt∑

n=−Nt

Tr[O |ψ (nτ )〉 〈ψ (nτ )| ∗ p(nτ )]eiEnτ , (B3)

where Nt is the number of samples. In each sampling, one need to measure Tr[O |ψ (nτ )〉 〈ψ (nτ )|] using a quantum computer.
To do so, we can decompose O into Pauli operators O = ∑

i αiPi, where Pi is a Pauli operator. Then one prepares |ψ (nτ )〉 and
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measures 〈Pi〉 each time. In each shot, one gets a binary number of u = ±1 as the result. Therefore, the variance of 〈Pi〉 is given
by

Var[Pi] = 1 − E[u]2

4Nt
� 1

4Nt
. (B4)

Therefore, the variance of Tr[O |ψ (nτ )〉 〈ψ (nτ )|] is bounded by 1
4Nt

∑
i |αi|2.
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