
PHYSICAL REVIEW A 109, 052414 (2024)

Probabilistic imaginary-time evolution algorithm based on nonunitary quantum circuits
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Imaginary-time evolution is a powerful tool in the study of quantum physics. However, existing classical
algorithms for simulating imaginary-time evolution suffer from high computational complexity as the dimension
of the quantum system increases. In this study we propose a quantum algorithm for implementing imaginary-time
evolution using nonunitary quantum circuits with one ancillary qubit. The success probability of our algorithm is
a polynomial function of the output error and can be enhanced by reorganizing the terms of the Hamiltonian. To
illustrate the practicality of our algorithm on current quantum devices, we conduct a demonstration on supercon-
ducting and trapped-ion quantum processors to calculate the ground-state energy and determine the most stable
molecular structure of H2. Additionally, we validate the feasibility of our algorithm by numerically simulating
the ground-state energies of LiH molecules and the quantum Ising chain. In contrast to existing algorithms, our
method provides a systematic approach to construct the required nonunitary circuits using universal quantum
gates, making it suitable for experimental implementation. Our algorithm opens up possibilities for exploring
other physical phenomena such as finite-temperature properties and non-Hermitian systems.
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I. INTRODUCTION

As a valuable mathematical tool, imaginary-time evolution
(ITE) finds applications in various quantum physics problems,
including the computation of ground states of Hamiltoni-
ans [1–3], the investigation of finite-temperature properties
[4–7], and the simulation of non-Hermitian systems [8,9].
The concept of ITE can be grasped by introducing an imag-
inary time β = it and substituting it into the Schrödinger
equation i∂t |�〉 = H |�〉, where H represents a Hermitian
Hamiltonian. This substitution leads to the imaginary-time
Schrödinger equation, which can be expressed as follows:

−∂β |�β〉 = H |�β〉 . (1)

Given an initial state |�0〉, the solution to Eq. (1) is �β =
e−βH |�0〉, which represents a subnormalized quantum state.
The corresponding evolution operator e−βH is nonunitary and
the evolved state can be expressed using a normalization con-
stant A as |�β〉 = Ae−βH |�0〉. In classical simulations, one
can directly calculate e−βH and implement it on the initial
state vector |�0〉 or employ other classical techniques such
as quantum Monte Carlo [10] and tensor networks [11,12].
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However, the dimension of the Hilbert space grows exponen-
tially with the size of the quantum system, making the tasks
intractable for classical computers [13].

A quantum computer is one of the promising tools for
efficiently simulating quantum systems [13–24]. For real-
time simulation, the evolution operator e−itH can be realized
directly or simply decomposed into a sequence of unitary
quantum gates. However, this is not possible for imaginary-
time simulation, where the evolution operator e−βH is
nonunitary. Two types of classical-quantum hybrid algorithms
have been proposed to simulate ITE. The first is variational
quantum algorithms (VQAs) [25–30], which utilize a varia-
tional ansatz to simulate the evolution of quantum states by
updating variational parameters with a classical optimizer;
however, estimating the complexity of VQAs is still a diffi-
cult problem [31,32] and the fixed parametrization of VQAs
causes systematic errors. The second hybrid algorithm is
quantum imaginary-time evolution [33–35], which identifies
a unitary operator to approximate the ideal ITE by solving
a group of linear equations in each evolution step. Quantum
imaginary-time evolution is suitable for Hamiltonians that
contain only local interactions because global correlation will
boost the computation complexity [3,35].

Alternatively, nonunitary quantum circuits [36] have
broadened the scope of quantum computation. One method
to implement nonunitary quantum circuits is the linear com-
bination of unitary operators [37], which has been applied in
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many problems, such as the full quantum eigensolver [38,39]
and Hamiltonian simulation [40,41]. Another method is quan-
tum signal processing [42–44], which implements matrix
functions with optimal quantum control sequence controlled
by an ancillary qubit. Based on nonunitary circuits, many
imaginary-time simulation approaches [3,9,45,46] have been
proposed. These studies presented abstract representations of
the required unitary gates and provided examples of the cir-
cuit construction for two- and three-qubit cases. However,
no method has been proposed for more general cases to
efficiently decompose the required quantum circuits into uni-
versal quantum gates.

In this study we propose a probabilistic imaginary-time
evolution (PITE) algorithm that utilizes nonunitary quantum
circuits with one ancillary qubit. Compared to the previ-
ous studies, we explicitly illustrate the construction of the
required quantum circuits using single-qubit and two-qubit
gates, which applies to any number of qubits and any Hamil-
tonians that can be efficiently expressed as a sum of Pauli
terms. A detailed analysis of the computational complexity is
also provided, where the final success probability of the mea-
surement is a polynomial of the output error. We demonstrate
our algorithm by determining the ground state of H2 on both
superconducting and trapped-ion cloud platforms. Further-
more, numerical calculations are performed to determine the
ground-state energy of LiH molecules and the quantum Ising
chain. In addition, a generalized version of PITE (GPITE) is
introduced, which can be applied to more generic Hamiltoni-
ans and exhibits better performance in terms of the success
probability.

This paper is organized as follows. In Sec. II we provide
a description of the PITE algorithm and the analysis of the
success probability and the error. Section III presents the
results on quantum cloud platforms and numerical simulation
results of explicit examples. In Sec. IV we provide the details
of the GPITE algorithm. A summary is given and our results
are discussed in Sec. V.

II. METHOD

An n-qubit Hamiltonian H = ∑m
k=1 ckhk is composed of m

Pauli product terms, in which ck is a real coefficient and hk =
⊗n

j=1σ
j

α j , where σ
j

α j is a Pauli matrix or the identity acting on
the jth qubit, with α j ∈ {0, x, y, z} (σ0 = I). Here we assume
m is on the order of poly(n), and the Hamiltonian does not
contain the identity term I⊗n because this term merely shifts
the spectrum of the Hamiltonian.

Our goal is to implement the nonunitary operator e−βH

in quantum circuits. We first apply the Trotter decomposition
[47,48]

e−βH = (e−c1h1�τ · · · e−cmhm�τ )β/�τ + O(�τ ). (2)

For a single Trotter step, we wish to obtain |�′〉 = T̃k |�〉,
where T̃k = e−ckhk�τ . Since ckhk only has two different eigen-
values ±|ck|, each with the degeneracy of 2n−1, there exists a
unitary Uk satisfying

UkckhkU
†
k = −|ck|σ lk

z , lk ∈ {1, . . . , n}, (3)

|0⟩

n work

qubits

|Φ

1st

lkth

nth

ancillary qubit |0⟩

exp(-ckσz
lkΔτ)

Uk Uk
†

Ry(θk)

FIG. 1. Quantum circuit for implementing T̃k .

which is a single-qubit operator. Thus, we have

T̃k = U †
k exp

( − |ck|σ lk
z �τ

)
Uk . (4)

In Fig. 1 we present how to implement T̃k in a quantum circuit.
The construction of Uk requires at most O(n) single-qubit
gates and controlled-NOT (CNOT) gates (see Appendix B for
details).

After the action of Uk , we express the work-qubit state
as Uk |�〉 = a0 |ψ0〉 + a1 |ψ1〉, where |ψ0〉 and |ψ1〉 are the
projection of Uk |�〉 on the subspace where the lkth qubit is
|0〉 and |1〉, respectively. In Appendix B we demonstrate that
a0 and a1 are also the amplitudes of the projection of |�〉 on
the ground-state subspace and excited-state subspace of ckhk ,
respectively. To implement e−|ck |σz�τ on the lkth work qubit,
we add an ancillary qubit |0〉 and apply the controlled-Ry

operation |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Ry(θk ) on the lkth work qubit
and the ancillary qubit, where

Ry(θ ) = e−iθσy/2 =
(

cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
,

θk = 2 cos−1(e−2|ck |�τ ),

Ry(θk ) =
(

e−2|ck |�τ −√
1 − e−4|ck |�τ

√
1 − e−4|ck |�τ e−2|ck |�τ

)
,

(5)

which gives the state

a0 |ψ0〉 |0〉anc + a1e−2|ck |�τ |ψ1〉 |0〉anc

+ a1

√
1 − e−4|ck |�τ |ψ1〉 |1〉anc . (6)

Then we measure the ancillary qubit, and if the result is 0, we
obtain√

1

|a0|2 + |a1|2e−4|ck |�τ
(a0 |ψ0〉 + a1e−2|ck |�τ |ψ1〉), (7)

which is equivalent to the result of e−|ck |σz�τ acting on the lkth
work qubit up to normalization.

The probability of obtaining 0 in the measurement of the
ancillary qubit is |a0|2 + |a1|2e−4|ck |�τ . If we obtain 0, then
the last step is to apply U †

k on the work qubits. The output
state will be exactly T̃k |�〉 up to normalization.
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In summary, the nonunitary operator T̃k acting on a quan-
tum state |�〉 can be written as

T̃k |�〉 = U †
k (〈0|anc RkUk |�〉 ⊗ |0〉anc), (8)

up to a constant coefficient, where Uk transforms hk into a
Pauli matrix acting on the lkth work qubit and Rk represents
the controlled-Ry gate acting on the lkth work qubit and the
ancillary qubit, with rotation angle θk = 2 cos−1(e−2|ck |�τ ).

III. RESULTS

To illustrate the performance of the PITE algorithm, we
apply it to calculate the ground-state energy of three phys-
ical systems: H2 molecules, LiH molecules, and a quantum
Ising spin chain with both transverse and longitudinal fields.
The calculations of H2 are performed on Quafu’s ten-qubit
superconducting quantum processor and IonQ’s eleven-qubit
trapped-ion quantum processor. The calculations of LiH and
the Ising chain are performed on a numerical simulator to
study the influence of noise and the success probability of the
algorithm.

A. Calculating the ground state of H2 on quantum devices

To calculate the ground state of H2 on a quantum computer,
we first encode the molecular Hamiltonian into qubits. Here
we choose the STO-3G basis [49] and use the Jordan-Wigner
transformation (see Appendix D for details). We eventually
obtain Hamiltonians composed of Pauli matrices H(R) =∑

k ck (R)σ 1
α1

· · · σ n
αn

, which act on n qubits. The coefficients
ck in each term vary with the interatomic distance R. The
Hamiltonian of H2 and LiH can be encoded onto four and
six qubits, respectively. Further mapping is applied on H2 to
compactly encode the H2 Hamiltonian into two qubits (see
Ref. [50] for details), which gives the H2 Hamiltonian in the
form

HH2 = c0(R) + c1(R)σ 1
z + c1(R)σ 2

z

+ c2(R)σ 1
z σ 2

z + c3(R)σ 1
x σ 2

x , (9)

where the coefficients at different R are available in Ap-
pendix D. The Hamiltonian for LiH at its lowest-energy
interatomic distance (bond distance) is given explicitly in
Appendix D.

In the demonstration on the quantum cloud platform, we
use two qubits as the work qubits to represent the H2 molecule
and one qubit as the ancillary qubit. The Hartree-Fock state
of H2 is |�HF〉 = |00〉 in the qubit representation, which is
chosen as the initial state of the work qubits. Following the
PITE method, we first perform the calculation at a fixed inter-
atomic distance R = 0.75 Å and the algorithm is performed
on Quafu’s superconducting QPU P-10 and IonQ’s trapped-
ion QPU (for information of Quafu, see Appendix A). After
each Trotter step, we tomograph the quantum state of the work
qubits, with 2000 shots on Quafu and 1000 shots on IonQ.
Then the state is used to calculate the energy value and is set
as the initial state for the next step. The quantum circuits and
related details are provided in Appendix E. The results of the
energy expectation value as a function of the imaginary time

FIG. 2. Results of calculating the ground-state energy of H2

on the Quafu and IonQ cloud platforms. (a) Energy values E =
〈�|HH2 |�〉 as a function of the imaginary time β at a fixed inter-
atomic distance R = 0.75 Å. (b) Energy values E = 〈�|HH2 |�〉 as
a function of β and the interatomic distance R. The black lines in
(a) and (b) represent the exact ground-state energies obtained by
diagonalization. The identity terms in the Hamiltonians are consid-
ered when calculating the energy values but not considered when
executing the algorithm.

β are presented in Fig. 2(a) compared with the theoretical
PITE results. As β increases, the energy rapidly converges
to the exact solution E0 in five evolution steps within an
error of approximately 10−4 a.u, which is within the chemical
precision.

To obtain the most stable molecular structure, we vary the
interatomic distance and plot the potential-energy surfaces
for the H2 molecule, as shown in Fig. 2(b). These tasks are
conducted only on Quafu’s P-10, and the results (β = 0.5
and 1) are compared with the Hartree-Fock state energies
(β = 0) and the exact ground-state energies obtained by diag-
onalization. The lowest energy in the potential-energy surface
corresponds to the bound distance of the H2 molecule, which
is approximately 0.75 Å.

B. Numerical simulations of LiH and the quantum Ising chain

In the numerical simulations, we calculate the ground-state
energies of LiH and the quantum Ising chain to study the suc-
cess probability and the influence of noise. For LiH, we use six
work qubits and one ancillary qubit. The Hartree-Fock state is
|�HF〉 = |110000〉 in the qubit representation. Here |�HF〉 is
very close to the exact ground state; thus, it takes few steps for
the state to converge. Therefore, to illustrate the convergence
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FIG. 3. Numerical simulation results of LiH and quantum Ising chain obtained from the PITE algorithm. (a) Energy values of LiH as a
function of β. (b) Fidelity values of LiH as a function of β. The results in (a) and (b) are obtained at a fixed interatomic distance R = 2.0 Å.
(c) Energy values of the Ising chain as a function of β. (d) Fidelity values of the Ising chain as a function of β. (e) Energy values of LiH as a
function of β and the interatomic distance R. For LiH, the identity term in the Hamiltonian is considered when calculating the energy values
but not considered when executing the algorithm. For the Ising chain, the parameters are chosen as n = 10, J = 1, g = 1.2, and h = 0.3. The
black lines in (a), (c), and (e) represent the exact ground-state energies obtained by diagonalization. The red dashed lines in [(a)–(d)] are results
of exact imaginary-time evolution.

process in greater detail, we use a superposition of |�HF〉 and
an excited state, |�0〉 = √

0.96 |�HF〉 + 0.2 |000011〉, as the
initial state. Figures 3(a) and 3(b) display the convergence
of the energy E (β ) and the fidelity F (β ) as a function of β,
respectively, where F (β ) = |〈E0|�β〉|2 is the fidelity between
|�β〉 and the exact ground state |E0〉. The results are compared
with the exact evolution (red dashed lines). The influence of
quantum noise is studied by applying quantum channels on
all qubits before each measurement of the ancillary qubit. The
noise is described by

E (ρ) =
3∑

ν=1

ÊνρÊ†
ν , (10)

with Kraus operators

Ê1 =
(

1 0
0

√
1 − εr − εd

)
,

Ê2 =
(

0
√

εd

0 0

)
, Ê3 =

(
0 0
0

√
εr

)
, (11)

where εr and εd are the relaxation parameter and dephasing
parameter, respectively (see Appendix G for details). The
simulation results are also presented in Figs. 3(a) and 3(b),
which indicate the energy still converges to the exact solu-
tion within an error of approximately 10−3 a.u. under noisy
conditions.

We vary the interatomic distance and plot the potential-
energy surfaces for the LiH molecule, as shown in Fig. 3(e).
The simulation results at different β and the exact solutions
obtained by diagonalization are compared. The lowest energy

in the potential-energy surface corresponds to the bound dis-
tance of the LiH molecule, which is approximately 1.5 Å.

Finally, we compute the ground-state energy of an n-site
cyclic quantum Ising chain with the Hamiltonian

H = −J
n∑

j=1

(
σ j

z σ j+1
z + gσ j

x + hσ j
z

)
, σ n+1

z = σ 1
z , (12)

where g and h are the magnitudes of the transverse and
longitudinal fields, respectively. In the simulation, the state
of the work qubits is initialized as |�0〉 = (cos φ0

2 |0〉 +
sin φ0

2 |1〉)⊗n, where φ0 is chosen to minimize the initial energy
E (β = 0) = 〈�0|H|�0〉. In Figs. 3(c) and 3(d) we show the
energy and fidelity values obtained by the PITE algorithm,
as well as the influences of noises. The results show that
the energy converges to the exact value within an error of
approximately 10−3 in the noiseless case and approximately
10−2 in the noisy case.

C. Computational complexity

For one successfully executed quantum circuit, the number
of quantum gates is O(nmL), where n is the number of qubits,
m is the number of terms in the Hamiltonian, and L = β/�τ is
the number of iteration steps. The depth of the quantum circuit
is O(mL). The main aspect of computational complexity we
consider is the probability P of successfully generating |�β〉
due to the probabilistic measurements. In other words, 1/P
is the average time to successfully generate |�β〉 through
repeating the algorithm with majority-vote techniques.
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For a quantum circuit that implements T̃k , the probabil-
ity of obtaining |0〉 from the ancillary qubit, according to
Eq. (6), is

Pk = |a0|2 + |a1|2e−4|ck |�τ � e−4|ck |�τ , (13)

where |a0|2 + |a1|2 = 1. Thus, we have a rigorous lower
bound (RLB) of the final success probability as a function of
the imaginary time β,

Pfinal �
(

m∏
k=1

e−4|ck |�τ

)β/�τ

= exp

(
−4β

∑
k

|ck|
)

= PRLB, (14)

which is exponential to β and the sum of |ck|′s. It should
be noted that the RLB is reached if and only if a0 = 0 in
Eq. (13) for all Pauli terms during the entire evolution process,
which is the worst case and never occurs. In practice, a much
greater success probability than the RLB can be reached (we
will show the results in Sec. III B). A more practical lower
bound [approximate lower bound (ALB)] of success proba-
bility is estimated. With 〈�|ckhk|�〉 = |ck|(|a1|2 − |a0|2) =
|ck|(1 − 2|a1|2), we have the approximation

Pk ≈ |a0|2 + |a1|2(1 − 4|ck|�τ )

= 1 − 4|a1|2|ck|�τ

= 1 − 2�τ (〈�|ckhk|�〉 + |ck|)
≈ exp[−2�τ (〈�|ckhk|�〉 + |ck|)],

(15)

and the total success probability after �τ is
approximated by

P(�τ ) ≈
m∏

k=1

Pk

= exp

[
−2�τ

(
〈�|H|�〉 +

∑
k

|ck|2
)]

. (16)

Here we are approximating that |�〉 is constant during �τ .
Thus the final success probability after imaginary time β is

Pfinal ≈ exp

[
−2

∫ β

0
dτ

(
〈�|H|�〉 +

∑
k

|ck|2
)]

. (17)

To do this integral, we need to evaluate the energy ex-
pectation value as a function of τ . We start with the initial
normalized quantum state |�0〉, which is a linear combination
of all eigenstates of the Hamiltonian:

|�0〉 =
∑
i=0

μi |Ei〉 . (18)

Suppose the eigenvalues Ei are ordered as E0 � E1 � E2 �
· · · . The normalized evolving state at imaginary time τ is

|�τ 〉 =
∑

i=0 μie−Eiτ |Ei〉√∑
i=0 |μi|2e−2Eiτ

, (19)

and the energy expectation value at imaginary time τ is

〈�τ |H|�τ 〉 =
∑

i=0 Ei|μie−Eiτ |2∑
i=0 |μi|2e−2Eiτ

=
∑

i=0 siEie−2Eiτ∑
i=0 sie−2Eiτ

= s0E0 + ∑
i=1 siEie−2�iτ

s0 + ∑
i=1 sie−2�iτ

(20)

= E0 +
∑

i=1 si�ie−2�iτ

s0 + ∑
i=1 sie−2�iτ

� E0 + (1 − s0)�maxe−2�1τ

s0
,

where si = |μi|2, �i = Ei − E0, �max is the maximum of the
�′

is, E0 is the exact ground-state energy, and s0 = |〈E0|�0〉|2
is the fidelity between the initial state |�0〉 and the exact
ground state |E0〉. Returning to Eq. (17), we have the lower
bound (ALB) of the final success probability as

Pfinal � PALB

= exp

(
−2βη − (1 − s0)�max

s0�1
(1 − e−2β�1 )

)
, (21)

where η = E0 + ∑
k |ck|, which depends on the Hamiltonian

spectrum.
One of the applications of imaginary-time evolution is to

find the ground state and the corresponding eigenvalue, which
is of broad interest in quantum computation science [43,51–
53]. In this kind of problem we focus merely on the relation
between the success probability and output error. The output
error is defined as ε = 1 − F , where F = |〈E0|�〉|2 is the
fidelity. From Eq. (19) we have

F (β ) = |〈E0|�β〉|2 =
∣∣∣∣∣
∑

i=0 〈E0|μie−βEi |Ei〉√∑
i=0 |μi|2e−2βEi

∣∣∣∣∣
2

= |μ0|2e−2βE0∑
i=0 |μi|2e−2βEi

= s0

s0 + ∑
i=1 sie−2β�i

� s0

s0 + (1 − s0)e−2β�1
,

(22)

where we could use 1 − s0 = ∑
i=1 si and �i � �1 for all i′s.

This leads to

β�1 � 1

2
ln

(
1 − s0

s0

1 − ε

ε

)
. (23)

Here we write the product of β and �1 because we can choose
the scale of the Hamiltonian to change the value of �1, and β

is also dependent on the scale of the Hamiltonian. So it is the
product β�1 that really matters. Equation (23) indicates that

052414-5



HAO-NAN XIE et al. PHYSICAL REVIEW A 109, 052414 (2024)

FIG. 4. Success probabilities of PITE in numerical simulations of LiH molecules and the quantum Ising chain. (a) Success probability of
LiH as a function of the imaginary time β. (b) Success probability of LiH as a function of the output fidelity error ε. (c) Success probability of
the Ising chain as a function of β. (d) Success probability of the Ising chain as a function of the output fidelity error ε. In (b) and (d) the initial
states are at the top right side of the figures and evolve toward the bottom left side. For LiH, the RLBs and ALBs are calculated without the
identity term of the Hamiltonian.

the required imaginary-time length β = O(�−1
1 log ε−1) when

the output error is lower than ε is logarithmically dependent
on the inverse of ε and linearly dependent on the inverse of
the energy gap of the Hamiltonian. Here we do not consider
the error caused by Trotter decomposition (2), which may
reduce the fidelity in Eq. (22) by O(�τ ). This error causes
the quantum state to fail to reach the ground state with arbi-
trary precision and it cannot be reduced by increasing β. The
quantum state would converge to |E0〉 + |δ〉 as β increases,
where ||δ〉| ∼ O(�τ ). However, we can reduce the error term
to O(�τ 2) using the higher-order decomposition [54]

e−βH = [(e−c1h1�τ/2 · · · e−cM hM�τ/2)

× (e−cM hM�τ/2 · · · e−c1h1�τ/2)]β/�τ + O(�τ 2).
(24)

Connecting Eqs. (14), (21), and (23) shows the RLB and ALB
of the final success probability when the output error is less
than ε,

PRLB �
(

s0

1 − s0

ε

1 − ε

)κ0

= O(εκ0 ),

PALB �
(

s0

1 − s0

ε

1 − ε

)κ1

exp

[
−�max

s0�1

(
1 − s0

1 − ε

)]

= O(εκ1 ), (25)

where κ0 = 2
∑

k |ck|/�1 and κ1 = (E0 + ∑
k |ck|)/�1 are

dependent on the spectrum of the Hamiltonian but indepen-
dent of the scale of the Hamiltonian.

All the lower bounds presented above remain unchanged
when higher-order Trotter formulas are used. This is because
the Trotter formula preserves the total accumulated time for
each Hamiltonian term.

In Fig. 4 we present the success probabilities in the simula-
tions of LiH and the Ising chain. The success probabilities as a
function of β are shown in Figs. 4(a) and 4(c), which indicate
exponential decay of the success probability as β increases.
We can see that the ALB (purple dot-dashed lines) is a much
better approximation to the simulation results than the RLB
(black dashed lines) in both cases. The results indicate that
the success probability is hardly affected by the noises. Fig-
ures 4(b) and 4(d) show the success probability as a function

of the output error ε. We can see that the success probability
can be lower than the ALB when qubits are affected by the
noise.

IV. GENERALIZATION OF the PITE ALGORITHM

In this section we generalize the PITE algorithm for the
Hamiltonian which is not expressed as a sum of Pauli terms.
In general, the Hamiltonian is written as H = ∑m

k=1 Hk and
the ITE operator is decomposed as

e−βH = (e−H1�τ · · · e−Hm�τ )β/�τ + O(�τ ). (26)

We assume that the eigenvalues of each term Hk can be
efficiently obtained through classical calculation and that the
corresponding eigenstates can be efficiently prepared on a
quantum computer. This assumption is true for most cases,
e.g., when H ′

ks are local operators. We denote by λk,i the
ith eigenvalue of Hk and by |λk,i〉 the corresponding eigen-
state. We define ωk,i = λk,i − λk,0, where λk,0 is the lowest
eigenvalue of Hk . The procedure of implementing the operator
e−Hk�τ on a quantum computer is described as follows.

(i) Apply a unitary Uk to the work qubits, which transforms
|λk,i〉 into computational basis |xk,i〉.

(ii) Add an ancillary qubit which is initialized as |0〉.
(iii) Apply the gate

∑
i |xk,i〉 〈xk,i| ⊗ Ry(θk,i ), where θk,i =

2 cos−1(e−ωk,i�τ ).
(iv) Measure the ancillary qubit. If 0 is obtained, continue

the procedure; otherwise, start from the beginning.
(v) Apply U †

k to the work qubits. End the procedure.
Note that it should be easy to implement Uk and U †

k be-
cause we assume that |λk,i〉′ s can be efficiently prepared on
a quantum computer. Obviously, when H ′

ks are Pauli terms,
this procedure degrades to the original version of the PITE
algorithm; therefore, it is a GPITE algorithm.

Now we look into the complexity of GPITE. Similarly to
the derivation in Sec. III C, it is not difficult to obtain the
practical lower bound or ALB of the final success probability

Pfinal � PALB

= exp

(
−2βη′ − (1 − s0)�max

s0�1
(1 − e−2β�1 )

)
, (27)
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where η′ = E0 − ∑
k λk,0 (see details in Appendix C). In par-

ticular, when Hk = ckhk are Pauli terms, λk,0 = −|ck|, which
turns Eq. (27) into Eq. (21).

According to Eq. (27), the GPITE can help us increase the
success probability. When H is given, the only changeable
part in Eq. (27) is

∑
k λk,0. This suggests that we can divide H

into H ′
ks in different ways, which allows us to increase

∑
k λk,0

and improve the success probability.
Moreover, the circuit depth of GPITE depends linearly

on the number of terms, which can be reduced by grouping
fewer H ′

ks. Therefore, the GPITE improves the successful
probability and reduces the gate complexity compared with
the original version but requires more classical resources than
diagonalizing H ′

ks. There exists a tradeoff and the crucial point
is to find a good way to divide the terms of the Hamiltonian
into proper groups according to the characteristics in the spe-
cific system.

We apply the GPITE in the simulations of LiH (at R =
2.0 Å) and the quantum Ising chain. Instead of taking ckhk

as Hk , we rearrange these terms and divide the Hamiltonian
in another way (see Appendix F for details). The simulation
results are presented in Fig. 5, where the success probabilities
obtained by GPITE are compared with the generalized ALB
given by Eq. (27) in Figs. 5(c) and 5(f). The results indicate
that GPITE has little effect on reducing the output error, but
the final success probabilities are increased by 102–104, which
makes our algorithm much more practical.

We also run the simulation using the original PITE with
second-order decomposition (24). As shown in Figs. 5(a)–
5(f), the results of the second-order Trotter formula are closer
to the exact evolution (red dashed lines).

V. CONCLUSION

In this paper we proposed a probabilistic algorithm for
implementing imaginary-time evolution, based on nonunitary
quantum circuits, and presented the explicit construction of
the circuit that is applicable to any number of qubits and
any Hamiltonians that can be efficiently expressed as a sum
of Pauli terms. This algorithm can be applied to solving
the ground state of a Hamiltonian. For an n-qubit Hamilto-
nian composed of m Pauli terms, the algorithm returns the
ground state within an error of ε with a success probability
Pfinal = O(εκ ), where κ is determined by the spectrum of the
Hamiltonian. The success probability decreases quickly as the
energy gap between the ground and the first excited state of
the Hamiltonian decreases. Generally speaking, most existing
quantum algorithms are affected by the energy gap of the
Hamiltonian. For example, a variational quantum eigensolver
finds the minimum energy value using classical optimization
methods, such as gradient descent. The energy gap influ-
ences the classical optimization, so the optimizing process
could encounter the barren plateau problem [31]. For quan-
tum phase estimation, the Harrow-Hassidim-Lloyd algorithm,
and related algorithms, the energy gap is related to the con-
dition number κ of the matrix and κ also influences the
complexity of the algorithm. Classical algorithms, such as the
matrix exponential e−βH , consumes O(N3) [55] to achieve
the same goal. As mentioned above, for one successfully ex-
ecuted quantum circuit, the gate complexity is O( log(N )mL).

FIG. 5. Numerical simulation results of LiH molecules and the
quantum Ising chain obtained from the generalized PITE algorithm.
(a) Energy of LiH as a function of β. (b) Fidelity of LiH as a function
of β. (c) Success probability of LiH as a function of β. (d) Energy
of the Ising chain as a function of β. (e) Fidelity of the Ising chain
as a function of β. (f) Success probability of the Ising chain as a
function of β. The red dashed lines in (a), (b), (d), and (e) are results
of exact imaginary-time evolution. For LiH, the interatomic distance
is fixed as R = 2.0 Å and the identity term from the Hamiltonian
is not considered when executing the algorithm or calculating the
generalized ALB. For the Ising chain, the parameters are chosen as
n = 10, J = 1, g = 1.2, and h = 0.3.

Therefore, for the whole algorithm, the space complexity is
O(log N ) and the time complexity is O( log(N )mL

Pfinal
). In the case

that Pfinal � 1/N2, our algorithm outperforms the correspond-
ing classical algorithms.

We demonstrated the feasibility and performance of the
proposed method with the example of H2, LiH molecules, and
the quantum Ising chain through quantum cloud platforms and
numerical simulations. We also generalized this approach to
the cases where the Hamiltonian is not composed of Pauli
terms and illustrated its improvement on success probability
in simulations.

Our algorithm goes beyond solving the ground-state en-
ergy and is specifically designed for implementing ITE. The
success probability decays exponentially with β and the spec-
tral radius of the Hamiltonian. This is a common problem
in existing algorithms for ITE, because quantum algorithms
employing nonunitary quantum circuits are inherently proba-
bilistic [3,38,40]. However, we have made significant efforts
to improve the success probability, such as proposing the
GITE algorithm in Sec. IV. Beyond this article, another pos-
sible way to increase the success probability is to combine
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FIG. 6. Topological structure of quantum processor P-10. Each
qubit is capacitively coupled to its nearest neighbors.

probabilistic methods and other methods, such as variational
quantum algorithms, which is a topic left for future work.
A similar work [56] describes PITE algorithm as a block
encoding of the ITE operator. Given the ability to efficiently
simulate ITE on quantum computers, one may explore the
techniques for preparing thermal states or studying finite-
temperature properties of quantum systems. Furthermore, the
ITE algorithm can also be applied in non-Hermitian physics.
By decomposing the Hamiltonian into its Hermitian and
anti-Hermitian parts, we can apply the ITE algorithm to the
evolution of the anti-Hermitian part, which allows us to simu-
late the dynamical process of a non-Hermitian Hamiltonian.

ACKNOWLEDGMENTS

This research was supported by National Basic Research
Program of China. S.W. acknowledge the National Natural
Science Foundation of China under Grants No. 12005015 and
the Beijing Nova Program under Grants No. 20230484345.
We gratefully acknowledge support from the Extreme Con-
dition User Facility in Beijing, Quafu cloud platform for
quantum computation, Beijing Advanced Innovation Center
for Future Chip (ICFC).

APPENDIX A: QUAFU AND IONQ

Quafu is an open cloud platform for quantum computation
[57]. It currently provides four specifications of superconduct-
ing quantum processors and three of them support general
quantum logical gates, which are 10-qubit and 18-qubit pro-
cessors with one-dimensional chain structures named P-10
and P-18, and a 50+-qubit processor with a two-dimensional
honeycomb structure named P-50.

PyQuafu is an open-source software development kit for
PYTHON based on the Quafu cloud platform. Users can easily
install it through PYPI or source install with GitHub [58]. In
this article we use the quantum processor of P-10, which is
shown in Fig. 6. The processor consists of ten transmon qubits

FIG. 7. Topological structure of the 11-qubit quantum processor
of IonQ. All qubit are capacitively coupled to each other.

Q1–Q10 arrayed in a row, with each qubit capacitively coupled
to its nearest neighbors. Each transmon qubit can be modu-
lated in frequency from about 4 to 5.7 GHz and excited to the
excited state individually. All qubits can be probed through
a common transmission line connected to their own readout
resonators. The qubit parameters and coherence performance
can be found in Table I. The idle frequencies of each qubit ω10

j
are designed to reduce residual coupling strength from other
qubits.

IonQ is an open cloud platform for quantum computation
[59] which currently provides an 11-qubit trapped-ion quan-
tum processor. IonQ’s QPUs are built on a chain of trapped
171Yb

+
ions, spatially confined via a microfabricated surface

electrode trap within a vacuum chamber. The quantum pro-
cessor used in this article is shown in Fig. 7, which shows an
all-to-all connectivity of the trapped-ion qubits. The trapped
ions are aligned to form a linear crystal, suspended in a chip
trap with a radial pseudopotential frequency approximately
equal to 3.1 MHz. The quantum gates are performed via a two-
photon Raman transition using a pair of counterpropagating
beams from a mode-locked pulsed laser. More information
about the device can be found in Ref. [60].

APPENDIX B: UNITARY TRANSFORMATION
OF PAULI PRODUCT TERMS

To realize T̃k = e−ckhk�τ in quantum circuits, we apply a
unitary transformation

UkckhkU
†
k = −|ck|σ lk

z , lk ∈ {1, . . . , n}, (B1)

which gives us

T̃k = U †
k exp

( − |ck|σ lk
z �τ

)
Uk . (B2)

We will first prove that the unitary gate Uk which satisfies
Eq. (B1), where hk = σ 1

α1
⊗ · · · ⊗ σ n

αn
, can be constructed

with O(n) single-qubit CNOT gates. In fact, there are many
methods to construct such a Uk . Here we will show one
method, which is to decompose Uk into three unitaries:
Uk = V3V2V1.
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TABLE I. Device parameters: ωs
j shows the maximum frequency of Qj ; ω10

j corresponds to the idle frequency of Qj ; ωr
j shows the resonant

frequency of Qj during readout; η j corresponds to the anharmonicity of Qj ; gj, j+1 is the coupling strength between nearest-neighbor qubits;
T1, j and T ∗

2, j represent the relaxation time and coherence time of Qj , respectively; F0, j and F1, j are readout fidelities of Qj in |0〉 and |1〉,
respectively; and Fj, j+1 represents the fidelity of the CZ gate composed of Qi and Qj , which is obtained by randomized benchmarking.

���������Parameter
Qubit

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

ωs
j/2π (GHz) 5.536 5.069 5.660 4.742 5.528 4.929 5.451 4.920 5.540 4.960

ω10
j /2π (GHz) 5.456 4.424 5.606 4.327 5.473 4.412 5.392 4.319 5.490 4.442

ωr
j/2π (GHz) 5.088 4.702 5.606 4.466 5.300 4.804 5.177 4.697 5.474 4.819

η j/2π (GHz) 0.250 0.207 0.251 0.206 0.251 0.203 0.252 0.204 0.246 0.208
gj, j+1/2π (MHz) 12.07 11.58 10.92 10.84 11.56 10.00 11.74 11.70 11.69
T1, j (µs) 20.0 52.5 15.9 16.3 36.9 44.4 30.8 77.7 22.8 25.0
T ∗

2, j (µs) 8.60 1.48 9.11 2.10 12.8 2.73 15.7 1.88 4.49 2.05
F0, j (%) 98.90 98.32 98.67 95.30 97.00 95.47 97.00 96.37 98.33 97.13
F1, j (%) 92.90 92.30 92.97 91.53 86.17 87.93 93.40 93.37 94.63 92.07
Fj, j+1 (%) 94.2 97.8 96.6 97.3 96.8 97.0 94.5 93.2 96.0

Two examples of constructing Uk for five-qubit systems are
shown in Fig. 8. First, we notice that

HσxH = σz, HS†σySH = σz, (B3)

where H is the Hadamard gate and S is the π/4 phase gate,
i.e., S = e−iπσz/4. Thus, we construct V1 by applying H and
HS† on those qubits whose corresponding Pauli matrices are
σx and σy, respectively. Then we have

V1ck
(
σ 1

α1
⊗ · · · ⊗ σ n

αn

)
V †

1 = ckσ
1
γ1

⊗ · · · ⊗ σ n
γn

, (B4)

where γ j = 0 if α j = 0 and γ j = z otherwise.
Next we note that

Ci, j
(
σ i

z ⊗ σ j
z

)
Ci, j = I i ⊗ σ j

z , (B5)

where Ci, j represents the CNOT gate with the ith qubit being
the control qubit and the jth qubit being the target. To con-
struct V2, we first choose an arbitrary l with γl = z and then
apply Cj,l for all j with γ j = z and j �= l . Thus we have

V2V1ck
(
σ 1

α1
⊗ · · · ⊗ σ n

αn

)
V †

1 V †
2 = I⊗l−1 ⊗ ckσ

l
z ⊗ I⊗n−l .

(B6)

FIG. 8. Examples of the construction of Uk in five-qubit systems:
(a) for hk = σ 1

x σ 2
y σ 3

z σ 5
x , with ck < 0, U = V2V1 and UckhkU † =

ckσ
5
z , and (b) for hk = σ 1

y σ 2
x σ 4

z σ 5
z , with ck > 0, U = V3V2V1 and

UckhkU † = −ckσ
2
z . The V1 transforms all Pauli operators into σz; V2

transforms the product of σ ′
z s into a single qubit σz; and V3, if it is not

identity, puts a minus sign on σz.

For the last step, we have

σxσzσx = −σz. (B7)

Therefore, if ck > 0, V3 = σ l
x ; otherwise V3 = I .

By now, we have successfully constructed the unitary gate
Uk which satisfied Eq. (B1) by Uk = V3V2V1, and the max-
imum number of CNOT and single-qubit gates used in this
procedure is 2n + (n − 1) + 1 = 3n, where n is the number
of the qubit.

After the action of Uk , we write the state of work qubits
as Uk |�〉 = a0 |ψ0〉 + a1 |ψ1〉, where |ψ0〉 and |ψ1〉 are the
projections of the work-qubit state on the subspace where the
lkth qubit is |0〉 and |1〉, respectively. Therefore,

|�〉 = a0U
†
k |ψ0〉 + a1U

†
k |ψ1〉 . (B8)

From Eq. (B1) we have

ckhkU
†
k |ψ0〉 = −|ck|U †

k σ lk
z |ψ0〉 = −|ck|U †

k |ψ0〉 , (B9)

which indicates U †
k |ψ0〉 is an eigenstate of ckhk with eigen-

value −|ck|. Similarly, we can show that U †
k |ψ1〉 is an

eigenstate of ckhk with eigenvalue |ck|. Therefore, from
Eq. (B8) we can say that a0 and a1 are the amplitudes of the
projection of |�〉 on the ground-state subspace and excited-
state subspace of ckhk , respectively.

APPENDIX C: COMPLEXiTY OF GPITE

For GPITE, the derivation of the complexity is similar to
the derivation in Sec. III C. The probability of successfully
implementing e−Hk�τ , if following the procedure described in
Sec. IV, is

Pk (�τ ) = |a0|2 +
∑
i=1

|ai|2e−2ωk,i�τ , (C1)

where ai = 〈λk,i|�〉 (i � 0) and ωk,i = λk,i − λk,0 (λk,0 is
the lowest eigenvalue of Hk). Take the approximation of
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Eq. (C1) as

Pk (�τ ) ≈ |a0|2 +
∑
i=1

|ai|2(1 − 2ωk,i�τ )

= 1 − 2�τ
∑
i=1

|ai|2ωk,i

= 1 − 2�τ (〈�τ |Hk|�τ 〉 − λk,0)

≈ exp[−2�τ (〈�τ |Hk|�τ 〉 − λk,0)],

(C2)

and the total success probability after �τ is
approximated by

P(�τ ) ≈
m∏

k=1

Pk (�τ )

= exp

[
−2�τ

(
〈�τ |H|�τ 〉 −

∑
k

λk,0

)]
. (C3)

Here we are approximating that |�〉 is constant during �τ .
Thus the final success probability after imaginary time β is

Pfinal ≈ exp

[
−2

∫ β

0
dτ

(
〈�τ |H|�τ 〉 −

∑
k

λk,0

)]

� exp

[
− 2β

(
E0 −

∑
k

λk,0

)

− (1 − s0)�max

s0�1
(1 − e−2β�1 )

]
, (C4)

where we use Eq. (20) to do the integral. This result gives
us the lower bound (ALB) of the final success probability.
In particular, when Hk = ckhk are Pauli terms, λk,0 = −|ck|,
which turns Eq. (C4) into Eq. (21). We note that when H is
given, the only changeable part in Eq. (27) is

∑
k λk,0. By

increasing this part we can enlarge the success probability.
Furthermore, when using imaginary-time evolution to

determine the ground state, we actually care about the prob-
ability as a function of the error ε = 1 − F instead of β.
Therefore, we connect Eqs. (23) and (C4) and obtain the
relation between the success probability and the output error

PALB �
(

s0

1 − s0

ε

1 − ε

)κ

exp

[
−�max

s0�1

(
1 − s0

1 − ε

)]

= O(εκ ), (C5)

where κ = (E0 − ∑
k λk,0)/�1 is independent of the scale of

Hamiltonian. This indicates that if we hope to obtain the
ground state within an error of ε, the success probability is
supposed to be P = O(εκ ) and we have to repeat the algorithm
1/P times on average to get the desired state.

APPENDIX D: MAPPING THE HAMILTONIAN
OF H2 AND LiH TO QUBITS

A molecule is a many-body system composed of nuclei and
electrons. Its Hamiltonian includes the kinetic energy of each
particle and the Coulomb potential energy between any two of
these particles, written as

H = −
∑

i

1

2Mi
∇2

Ri
−

∑
i

1

2
∇2

ri
−

∑
i, j

Z j

|ri − Rj |2

+
∑
i, j

ZiZ j

|Ri − Rj |2 +
∑
i, j

1

|ri − r j |2 , (D1)

in atomic units, where Mi, Zi, Ri, and ri are the masses,
charges, positions of nuclei, and positions of electrons, respec-
tively. We first apply the Born-Oppenheimer approximation,
which assumes the nuclear coordinates are parameters rather
than variables. Then the Hamiltonian is projected onto a cho-
sen set of orbitals. Here we choose the standard Gaussian
STO-3G basis [49] and rewrite the Hamiltonian in the second-
quantized form

H =
∑

i j

ui ja
†
i a j +

∑
i jkl

ui jkl a
†
i a†

j akal + · · · , (D2)

where a†
i and a j are the creation and annihilation operators of

particle in the ith and jth orbitals, respectively, and the ellipsis
represents the high-order interactions.

To map the fermionic Hamiltonian to the qubit Hamilto-
nian, we use the Jordan-Wigner transformation (JWT), which
could transform the creation and annihilation operators into
Pauli matrices. Under the JWT, the state of the jth qubit
|0〉 or |1〉 corresponds to the jth orbital being unoccupied or
occupied, respectively.

For H2 molecules, we use the method described in Supple-
mental Material of Ref. [50] to get the qubit Hamiltonian with
two qubits, which is written as

HH2 = c0 + c1σ
1
z + c1σ

2
z + c2σ

1
z σ 2

z + c3σ
1
x σ 2

x . (D3)

The exact coefficients used in our work are shown in Table II.

TABLE II. Coefficients in the H2 Hamiltonian at different interatomic distances R.

R (Å) c0 c1 c2 c3

0.35 7.01273 × 10−1 −7.47416 × 10−1 1.31036 × 10−2 1.62573 × 10−1

0.45 2.67547 × 10−1 −6.33890 × 10−1 1.27192 × 10−2 1.66621 × 10−1

0.55 −1.83734 × 10−2 −5.36489 × 10−1 1.23003 × 10−2 1.71244 × 10−1

0.65 −2.13932 × 10−1 −4.55433 × 10−1 1.18019 × 10−2 1.76318 × 10−1

0.75 −3.49833 × 10−1 −3.88748 × 10−1 1.11772 × 10−2 1.81771 × 10−1

0.85 −4.45424 × 10−1 −3.33747 × 10−1 1.04061 × 10−2 1.87562 × 10−1

1.05 −5.62600 × 10−1 −2.48783 × 10−1 8.50998 × 10−3 1.99984 × 10−1

1.25 −6.23223 × 10−1 −1.86173 × 10−1 6.45563 × 10−3 2.13102 × 10−1

1.45 −6.52661 × 10−1 −1.38977 × 10−1 4.59760 × 10−3 2.26294 × 10−1
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TABLE III. The LiH Hamiltonian at bound distance, as well as the grouping of the Pauli terms used in generalized PITE.

k ck hk Hk′ k ck hk Hk′

1 −7.35094 1 33 −1.49854 × 10−3 σ 2
x σ 3

z σ 4
x σ 5

z H13

2 −1.58950 × 10−1 σ 1
z H1 34 −1.49854 × 10−2 σ 2

y σ 3
z σ 4

y σ 5
z H13

3 −1.58950 × 10−1 σ 2
z H1 35 1.13678 × 10−2 σ 1

x σ 2
z σ 3

x σ 6
z H14

4 7.82811 × 10−2 σ 1
z σ 2

z H1 36 1.13678 × 10−2 σ 1
y σ 2

z σ 3
y σ 6

z H14

5 −1.45795 × 10−1 σ 3
z H2 37 −1.17598 × 10−3 σ 1

z σ 2
x σ 3

z σ 4
x H15

6 −1.45795 × 10−1 σ 4
z H2 38 −1.17598 × 10−3 σ 1

z σ 2
y σ 3

z σ 4
y H15

7 8.51132 × 10−2 σ 3
z σ 4

z H2 39 3.56300 × 10−3 σ 1
x σ 2

z σ 3
x σ 5

z H16

8 2.96723 × 10−2 σ 5
z H3 40 3.56300 × 10−3 σ 1

y σ 2
z σ 3

y σ 5
z H16

9 2.96723 × 10−2 σ 6
z H3 41 3.56300 × 10−3 σ 2

x σ 3
z σ 4

x σ 6
z H17

10 1.24302 × 10−1 σ 5
z σ 6

z H3 42 3.56300 × 10−3 σ 2
y σ 3

z σ 4
y σ 6

z H17

11 5.36162 × 10−2 σ 1
z σ 3

z H4 43 −1.03458 × 10−2 σ 1
x σ 2

x σ 3
y σ 4

y H18

12 6.03396 × 10−2 σ 3
z σ 5

z H4 44 −1.03458 × 10−2 σ 1
y σ 2

y σ 3
x σ 4

x H18

13 6.28713 × 10−2 σ 1
z σ 5

z H4 45 1.03458 × 10−2 σ 1
x σ 2

y σ 3
y σ 4

x H18

14 5.64568 × 10−2 σ 1
z σ 4

z H5 46 1.03458 × 10−2 σ 1
y σ 2

x σ 3
x σ 4

y H18

15 6.03396 × 10−2 σ 4
z σ 6

z H5 47 −2.84063 × 10−3 σ 3
x σ 4

x σ 5
y σ 6

y H19

16 6.87743 × 10−2 σ 1
z σ 6

z H5 48 −2.84063 × 10−3 σ 3
y σ 4

y σ 5
x σ 6

x H19

17 5.36162 × 10−2 σ 2
z σ 4

z H6 49 2.84063 × 10−3 σ 3
x σ 4

y σ 5
y σ 6

x H19

18 6.87743 × 10−2 σ 2
z σ 5

z H6 50 2.84063 × 10−3 σ 3
y σ 4

x σ 5
x σ 6

y H19

19 7.06853 × 10−2 σ 4
z σ 5

z H6 51 −5.90301 × 10−3 σ 1
x σ 2

x σ 5
y σ 6

y H20

20 5.64568 × 10−2 σ 2
z σ 3

z H7 52 −5.90301 × 10−3 σ 1
y σ 2

y σ 5
x σ 6

x H20

21 6.28713 × 10−2 σ 2
z σ 6

z H7 53 5.90301 × 10−3 σ 1
x σ 2

y σ 5
y σ 6

x H20

22 7.06853 × 10−2 σ 3
z σ 6

z H7 54 5.90301 × 10−3 σ 1
y σ 2

x σ 5
x σ 6

y H20

23 −1.49854 × 10−3 σ 1
x σ 3

x H8 55 −4.73898 × 10−3 σ 2
x σ 3

x σ 5
x σ 6

x H21

24 −1.49854 × 10−3 σ 1
y σ 3

y H8 56 −4.73898 × 10−3 σ 2
y σ 3

y σ 5
y σ 6

y H21

25 1.13678 × 10−2 σ 2
x σ 4

x H9 57 −4.73898 × 10−3 σ 2
x σ 3

y σ 5
y σ 6

x H21

26 1.13678 × 10−2 σ 2
y σ 4

y H9 58 −4.73898 × 10−3 σ 2
y σ 3

x σ 5
x σ 6

y H21

27 1.04793 × 10−2 σ 1
x σ 2

z σ 3
x H10 59 −4.73898 × 10−3 σ 1

x σ 2
z σ 3

z σ 4
x σ 5

y σ 6
y H22

28 1.04793 × 10−2 σ 1
y σ 2

z σ 3
y H10 60 −4.73898 × 10−3 σ 1

y σ 2
z σ 3

z σ 4
y σ 5

x σ 6
x H22

29 1.04793 × 10−2 σ 2
x σ 3

z σ 4
x H11 61 4.73898 × 10−3 σ 1

x σ 2
z σ 3

z σ 4
y σ 5

y σ 6
x H22

30 1.04793 × 10−2 σ 2
y σ 3

z σ 4
y H11 62 4.73898 × 10−3 σ 1

y σ 2
z σ 3

z σ 4
x σ 5

x σ 6
y H22

31 −1.17598 × 10−3 σ 1
x σ 2

z σ 3
x σ 4

z H12

32 −1.17598 × 10−3 σ 1
y σ 2

z σ 3
y σ 4

z H12

For LiH molecules, we assume perfect filling of the two
innermost 1s spin orbitals of Li and define the Hamiltonian
on the basis of the 2s and 2px orbitals that are associated
with Li and the 1s orbitals that are associated with H, for a
total of six spin orbitals. After the JWT, we obtain a six-qubit
Hamiltonian. We explicitly list the LiH Hamiltonian at the
bound distance in Table III.

APPENDIX E: FINDING THE GROUND STATE OF H2 ON
THE SUPERCONDUCTING AND TRAPPED ION QPU

The two-qubit H2 Hamiltonian (D3) contains four non-
identity terms, each corresponding to a nonunitary evolution
operator when we apply the PITE,

T̃1 = exp
( − c1σ

1
z �τ

)
,

T̃2 = exp
( − c1σ

2
z �τ

)
,

T̃3 = exp
( − c2σ

1
z σ 2

z �τ
)
,

T̃4 = exp
( − c3σ

1
x σ 2

x �τ
)
.

(E1)

In the tasks, we need to apply T̃1, T̃2, T̃3, and T̃4 on the work
qubits in turn, as a cycle. At the end of each cycle, we need

to measure the energy expectation value to show its conver-
gence. We use the four types of quantum circuits shown in
Figs. 9(a)–9(d) to implement T̃k with k = 1, 2, 3, 4, respec-
tively. These circuits are composed of the following parts.

(i) Blue blocks show U and U †, which correspond to Uk

and U †
k in Fig. 1.

(ii) Orange blocks show the controlled-Ry gate, which cor-
responds to the controlled-Ry gate in Fig. 1.

(iii) Green blocks show the basis transformation. Theo-
retically, the quantum state in the experiments has the form
cos(φ/2) |00〉 − sin(φ/2) |11〉, where 0 < φ < π , and usu-
ally φ is around the order of 10−3–10−2, the same as the
measurement error. If we directly measure the work qubits
on the ZZ basis, the probability of obtaining |11〉 would
be significantly affected by the error. Therefore, we apply
a basis transformation before the tomography, after which
the state becomes cos(φ/2)−sin(φ/2)√

2
|00〉 + cos(φ/2)+sin(φ/2)√

2
|10〉.

Measuring the first qubit leads to 0 with probability of
p0 = [cos(φ/2) − sin(φ/2)]2/2 = (1 − sin φ)/2 and to 1
with probability of p1 = (1 + sin φ)/2. Here p0 and p1 are
around 0.4–0.6, much bigger than the measurement error and
less affected by the error.
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FIG. 9. Quantum circuits for applying PITE on H2 molecules on
the quantum cloud platforms, with the nonunitary evolution opera-
tors (a) T̃1, (b) T̃2, (c) T̃3, and T̃4. The quantum gates with dashed
lines cancel each other out, so they are not carried out in the tasks.

(iv) White blocks show preparation and tomography. At
the end of a Trotter step, we tomograph the quantum state of
work qubits after basis transformation. Then we calculate the
proper state numerically by reversing the basis transformation
and prepare the state in the next quantum circuit as the input
state. As the state only evolves in the real-coefficient subspace
spanned by |00〉 and |11〉, the preparation only requires an
Ry gate and a CNOT gate. The angular parameter φ of Ry
can be obtained from the tomography result. Specifically, as
we discussed in the preceding paragraph, we have sin φ =
2p1 − 1 = 1 − 2p0 = p1 − p0. Each tomography is repeated
three times (with 2000 shots on superconducting QPUs and
1000 shots on trapped ion QPUs for each time). We calculate
φ for each time and take their average value as the input

FIG. 11. Numerical simulation results of LiH and quantum Ising
chain obtained from the PITE algorithm. (a) Energy values of LiH
as a function of β. (b) Fidelity values of LiH as a function of β.
The results in (a) and (b) are obtained at a fixed interatomic distance
R = 2.0 Å. (c) Energy values of the Ising chain as a function of β.
(d) Fidelity values of the Ising chain as a function of β. For the
Ising chain, the parameters are chosen as n = 10, J = 1, g = 1.2, and
h = 0.3. The black lines in (a) and (c) represent the exact ground-
state energies obtained by diagonalization. The red dashed lines in
[(a)–(d)] are results of exact imaginary-time evolution.

parameter of the next Trotter step. For the first Trotter step, the
input state is simply |�HF〉 = |00〉, i.e., the input parameter
φ = 0. In addition, after the tomography of the T̃4 circuit,
we also use the proper state to calculate the energy value
〈E〉 = 〈�|HH2 |�〉.

APPENDIX F: NUMERICAL SIMULATIONS USING
GENERALIZED PITE

For the quantum Ising cyclic chain, we rewrite its Hamil-
tonian as H = ∑n

k=1 Hk , with

Hk = −(
σ k

z σ k+1
z + gσ k

x + hσ k
z

)
(F1)

in the case where J = 1. Thus every Hk is a local operator
acting on the kth and (k + 1)th qubits. We can write the matrix

|0⟩

work qubit k

ancillary qubit  |0⟩

U[k]

work qubit k+1

controlled rotation gate U[k]†

Ry (φ1) Ry (φ2)

Ry (θ1) Ry (θ2) Ry (θ3)

Ry (-φ2) Ry (-φ1)

FIG. 10. Quantum circuit that implements e−Hk�τ for solving the quantum Ising model.
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FIG. 12. Success probabilities of PITE in numerical simulations of LiH molecules and the quantum Ising chain. (a) Success probability of
LiH as a function of the imaginary time β. (b) Success probability of LiH as a function of the output fidelity error ε. (c) Success probability of
the Ising chain as a function of β. (d) Success probability of the Ising chain as a function of the output fidelity error ε. In (b) and (d) the initial
states are at the top right side of the figures and evolve toward the bottom left side. For LiH, the RLBs and ALBs are calculated without the
identity term of the Hamiltonian.

form of Hk in the two-qubit computational basis

Hk = −

⎛
⎜⎜⎝

1 + h 0 g 0
0 −1 + h 0 g
g 0 −1 − h 0
0 g 0 1 − h

⎞
⎟⎟⎠. (F2)

Its eigenvalues are λ0,3 = ∓
√

g2 + (h + 1)2 and λ1,2 =
∓

√
g2 + (h − 1)2 and the corresponding eigenstates |λ0,1,2,3〉

are also known. Following the procedure given in Sec. IV, we
can use the quantum circuit shown in Fig. 10 to implement
e−Hk�τ , and the angles of the rotation gates are

φ1 = cos−1 1 − h√
g2 + (h − 1)2

,

φ2 = cos−1 −1 − h√
g2 + (h + 1)2

,

θi = 2 cos−1(e−�τ (λi−λ0 ) ), i = 1, 2, 3. (F3)

For the LiH molecule, the Hamiltonian has 62 Pauli terms
(including the identity term). After neglecting the identity, we
rearrange the other 61 terms and group them into 22 sets,
with each set corresponding to a Hk′ as in the generalized
PITE algorithm. When doing this, we follow the guidance of
increasing

∑
k λk,0 (see details in Appendix C) and the prin-

ciple that the eigensystems of every Hk should be efficiently
known through classical computation. The grouping of the
Pauli terms in the LiH Hamiltonian at its bound distance is

shown in Table III, and the same grouping strategy is em-
ployed for other interatomic distances.

APPENDIX G: SIMULATION OF NOISES
IN QUANTUM CIRCUITS

The quantum noise is described by the quantum channel

E (ρ) =
∑

ν

ÊνρÊ†
ν , (G1)

where ρ is the density matrix of the system and Êν are Kraus
operators, satisfying ∑

ν

Ê†
ν Êν = I. (G2)

For a single qubit in a quantum circuit, the main sources
of quantum noise are qubit relaxation and dephasing, which
correspond to the three Kraus operators shown in Eq. (11). For
n-qubit cases, the number of Kraus operators is 3n, and each
Kraus operator can be described by Êν ′ ∈ {Ê1, Ê2, Ê3}⊗n.

Moreover, we use another model of quantum noise. We
consider all single-qubit gates as a rotation operation with
respect to an axis, and the error is described as a random
noise of the rotation angle which satisfies a normal distri-
bution with the standard deviation e1. For two-qubit gates,
we consider their constructions as sequences of single-qubit
gates and controlled-Z (CZ) gates. With a random noise, the
CZ gate will become a C-phase gate whose matrix form is
diag(1, 1, 1, eiφ ), where φ satisfies a normal distribution with
the expectation value π and the standard deviation e2. Using
this model, we simulate the PITE algorithm in the cases of
LiH molecules and the Ising chain. Figures 11 and 12 show
the results of the simulation.
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tum evolution, Quantum 5, 577 (2021).

[23] Z. Holmes, G. Muraleedharan, R. D. Somma, Y. Subasi, and
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