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The quantification of state-based quantum “resources” such as entanglement, coherence, and nonstabilizer
states lies at the heart of quantum science and technology, providing potential advantages over classical methods.
In a realistic scenario, due to the imperfections and uncertainties in physical devices, we are unable to perfectly
prepare or detect the true quantum states. Consequently, it is necessary to study the quantification of quantum
resources under such circumstances. In this work, by focusing on the state-based quantum resource theory, we
introduce a family of resource measures called ε measure that relies on a precision parameter to address this
issue. This family of resource measures inherits the fundamental properties of the original resource measure,
such as weak monotonicity, convexity, monogamy, and so forth. Furthermore, the ε measure remains continuous
irrespective of whether the original measure is continuous or not. We also investigate the ε measure of distance-
based resource quantifiers, and some interesting properties are presented. As part of the applications, we derived
several formulas for the ε measure of coherence, nonstabilizerness, asymmetry, nonuniformity, and imaginarity.
Additionally, we offered an upper bound for the ε measure of the resource rank. Finally, we outline how this
work can be extended to channel-based resources among others.
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I. INTRODUCTION

Quantum resource theories (QRTs) provide a highly versa-
tile and powerful framework for exploring various phenomena
in quantum physics [1–15]. They involve the examination
and analysis of the available resources in quantum systems
and how these resources can be harnessed for specific quan-
tum tasks. Quantum resources encompass various aspects,
including entanglement [7,11,16], coherence [8], and non-
stabilizer states [10,17–19], among others. These resources
play a pivotal role in enabling quantum computation [10,20–
22], quantum communication [23], and quantum information
processing [5,24,25]. In general, depending on the nature
of the research focus, a QRT can be divided into two cat-
egories: static QRT and dynamical QRT. The study object
of static QRT is quantum states, hence, it is also referred
to as state-based QRT. On the other hand, dynamical QRT
covers various scenarios, including quantum channel [26,27],
quantum incompatibility [28,29], and measurement sharpness
[30,31], and more [32]. This article primarily investigates
state-based QRT, and unless explicitly stated otherwise, any
reference to QRT in the text refers to state-based QRT. A QRT
is characterized by a set of free states and a corresponding set
of free operations that preserve the free states. States that do
not belong to the set of free states are considered to possess
resources [2]. For example, in the QRT of entanglement, the
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free states can be considered as separable states, and the free
operations are local operation and classical communication
(LOCC). This leads to two fundamental problems in QRTs:
quantification and conversion of resources [33,34]. The goal
of resource quantification is to quantify the amount of the
resource in a quantum state. The conversion of resources
is asking whether one resource state can be converted into
the other state via a free operation. There is also a pro-
found connection between these two problems: Intuitively,
a quantum state with a larger “resource quantity” is more
valuable and can be transformed into a greater variety of
other quantum states via free operations. For example, in
the QRTs of entanglement, accessible entanglement charac-
terizes the proficiency of a state to generate other states via
LOCC, whereas the source entanglement characterizes the set
of states that can be reached via LOCC acting on the given
state of interest [35]. This type of quantifier has also been
studied in the context of QRT of coherence [36]. In this paper,
we propose ε measure of QRT which depends on a precision
parameter ε, following the logistics given in Refs. [37,38].
Differing from the one presented in Refs. [37,38] solely on
specific quantum resources like entanglement and coherence,
this work explores ε measure within a broader framework of
general QRTs: any QRT admitting the tensor-product struc-
ture assumption, as elaborated later. Within this framework,
we investigate some fundamental properties and applications
of the ε measure. It is worth noting that this framework not
only encompasses quantum resources like entanglement and
coherence but also extends to other quantum resources such as
asymmetry [39,40], nonstabilizerness, imaginarity [14,41,42],
nonuniformity [43,44], and more. Additionally, there are three
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reasons we introduce ε measure of QRT. First, the most
fundamental state transformation in a QRT is the one-shot
convertibility, which involves converting one resource state to
another using the free operations of the theory [33,34]. How-
ever, in the most QRTs, it is generally not possible to achieve
a perfect transformation of one specific state to another using
only the free operations, or vice versa. Therefore, it becomes
crucial to characterize the ability to efficiently distill resource
states from prepared states or dilute a unit resource state to the
target state. As demonstrated in the main results, we show that
the ε measure of QRT can be utilized in the one-shot scenario
to provide a lower bound on the one-shot dilution cost of QRT.
The second reason is that, realistically, any physical apparatus
for quantum information processing can only achieve a certain
degree of precision and reliability. In this realistic scenario,
we need to estimate the amount of resource in a state that
is only partially known [45,46]. To address this issue, when
considering a resource measure R, we can assume that the
amount of resource of the output state ρ̃ is related to the
true state ρ through a parameter ε, which depends on the
realistic processing. Thus, in order to estimate the true amount
R(ρ), we utilize the ε measure Rε , which is guaranteed to be
present in the system, given that the output state ρ̃ has some
approximation ε. Mathematically, Rε quantifies the minimum
guaranteed amount of resource, under the condition that the
state ρ̃ which has been prepared is within a distance ε from
some state ρ. The third reason for introducing the ε measure
of QRT is that resource measures do not necessarily require
smoothness. This can be exemplified by the resource measure
called logarithmic robustness Rlr, which can be defined as [47]

Rlr(ρ) = inf
σ∈F

Dmax(ρ||σ ), (1)

where F is the set of free states and Dmax(ρ||σ ) =
log2 min{λ|ρ � λσ } is the max-relative entropy [48]. The lack
of smoothness in logarithmic robustness primarily stems from
the inherent discontinuity of the max-relative entropy. For
instance, consider two quantum states [49]:

ρ = (
1
2 − ε

)|0〉〈0| + 1
2 |1〉〈1| + ε|2〉〈2|,

σ = 1
2 |0〉〈0| + 1

2 |1〉〈1|.
It is easy to see from the definition of max-relative entropy
that when ε ∈ (0, 1

2 ], Dmax(ρ||σ ) = +∞, while for ε = 0,
Dmax(ρ||σ ) = 0. As discussed before, in a realistic scenario,
preparing a physical system in a state ρ inevitably introduces
some error, causing a small discrepancy (in terms of some
distance) between the expected state ρ and the actually pre-
pared state with some small ε > 0. Therefore, discontinuous
resource measures may lack practical physical significance
without undergoing a smoothing process. Hence, the introduc-
tion of the ε measure Rε becomes necessary to overcome these
issues. Moreover, the ε measure Rε inherits the fundamental
properties of the original resource measure R, such as weak
monotonicity, convexity, monogamy, and so forth. This paper
is organized as follows. In Sec. II, we first introduce the neces-
sary notation and definitions we need. In Sec. III, we provide
our main results. In Sec. IV, we present some examples as
applications. Specifically, we derive several formulas for the
ε measure of QRT and provide an upper bound for the ε

measure of the resource rank. We outline how the our results

can be extended to the channel-based resource in Sec. V. We
summarize our results in Sec. VI.

II. ε MEASURE OF QRT

We begin by introducing the framework of QRT of quan-
tum states, in which quantum states are the central objects
under study. We consider a Hilbert space H of finite dimen-
sion d . The density matrix space in H is denoted as D(H).
We use the 2-tuple R = (F ,O) to denote a QRT, the set of
free states is denoted by F , and the set of free operations is
denoted by O. They are subsets of quantum states and quan-
tum channels [completely positive trace-preserving (CPTP)
maps], respectively, and are considered to be accessible for
free within a given framework. The basic two requirements
for a functional R : D(H) → R+ being a resource measure
for (F ,O) are [1,2] as follows:

[A1] (Non-negativity): R(ρ) � 0 and the equality holds
if and only if ρ ∈ F . [A2] (Weak monotonicity): R(ρ) �
R(�(ρ)), where � ∈ O is a CPTP map.

[A1] and [A2] are the minimal requirements of a QRT, in
practice there are other natural properties that one might desire
in a QRT:

[A3] (Strong monotonicity): R(ρ) � ∑
k pkR(�k (ρ)/pk ),

where � = ∑
k �k ∈ O with �ks are CP trace nonincreasing

maps and pk = Tr[�k (ρ)].
[A4] (Convexity):

∑
k pkR(ρk ) � R(

∑
k pkρk ) for any en-

semble {pk, ρk}.
In practical terms, one may have additional desirable prop-

erties in a QRT. These can be most evidently grouped together
under what we will call a tensor-product structure. A QRT
admits a tensor-product structure if the following two free
operations are allowed [1,2]:

[B1] (Appending free states): Appending a free state is a
free operation, i.e., for any state σ ∈ F , the operation �(ρ) =
ρ ⊗ σ is a free operation.

[B2] (Discarding a system): Discarding a system is a free
operation, i.e., the partial trace TrB(ρAB) = ρA is a free oper-
ation from HAB to HA.

Remark. Most of the physically motivated and previously
studied QRTs admit a tensor-product structure, such as the
QRTs of entanglement [11], coherence [9], asymmetry [50],
nonstabilizerness [10], imaginarity [14,41,42], and athermal-
ity [13,51]. However, there are less intuitive but still important
QRTs that do not possess a tensor-product structure, such
as superactivation of quantum nonlocality [52]. The distance
function D serves as a crucial tool in quantum information the-
ory [53]. The distance must fulfill non-negativity, symmetry,
and the triangle inequality. While certain functions may not
meet these fundamental distance conditions, they are exten-
sively utilized in information theory, such as relative entropy
S(ρ||σ ). In this paper, we impose an additional condition on
the distance D-convexity or joint convexity, i.e.,

D

(∑
i

piρi,
∑

i

piσi

)
�

∑
i

piD(ρi, σi ), (2)

where pi � 0 and
∑

i pi � 0. In quantum information theory,
it is crucial for the distance D to be contractive under CPTP
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maps [53]:

D(�(ρ),�(σ )) � D(ρ, σ ). (3)

Now, we will introduce the ε measure of QRT:
Definition 1 (ε measure of QRT). For any resource mea-

sure R, the ε measure of QRT of ρ ∈ D(H) is defined as

R(D)
ε (ρ) = inf

{
R(σ )|σ ∈ B(D)

ε (ρ)
}
, (4)

where B(D)
ε (ρ) = {σ ∈ D(H)|D(ρ, σ ) � ε} is the ε-Ball of ρ,

and D is the distance between two quantum states ρ and σ .
Note that the distance and the resource measure function

may coincide, or they may diverge. Consequently, we will
refrain from using the superscript D to prevent potential con-
fusion. In essence, the ε measure of the resource, denoted as
Rε , characterizes the smallest quantity of resource ensured to
exist within an ε-Ball centered on the specified quantum state
ρ. This approach furnishes a method to acquire a continuous
function, even in cases where the original measure R lacks this
property.

III. MAIN RESULTS

A. Properties

In this section, we will study some properties of ε measure
of QRT.

Proposition 1. For any resource measure R, the ε measure
Rε is also a resource measure.

Proof. First, we observe that for any ρ ∈ F , 0 � Rε (ρ) �
R(ρ) = 0. Second, σ ∗ is the optimal solution of Eq. (4), as
R(σ ∗) � R[�(σ ∗)] which implies that

Rε (ρ) = R(σ ∗)

� R[�(σ ∗)]

� inf
{
R(σ )|σ ∈ B(D)

ε [�(ρ)]
}

= Rε[�(ρ)].

The second inequality hold is due to the contractive
of distance D: ε � D(ρ, σ ) � D(�(ρ),�(σ )) ⇒ �(σ ) ∈
B(D)

ε [�(ρ)]. �
The requirement for the distance D to be contractive un-

der CPTP maps is a crucial property for Rε satisfying the
minimal requirements ([A1] and [A2]) to be a ε measure, as
demonstrated in Refs. [37,38]. Convexity is another essential
property for any resource measure. The following proposition
demonstrates that the requirement for the distance D to be
jointly convex is crucial for Rε to satisfy condition [A4]:

Proposition 2. For any convex resource measure R(ρ), the
ε measure Rε (ρ) is also a convex measure for any jointly
convex distance D.

Proof. Let σ ∗
1 ∈ B(D)

ε (ρ1) and σ ∗
2 ∈ B(D)

ε (ρ2) be the optimal
solution of Rε (ρ1) and Rε (ρ2), respectively. Then the follow-
ing equality holds:

pRε (ρ1) + (1 − p)Rε (ρ2) = pR(σ ∗
1 ) + (1 − p)R(σ ∗

2 )

(a)
� R[pσ ∗

1 + (1 − p)σ ∗
2 ]

(b)
� Rε[pρ1 + (1 − p)ρ2].

Here, (a) is a result of the convexity of R, and (b) is due to the
following equality: D(pρ1 + (1 − p)ρ2, pσ ∗

1 + (1 − p)σ ∗
2 ) �

pD(ρ1, σ
∗
1 ) + (1 − p)D(ρ2, σ

∗
2 ) � ε. �

Common distance functions satisfying jointly convexity in-
clude trace distance [54], squared Bures distance [55], squared
Hellinger distance [55], etc. Note that the relative entropy is
also jointly convex. Strong monotonicity is another desired
property for any resource measure. The following result shows
that even if R satisfies strong monotonicity, Rε may not neces-
sarily satisfy strong monotonicity.

Proposition 3. R satisfies the [A3] � Rε satisfies the [A3].
Proof. Let us consider a state ρ = pσ ⊗ |0〉〈0| + (1 −

p)τ ⊗ |1〉〈1|, where Rε (σ ) > 0 and τ ∈ F . Without loss of
generality, we assume that D is convex. For p � ε

D(σ,τ ) , we
have

D(ρ, τ ⊗ |1〉〈1|)
(a)
� pD(σ ⊗ |0〉〈0|, τ ⊗ |1〉〈1|)
(b)
� pD(σ, τ )
(c)
� ε.

Here, (a) is due to the convexity of D, (b) is due to the
condition [B2], and (c) follows from p � ε

D(σ,τ ) . This implies
Rε (ρ) = 0 [since 0 � Rε (ρ) � Rε (τ ⊗ |1〉〈1|) � Rε (τ ) = 0].
Therefore, for the state ρ, we have pRε (σ ⊗ |0〉〈0|) + (1 −
p)Rε (τ ⊗ |1〉〈1|) = pRε (σ ) > 0 = Rε (ρ). �

In general, it is challenging to verify whether a resource
measure satisfies strong monotonicity. However, a property
called flag additivity can simplify this problem. For example,
in the QRT of coherence, directly verifying coherence based
on trace distance is difficult [56]. Nonetheless, leveraging flag
additivity allows for a direct demonstration that coherence
based on trace distance does not satisfy strong monotonicity
[15,57,58]. Therefore, it is necessary to investigate whether Rε

satisfies flag additivity. The flag additivity can be defined as

R

(
d∑

i=1

piρ
A
i ⊗ |ψi〉〈ψi|B

)
=

d∑
i=1

piR
(
ρA

i

)
. (5)

The equation above holds for the “flag basis” {|ψi〉〈ψi|} which
satisfies (i) |ψi〉 ∈ F for i ∈ [d], and (ii) the projective mea-
surement {|ψi〉〈ψi|} ∈ O for i ∈ [d]. In Ref. [15], the authors
have demonstrated that for any resource measure R, the flag
additivity holds if and only if [A3] and [A4] hold. Thus, as
a direct corollary of Proposition 3, even if R satisfies flag
additivity, Rε may not necessarily satisfy flag additivity.

Remark. As demonstrated in Appendix A, any QRT admits
tensor-product structure, the resource measure of QRT which
is based on quantum relative Rényi entropy Dα , sandwiched
Rényi entropy D̃α , and relative entropy S(ρ||σ ) satisfies the
flag additivity, where α ∈ [1, 2]. Furthermore, we provide an
illustrative example to showcase the practical application of
flag additivity in Appendix A. While Rε does not satisfy flag
additivity, it adheres to the following equation as a resource
measure:

Rε (ρA ⊗ σB) = Rε (ρA), (6)

where σB ∈ F . This is a result of Rε (ρA)
[B1]
� Rε (ρA ⊗ σB)

[B2]
�

Rε (ρA). Therefore, Eq. (6) can be interpreted as a “weak”
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form of flag additivity that holds for any resource measure.
Subadditivity is an important property for resource measures
in quantum information theory, playing a crucial role in the
analysis of many information processing processes [59–62].
A resource measure R is subadditive if R(ρ) + R(σ ) �
R(ρ ⊗ σ ) holds for any ρ, σ ∈ D(H). For any convex QRT
[a QRT R = (F ,O) is convex if O is convex. The QRT
of entanglement, coherence, asymmetry, and athermality are
all convex], which admits a tensor-product structure, the re-
source measures of QRT based on quantum relative Rényi
entropy Dα , sandwiched Rényi entropy D̃α , and relative en-
tropy S(ρ||σ ) satisfy subadditivity, where α ∈ [1, 2] [1]. In
general, the subadditivity of R does not imply the subad-
ditivity of Rε . However, the following result shows that Rε

exhibits a “weak” subadditivity, where subadditivity of R can
be obtained by setting ε to 0.

Proposition 4. If R is a subadditive resource measure, then
for any ε = ε1 + ε2 (ε1, ε2 � 0), Rε satisfies the following:

Rε1 (ρ1) + Rε2 (ρ2) � Rε (ρ1 ⊗ ρ2). (7)

Here, the distance D considered for B(D)
ε (ρ) is the purified dis-

tance D(ρ, σ ) = P(ρ, σ ) :=
√

1 − F 2(ρ, σ ) with F (ρ, σ ) :=
Tr|√ρ

√
σ | being fidelity [63].

Proof. First, note that D(ρ, σ ) =
√

1 − F 2(ρ, σ ) �
ε ⇐⇒ F 2(ρ, σ ) � 1 − ε2. Then, we have

F 2(ρ1 ⊗ ρ2, σ1 ⊗ σ2) = F 2(ρ1, σ1)F 2(ρ2, σ2)

�
(
1 − ε2

1

)(
1 − ε2

2

)
= 1 − (

ε2
1 + ε2

2

) + ε2
1ε

2
2

� 1 − (ε1 + ε2)2,

which implies D(ρ1 ⊗ ρ2, σ1 ⊗ σ2) � ε = ε1 + ε2. Then, let
σ ∗

1 ∈ B(D)
ε1

(ρ1) and σ ∗
2 ∈ B(D)

ε2
(ρ2) be the optimal solutions of

Rε1 (ρ1) and Rε2 (ρ2), respectively. The following inequality
holds:

Rε1 (ρ1) + Rε2 (ρ2) = R(σ ∗
1 ) + R(σ ∗

2 )

(a)
� R(σ ∗

1 ⊗ σ ∗
2 )

(b)
� inf

σ∈B(D)
ε (ρ1⊗ρ2 )

R(σ )

= Rε (ρ1 ⊗ ρ2),

where (a) is the result of the subadditivity of R, and (b) is due
to D(ρ1 ⊗ ρ2, σ

∗
1 ⊗ σ ∗

2 ) � ε = ε1 + ε2. �
Next, we will investigate the continuity of the resource

measure. First, we present the following proposition:
Proposition 5. Let D be a convex distance and R be a

convex and bounded functional. For any two quantum states
ρ1 and ρ2 with distance D(ρ1, ρ2) = η. Let Rεi (ρi ) = R(σi )
for i = 1, 2, and consider the state τλ = (1 − λ)ρ1 + λσ2 with
0 � λ � ε1

ε1+η
. We have the following relation:

Rε1 (ρ1) − Rε2 (ρ2) � (1 − λ)[R(ρ1) − Rε2 (ρ2)]. (8)

Proof. Since D is a convex distance, for the state τλ, we
have

D(ρ1, τλ) = D(ρ1, (1 − λ)ρ1 + λσ2)

� λD(ρ1, σ2)

� λD(ρ1, ρ2) + D(ρ2, σ2)

� λ(η + ε2)

� ε1,

where we have used the triangle inequality in the second
inequality and in the final equality, we have the condition
0 � λ � ε1

ε1+η
. Consequently, the following inequality holds:

Rε1 (ρ1) � R(τλ)

� (1 − λ)R(ρ1) + λR(σ2)

= (1 − λ)R(ρ1) + λRε2 (ρ2). (9)

This implies

Rε1 (ρ1) − Rε2 (ρ2) � (1 − λ)[R(ρ1) − Rε2 (ρ2)]. (10)

�
As a by-product of the above proposition, we obtain the

following two corollaries.
Corollary 1. If ε1 = ε2 = ε and ρ1 �= ρ2, let λ = ε

ε+η
.

Then

Rε (ρ1) − Rε (ρ2) � η

η + ε
[R(ρ1) − Rε (ρ2)]. (11)

Furthermore, if D(ρ1, ρ2) = η → 0, |Rε (ρ1) − Rε (ρ2)| → 0.
Proof. In order to complete our proof, we only need to

show the lower bound of Eq. (11) tends to 0 as η → 0. Note
that we can exchange the role of ρ1 and ρ2 in Eq. (11). Then,
we have

Rε (ρ1) − Rε (ρ2) � − η

η + ε
[R(ρ2) − Rε (ρ1)]. (12)

Let M = max{R(ρ1) − Rε (ρ2), R(ρ2) − Rε (ρ1)}, then
|Rε (ρ1) − Rε (ρ2)| � η

η+ε
M → 0 as η → 0. �

This indicates that the ε measure of QRT is always con-
tinuous regardless of whether the original convex resource
measure function is continuous with respect to the density
matrix ρ.

Corollary 2. If ρ1 = ρ2 = ρ and ε2 � ε1 > 0, let λ = ε1
ε2

.
Then

Rε1 (ρ) − Rε2 (ρ) � ε2 − ε1

ε2
[R(ρ) − Rε2 (ρ)]. (13)

Furthermore, if ε2 − ε1 → 0, then |Rε1 (ρ) − Rε2 (ρ)| → 0.
It shows that ε measure of QRT is continuous of ε.

B. Monogamy of correlated resource

Similar to subadditivity, strong monotonicity, and convex-
ity in QRTs, monogamy stands out as a pivotal property of
correlated resources, such as entanglement [64–68] and dis-
cord [69,70]. This principle asserts that correlated resources
cannot be freely distributed within a multipartite quantum
system. While not always considered essential in quantitative
analyses, monogamy has proven its significance in various
quantum information tasks and other domains of physics.
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Applications include quantum key distribution [71], the clas-
sification of quantum states [72], condensed-matter physics
[73], frustrated spin systems [74], and even black-hole physics
[75].

The correlated resource is referred to the resource measure
R of bipartite states ρAB ∈ D(HAB), which satisfies the follow-
ing conditions [70]:

(1) R(ρAB) � 0;
(2) R(ρAB) = R(UA ⊗ UBρABUA ⊗ UB) where UA,UB are

local unitary matrixes;
(3) R(ρAB) � RA|BC (ρAB ⊗ |0〉〈0|C ). In this paper, we adopt

the definition of monogamy as stated in Ref. [64]. If there
exists a nontrivial function f : R+ × R+ → R+, such that

R(ρA|BC ) � f (R(ρAB), R(ρAC )) (14)

holds for any correlated resource measure R [64–68,70]. We
refer to this property as monogamy. It is often assumed that
f (x, y) is monotonically increasing and continuous. For ex-
ample, a common choice is f (x, y) = (xα + yα )

1
α with α > 0,

which has been explored in the context of various correlated
measures [65–68,76,77]. It is worth noting that the CKW-type
inequality can be derived when α = 1 [65,66]. Based on the
above assumptions, we obtain the following result:

Proposition 6. For any correlated resource measure R, R
is monogamous [i.e., R satisfies Eq. (14)] implies that Rε is
monogamous.

Proof. Suppose τ ∗
ABC ∈ B(D)

ε (ρABC ) reaches the optimal so-
lution of Rε (ρA|BC ), and we obtain

Rε (ρA|BC ) = min
{
R(τA|BC )|τABC ∈ B(D)

ε (ρABC )
}

= R(τ ∗
A|BC )

� f (R(τ ∗
AB), R(τ ∗

AC ))

� f (Rε (ρAB), Rε (ρAC )).

where τ ∗
AB ∈ B(D)

ε (ρAB) and τ ∗
AC ∈ B(D)

ε (ρAC ) in the first in-
equality, and we have used monotonicity of f in the last
inequality. �

This result shows that if the original correlated mea-
sure R satisfies monogamy, then the correlated measure Rε

with smooth parameter ε will also satisfy the corresponding
monogamy relation. In practical experiments, we need to es-
timate the amount of correlated resource in a state that is
only partially known [45,46]. Proposition 13 has practical sig-
nificance for experimentally verifying whether an correlated
measure satisfies monogamy properties. As an application,
we have provided an example in Appendix B demonstrat-
ing how Proposition 13 can be employed to differentiate
between Greenberger-Horne-Zeilinger (GHZ) states and W
states within the context of the QRT of discord [1,72].

C. ε measure based on the distance measures

In this section, we will consider following distance-based
resource quantifier:

RD(ρ) = min
σ∈F

D(ρ, σ ). (15)

It is easy to show that distance-based resource quantifier is a
resource measure

RD[�(ρ)] = min
σ∈F

D(�(ρ), σ )

� min
�(σ )∈F

D(�(ρ),�(σ ))

� min
σ∈F

D(ρ, σ )

= RD(ρ).

We obtain the following simplification of the evaluation of
distance-based resource measures:

Proposition 7. Suppose D is a convex and contractive
distance. Let ρσ

p = (1 − p)ρ + pσ and RD(ρ) = D(ρ, σ ∗).
Then, we have

RD
(
ρσ ∗

p

) = (1 − p)RD(ρ). (16)

Proof. On the one hand, we have

RD
(
ρσ ∗

p

) = min
σ∈F

D
(
ρσ ∗

p , σ
)

� min
σ∈F

[(1 − p)D(ρ, σ ) + pD(σ ∗, σ )]

� (1 − p)RD(ρ).

On the other hand, by using triangular inequality, we have

RD
(
ρσ ∗

p

) = min
σ∈F

D
(
ρσ ∗

p , σ
)

� min
σ∈F

[
D(ρ, σ ) − D

(
ρ, ρσ ∗

p

)]
� min

σ∈F
[D(ρ, σ ) − pD(ρ, σ ∗)]

= (1 − p)RD(ρ).

�
Lemma 1. For any ρ ∈ D(H) and σ ∈ F , the map

�σ
p (ρ) = (1 − p)ρ + pσ (17)

is a free operation.
Proof. First, note that the replacement map �′(ρ) = σ is a

free operation, which can be obtained via conditions [B1] and
[B2]. Then, the map �σ

p (ρ) = (1 − p)ρ + pσ can be regarded
as a mixture of the replacement map and the identity map.
Thus, the map �σ

p is a free map. �
Remark. The depolarizing channel, defined as

�(ρ) = (1 − p)ρ + p
I

d
, (18)

can be considered as a free operation for any QRTs that adhere
to the tensor-product structure assumption, with the maxi-
mally mixed state I

d serving as the free state. The maximally
mixed state I

d serves as a free state in various QRTs, including
but not limited to entanglement [7], coherence [8,9], asym-
metry [39,40], nonstabilizerness [10], thermodynamics [13],
nonuniformity [43,44], purity [78,79], imaginarity [14,41],
and more. We are now prepared to introduce lower and upper
bounds for the ε measure Rε using both the original measure
R and the distance-based measure RD.
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Proposition 8. Let R(ρ) be a convex resource measure, and
D is a convex contractive distance. Then R(D)

ε (ρ) satisfies

min
so that RD (τ )=RD (ρ)−ε

R(τ ) � R(D)
ε (ρ) �

(
1 − ε

RD(ρ)

)
R(ρ).

(19)

Proof. Since D(�(ρ), ρ) � ε implies Rε (ρ) � R(ρ). Let
us consider the operation �σ

p (ρ) = ρσ
p = (1 − p)ρ + pσ with

σ ∈ F , which is a free operation from the Lemma 1. From
the convexity of both R and D, we have R(ρσ

p ) � (1 − p)R(ρ)
and D(ρσ

p , ρ) � pD(σ, ρ), which implies when p � ε
D(σ,ρ) ,

we have D(ρσ
p , ρ) � ε. Then, we obtain

R(D)
ε (ρ) � min

{
R
(
ρσ

p

)∣∣D(
ρσ ∗

p , ρ
)
� ε

}
� min{(1 − p)R(ρ)|D(ρσ ∗

p , ρ) � ε}
(a)
� min

{(
1 − ε

D(ρ, σ )

)
R(ρ)|σ ∈ F

}
(b)
�

(
1 − ε

RD(ρ)

)
R(ρ),

where (a) holds is due to for a fixed value p = ε
D(ρ,σ ) , and (b)

holds is due to RD(ρ) = minσ∈F D(ρ, σ ). On the other hand,
we have Rε (ρ) = R(ρ∗) � R[�(ρ∗)], where ρ∗ ∈ Bε (ρ) is the
optimal solution of Rε (ρ). Consider a free state σ ∗ which is
the optimal solution of RD(ρ∗). From the triangle inequality

R(D)
ε (ρ∗) = D(ρ∗, σ ∗)

� D(ρ, σ ∗) − D(ρ∗, ρ)
(a)
� RD(ρ) − ε,

where (a) is due to σ ∗ is not the optimal solution of RD(ρ)
in general. Now, let s = 1 − RD (ρ)−ε

RD (ρ∗ ) and note that 0 �
s � 1. Then, from Proposition 7, we have RD(�σ ∗

s (ρ∗)) =
RD(ρ) − ε. Therefore,

Rε (ρ) = R(ρ∗)

� RD
[
�σ ∗

s (ρ∗)
]

� min{R(τ )|RD(τ ) = RD(ρ) − ε},
where �σ ∗

s is a free operation. �
Although, the relative entropy S(ρ||σ ) is not a distance

since it is not symmetric and it does not satisfy the triangle
inequality. Nevertheless, it possesses three crucial properties
shared by the aforementioned distances: it exhibits contrac-
tivity under CPTP maps and joint convexity, S(ρ||σ ) = 0 if
and only if ρ = σ [53]. It is thus clear that most of the proofs
given in the case of R(D)

ε hold also for

R(D)
rel,ε (ρ) = inf

σ∈B(D)
ε (ρ)

R(σ ). (20)

For example, R(D)
rel,ε (ρ) exhibits continuity with respect to ρ,

and it satisfies R(D)
rel,ε (ρ) � Rrel(ρ) − ε, where D is the relative

entropy. In a general QRT, it is not always true that the re-
source measures keep the ordered [42], i.e., it is not always
true that, for any states ρ and σ ,

R1(ρ) � R1(σ ) ⇐⇒ R2(ρ) � R2(σ ) (21)

holds for two resource measures R1 and R2. By using ε mea-
sure of QRT, we can construct a class of resource measures
which keep the ordered whenever it is a complete order re-
source theory:

Corollary 3. Consider a distance-based resource measure
RD defined in Eq. (15), and let us take its ε generation to be

RD,ε (ρ) := min
σ∈B(D)

ε (ρ)
RD(σ ). (22)

Then, RD(ρ) � RD(σ ) ⇐⇒ RD,ε (ρ) � RD,ε (σ ).
Proof. Proposition 8 implies RD,ε (ρ) = RD(ρ) − ε when

we set R(D)
ε (ρ) = RD,ε (ρ) in Eq. (19). Thus, RD(ρ) � RD(σ )

holds if and only if RD,ε (ρ) � RD,ε (σ ). �

D. One-shot dilution cost and smooth asymptotic
resource measures

Resource dilution stands out as important subclasses of
resource manipulation tasks. Resource dilution is a protocol
to transform a state φm in the family T of reference states
to a given state ρ using free operations, in which a reference
state is to be transformed to the desired state. The optimal
performance of such task is characterized by the one-shot
dilution cost of QRT, defined as [33]

R(1)
c,ε (ρ) = inf

�∈O
{c|D(ρ,�(φ)) � ε, φ ∈ T }, (23)

where c = R(φ).
Proposition 9. The ε measure of QRT is a lower bound of

its resource dilution, i.e., for any resource measure R, we have

R(1)
c,ε (ρ) � Rε (ρ). (24)

Proof. Suppose �∗ is the optimal free operation for R(1)
c,ε (ρ)

and we have

R(1)
c,ε (ρ) = R(φ)

� inf
σ∈Bε (ρ)

Rε (σ )

= Rε (ρ),

where the inequality holds is due to D(ρ,�∗(φ)) � ε, or
equivalently, �∗(φ) ∈ Bε (ρ). �

This observation underscores that the ε measure of QRT
denoted as Rε furnishes a lower bound for the requisite mini-
mum number of reference states from T essential for reliable
resource dilution. Meanwhile, we can define one-shot dilution
cost under free catalysts as

R(1),ε
c,cat (ρ) = inf

�∈O
inf
σ∈F

{c|D(ρ ⊗ σ,�(φ ⊗ σ )) � ε, φ ∈ T },
(25)

where c = R(φ). From one-shot dilution cost under free cata-
lysts, we have the following result:

Proposition 10. The ε measure of QRT is a lower bound
of its resource dilution cost under free catalysts, i.e., for any
resource measure R, we have

R(1),ε
c,cat (ρ) � Rε (ρ). (26)
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Proof. Suppose �∗ is the optimal free operation for
R(1),ε

c,cat (ρ) and we have

R(1),ε
c,cat (ρ) = R(φ)

= R(φ ⊗ σ )

� R[�∗(φ ⊗ σ )]

� inf
τ∈Bε (ρ⊗σ )

Rε (τ )

= Rε (ρ ⊗ σ )

= Rε (ρ),

where the second equality hold is due to the condition
[B1], and the second inequality hold is due to D(ρ ⊗ σ,�∗
(φ ⊗ σ )) � ε or, equivalently, �∗(φ ⊗ σ ) ∈ Bε (ρ ⊗ σ ). �

The asymptotic resource measures play a crucial role in
characterizing the long-term behavior of quantum systems
and their operations in QRTs. These measures are particularly
relevant when dealing with the asymptotic limit of many iden-
tical or independent copies of quantum states [1–3,8]. For a ε

measure of QRT Rε , the lower and upper regularizations of
resource measure can be defined as follows:

Rinf,∞(ρ) = lim
ε→0+

lim inf
n→∞

1

n
Rε (ρ⊗n), (27)

Rsup,∞(ρ) = lim
ε→0+

lim sup
n→∞

1

n
Rε (ρ⊗n). (28)

In a more concise manner, we refer to these as the smooth
regularizations of the resource measures.

Proposition 11. The smooth regularizations of resource
measures in Eqs. (27) and (28) are resource measures. That
is,

Rinf,∞(ρ) � Rinf,∞[�(ρ)], (29)

Rsup,∞(ρ) � Rsup,∞[�(ρ)] (30)

hold for any free operations � ∈ O, and Rinf,∞(ρ) =
Rsup,∞(ρ) = 0 hold for any free states ρ ∈ F .

Proof. We define the two quantities as follows:

Rinf,∞
ε (ρ) = lim inf

n→∞
1

n
Rε (ρ⊗n), (31)

Rsup,∞
ε (ρ) = lim sup

n→∞
1

n
Rε (ρ⊗n). (32)

For Rinf,∞
ε (ρ), we have

Rinf,∞
ε (ρ) = lim inf

n→∞
1

n
Rε (ρ⊗n)

� lim inf
n→∞

1

n
Rε[�⊗n(ρ⊗n)]

= lim inf
n→∞

1

n
Rε[�(ρ)⊗n]

= Rinf,∞
ε [�(ρ)],

where the equality holds due to � ∈ O ⇒ �⊗n ∈ O. There-
fore, we get

Rinf,∞(ρ) = lim
ε→0+

Rinf,∞
ε (ρ)

� lim
ε→0+

Rinf,∞
ε [�(ρ)]

= Rinf,∞[�(ρ)].

The same reasoning above also holds for Eq. (30). It is easy to
see that Rinf,∞(ρ) = Rsup,∞(ρ) = 0 for any free states ρ. �

This demonstrates that the smooth regularizations of re-
source measures are valid asymptotic resource measures in
QRTs. Furthermore, these smooth regularizations of resource
measures can play a crucial role in investigations within quan-
tum information theory in the asymptotic regime, a domain
extensively utilized to scrutinize the interplay between re-
source distillation and resource dilution [33]. For example,
in the QRT of entanglement, the logarithmic robustness Rlr

denoted as Eq. (1) lacks asymptotic continuity, and it remains
uncertain whether it exhibits weak additivity. However, the
smooth regularizations of Rlg, which read as

Rsup,∞
lr (ρ) = lim

ε→0+
lim sup

n→∞
1

n
inf

σ∈B(D)
ε (ρ⊗n )

Rlr(σ ), (33)

demonstrate both asymptotic continuity and weak additivity
[80]. Meanwhile, it was shown in Ref. [81] that the entan-
glement cost Ec under asymptotically nonentangling maps is
equal to Rsup,∞

lr (ρ), i.e., Ec(ρ) = Rsup,∞
lr (ρ). We refer readers

to Refs. [81,82] for the details of Ec.

IV. APPLICATION OF ε MEASURE OF QRT

In this section, we will provide six examples of applica-
tions of ε measure of QRT.

Example 1: ε robustness of coherence. Consider a single-
qubit state ρ with the Bloch vector �r = (rx, ry, rz ), its

robustness of coherence is CR(ρ) =
√

r2
x + r2

y . The ε robust-
ness of coherence can be defined as

CR,ε (ρ) = min
σ∈B(D)

ε (ρ)
CR(σ ), (34)

where we use trace distance D(ρ, σ ) = 1
2 |�r − �s| to denote

D and �s = (sx, sy, sz ) is the Bloch vector of σ . Thus, the ε

robustness of coherence for single-qubit state ρ can be written
as

min CR(σ ) =
√

s2
x + s2

y (35)

so that |�r − �s| � 2ε. (36)

This optimization problem is equivalent to

min CR(σ )2 = s2
x + s2

y (37)

so that (sx − rx )2 + (sy − ry)2 + (sz − rz )2 � 4ε2. (38)

By using the Lagrange multiplier method, we obtain the ε

robustness of coherence as

CR,ε (ρ) =
√

r2
x + r2

y − 2ε. (39)

�
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Example 2: ε robustness of nonstabilizerness. Consider a
single-qubit state ρ with Bloch vector �r = (rx, ry, rz ). The
robustness of nonstabilizerness (or the robustness of magic
states) MR for a single-qubit state ρ with Bloch vector �r =
(rx, ry, rz ) is defined as [21,83]

MR(ρ) =
{|rx| + |ry| + |rz|, if �r /∈ STAB,

0, if �r ∈ STAB.

Here, STAB represents the set of single-qubit stabilizer states.
In the Bloch sphere representation, STAB is characterized by
six pure stabilizer states [|0〉, |1〉, 1√

2
(|0〉 ± |1〉), and 1√

2
(|0〉 ±

i |1〉)], interconnected to form an octahedron. The ε robustness
of nonstabilizerness can be defined as

MR,ε (ρ) = min
σ∈B(D)

ε (ρ)
MR(σ ), (40)

where we use trace distance D(ρ, σ ) = 1
2 |�r − �s| to denote

D and �s = (sx, sy, sz ) is the Bloch vector of σ . If B(D)
ε (ρ) ∩

STAB �= ∅, then MR(ρ) = 0. Thus, for the state ρ satisfies
B(D)

ε (ρ) ∩ STAB = ∅, the ε robustness of nonstabilizerness
for a single-qubit state ρ can be written as

min MR(σ ) = |sx| + |sy| + |sz| (41)

so that |�r − �s| � 2ε. (42)

This optimization problem is equivalent to

min MR(σ )2 = s2
x + s2

y (43)

so that (sx − rx )2 + (sy − ry)2 + (sz − rz )2 � 4ε2. (44)

By using the Lagrange multiplier method, we obtain the ε

robustness of nonstabilizerness as

MR,ε (ρ) =
{

Ax + By + Cz, if B(D)
ε (ρ) ∩ STAB �= ∅,

0, if B(D)
ε (ρ) ∩ STAB = ∅.

Here,

Ax =
{|rx − 2√

3
ε|, if rx > 0

|rx + 2√
3
ε|, if rx < 0.

The definitions of B and C follow a similar structure. In
general, ε is a very small constant, so we impose 2√

3
ε �

max{|rx|, |ry|, |rz|} to ensure its smallness. �
Example 3: Geometric ε measure of asymmetry for two-

qubit pure states. Suppose a bipartite two-qubit system is
equipped with the global Hamiltonian H12 = H ⊗ 1 + 1 ⊗ H
with the local Hamiltonian H = |1〉〈1|. Let us consider the
QRT of asymmetry with the U(1) group defined by the uni-
tary representation Ut : t → e−iH12t eiH12t . The free states for
this theory are the set of states that are invariant under such
symmetric transformations

F = {σ | σ = Ut (σ ), ∀ t} (45)

= {σ | [σ, H12] = 0} (46)

= conv{|0〉〈0|, |1〉〈1|, {|ψα,β〉〈ψα,β |}α,β}, (47)

where {|ψα,β〉〈ψα,β |} denotes the set of pure states
parametrized by α, β ∈ C as |ψα,β〉 = α |01〉 + β |10〉. For a
two-qubit pure state |φ〉 = a |00〉 + b |01〉 + c |10〉 + d |11〉,

its geometric measure of asymmetry (which is also known as
Bures distance of asymmetry) is defined as

AG(|φ〉) = min
σ∈F

√
2
√

1 − F (|φ〉〈φ|, σ ), (48)

where F (|φ〉〈φ|, σ ) = 〈φ| σ |φ〉 is the fidelity. It is shown in
Ref. [84] that maxσ∈F 〈φ| σ |φ〉 = max{|a|2, |d|2, 1 − |a|2 −
|d|2}. We focus on the geometric ε measure of asymmetry for
pure states and the quantity can be written as

AG,ε (|φ〉) = inf
|ψ〉∈B(D)

ε (|φ〉)
AG(|ψ〉), (49)

where |ψ〉 = a′ |00〉 + b′ |01〉 + c′ |10〉 + d ′ |11〉 and
B(D)

ε (|φ〉) ∩ F = ∅. If the distance is the norm distance
D(|ψ〉 , |φ〉) = || |ψ〉 − |φ〉 || with || |φ〉 ||2 = 〈φ| φ〉, this
optimization problem is equivalent to

min AG(|ψ〉)2 = 2(1 − max{|a′|2, |d ′|2, 1 − |a′|2 − |d ′|2})
(50)

so that (a − a′)2 + (b − b′)2 + (c − c′)2 + (d − d ′)2 � ε2.

(51)

By using the Lagrange multiplier method, we obtain the geo-
metric ε measure of asymmetry as

AG,ε (|φ〉) =
√

2
√

1 − max{A, B,C, D, E , 1}, (52)

where

A = (ε + |a|)2,

B = (ε + |d|)2,

C = 1 − [(ε + |a|)2] − |d|2,

D = 1 − |a|2 − (ε + |d|)2,

E =1 −
(

1 − ε√
|a|2 + |d|2

)2

a2−
(

1 − ε√
|a|2 + |d|2

)2

d2.

�
Example 4: ε measure of nonuniformity. Consider the follow-
ing nonuniformity measure [44,85]:

Tq(ρ) = dq−1−1

q − 1
− dq−1Tq(ρ),

where Tq(ρ) = 1−Tr(ρq )
q−1 for q > 0 is the Tsallis q entropy [86],

and d is the dimension of Hilbert space H. Here, we consider
the case of q = d = 2, then

T2(ρ) = 2 Tr(ρ2) − 1 = |�r|, (53)

where �r = (rx, ry, rz ) is the Bloch vector of ρ. Note that this
quantity has a nice geometric meaning for a single-qubit: that
is, the farther away from the center of the Bloch ball, the more
resourceful it is. The ε measure of nonuniformity based on the
Tsallis 2-entropy can be defined as

T2,ε (ρ) = min
σ∈B(D)

ε (ρ)
T2(σ ), (54)
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where D is the trace distance. From the geometric meaning of
Eq. (53), we get

T2,ε (ρ) = |�r| − 2ε. (55)

�
Example 5: ε measure of imaginarity. In the QRT of imaginar-
ity, the robustness of imaginarity, a single-qubit state ρ with
the Bloch vector �r = (rx, ry, rz ), is [14,41,42]

I (ρ) = |ry|. (56)

The ε measure of imaginarity can be defined as

Iε (ρ) = min
σ∈B(D)

ε (ρ)
I (σ ), (57)

where D is the trace distance. By using the Lagrange multi-
plier method, we obtain the ε measure of imaginarity as

Iε (ρ) = |ry| − 2ε. (58)

�
Example 6: Upper bound of ε measure of resource rank.
Resource rank is an important measure, which has been stud-
ied in many resource theories, such as resource theory of
entanglement [87–89], coherence [90], and nonstabilizerness
[20,21,91]. Suppose there is a collection of rank-one free
states {|φi〉〈φi|} such that {|φi〉} form a basis of the density
matrix space H. Then one can define the resource rank of an
arbitrary pure state |φ〉 as [1]

Rrk (|φ〉) = inf

{
k| |φ〉 =

k∑
i=1

ci |φi〉 , |φi〉 ∈ F , ci ∈ C

}
.

(59)

For a mixed state ρ, its resource rank can be defined by the
convex-roof extended method:

Rrk (ρ) = inf
{pi,|φi〉}

∑
i

piRrk (|φi〉), (60)

where the infimum is taken over all pure-state decompositions
of ρ. We focus on the ε measure of resource rank of pure
states, and we define the quantity as

Rrk,ε (|φ〉) = inf
|ψ〉∈B(D)

ε (|φ〉)
Rrk (|ψ〉). (61)

If the distance is the norm distance D(|ψ〉 , |φ〉) = || |ψ〉 −
|φ〉 || with || |φ〉 ||2 = 〈φ| φ〉. We have following result:

Proposition 12. Let |ψ〉 be a normalized n-qubit state with
a rank-one free state decomposition |φ〉 = ∑k

i=1 ci |φi〉, |φi〉 ∈
F are normalized basis and ci ∈ C. Then,

Rrk,ε (|φ〉) � 1 + ||c||21
ε

, (62)

where ||c||1 = ∑
i |ci|.

The proof of the proposition can be found in Appendix C.
�

V. REMARK ON THE EXTENSION OF THE ε MEASURE
TO DYNAMICAL QRT

As potential next steps, our findings could be generalized
to the dynamical QRT that does not rely exclusively on states.

This expansion might include domains like quantum channel
[26,27], quantum incompatibility [28,29], and measurement
sharpness [30,31]. For instance, let us consider ε measures
of the channel-based QRT. In a channel-based QRT, denoted
as a 2-tuple R̂ = (F̂, Ô), the set of free channels is de-
noted by F̂ , and the set of free superoperations is denoted
by Ô. Free channels F̂ are those quantum channels that do
not possess any resource, and free superoperations Ô are
a subset of superchannels that transform free channels into
free channels [27]. In this context, superchannels transform a
quantum channel �A→B into another channel C→D through
the expression C→D = �BE→D

post ◦ (�A→B ⊗ idE ) ◦ �C→AE
pre ,

where the superscripts denote input and output systems, id is
the identity map, and �post, �pre are also quantum channels
[92,93]. Let L(H) be the set of quantum channels, the basic
two requirements for a functional R̂ : L(H) → R+ being a
channel resource measure for (F̂, Ô) are as follows [27]:

[A′1] (Non-negativity): R̂(�) � 0 and the equality holds if
and only if � ∈ F̂ .

[A′2] (Weak monotonicity): R̂(�) � R̂(�[�]), where � ∈
Ô is a superoperation.

We can further define their ε-measure counterparts as

R̂ε (�) = inf
�′∈Bε (�)

R̂(�′), (63)

where �′ ∈ Bε (�) ⇐⇒ 1
2 ||� − �′||� � ε and ||XA||� =

maxρAE Tr|XA ⊗ 1E (ρAE )| is the diamond norm [27]. The in-
equality ||�[�1] − �[�2]||� � ||�1 − �2||�, valid for any
superchannel � and quantum channels �1 and �2 [93], makes
it straightforward to deduce that the channel ε measure R̂ε (�),
using the approach outlined in Proposition 1, also qualifies
as a channel resource measure. Unlike the state-based QRT,
measuring the distance between two channels (e.g., diamond
norm) always involves an optimization problem over all quan-
tum states. Therefore, calculating an analytical expression
for the channel resource measure ε measure R̂ε is generally
challenging. However, one may calculate the distance of two
channels by evaluating the (trace) distance of their Choi-
Jamiolkowski representations [53]. In essence, ||J�1 − J�2 ||1
can serve as a substitute for calculating ||�1 − �2||�, where
J� = 1

d (id ⊗ �)(
∑

i |ii〉〈ii|) denotes the Choi-Jamiolkowski
representation of the channel �. In fact, this approach has
been studied in the QRT of channel coherence [94], which
can simplify the study of channel-based resource to state-
based resource. These methods above can also be applied to
measure-based QRTs [95], such as quantum incompatibility
and measurement sharpness. In general, computing R̂ε is a
constrained optimization problem that can be solved using the
method of Lagrange multipliers. For a qubit channel �, its
Choi-Jamiolkowski representation corresponds to a two-qubit
state J�. Computing Eq. (63) becomes the task of finding
a two-qubit state J�′ under the constraint ||J� − J�′ ||1 � ε

that minimizes R̂ε (�′). In this scenario, solving the system
of equations involving 22 × 22 − 1 = 15 parameters is highly
challenging. Therefore, we defer the consideration of exam-
ples involving the computation of the ε measure for channels
to future investigations. Further research in these directions is
left for future work since it is out of the scope of this paper.
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VI. CONCLUSION

In this paper, we have introduced a family of smoothed
measures for any QRTs. The properties of ε measures are
given, ε measure Rε inherits the fundamental properties of
the original resource measure R, such as weak monotonicity,
convexity, monogamy, and so forth. Moreover, the ε mea-
sure remains continuous regardless of whether the original
measure is continuous or not. We have also demonstrated
that the ε measure of a QRT satisfies a “weak” subadditivity,
with the subadditivity of R being a special case when ε = 0.
In practical scenarios, ε measures can serve to estimate the
minimum guaranteed amount of prepared resources. These
measures find application in one-shot convertibility, partic-
ularly by providing a lower bound on the one-shot dilution
cost of a QRT. We also found that the smooth regularizations
of resource measures are resource measures. As part of our
applications, we derived several formulas for the ε measures
of coherence, nonstabilizerness, asymmetry, nonuniformity,
and imaginarity. Additionally, we offered an upper bound for
the ε measure of the resource rank. This work investigates the
properties, applications, and computational examples of the
ε measure in the QRT based on the tensor-product structure
assumption. This general framework not only encompasses
the QRTs of entanglement [37] and coherence [38] but also
extends to other QRTs such as asymmetry, nonstabilizer-
ness, imaginarity, nonuniformity, and more. Additionally, we
present properties of the ε measure (e.g., Propositions 4, 13,

10, and 11) and computational examples (e.g., the exam-
ples in Sec. IV) that have not been previously addressed in
Refs. [37,38]. Finally, we hope that the results drawn in this
paper will contribute to a deeper understanding of the role of
quantum resources in quantum information processing.
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APPENDIX A: FLAG ADDITIVITY OF QUANTUM
RELATIVE RÉNYI ENTROPY, SANDWICHED RÉNYI

ENTROPY, AND RELATIVE ENTROPY

In this Appendix, we will show that the resource measure
of QRT which is based on quantum relative Rényi entropy
Dα (ρ||σ ), sandwiched Rényi entropy D̃α (ρ||σ ), and relative
entropy S(ρ||σ ) satisfies condition [FA], where α ∈ [1, 2].
Meanwhile, we will give an illustrative example showcasing
the application of flag additivity. Recall the quantum relative
Rényi entropy Dα is defined as [96]

Dα (ρ||σ ) =
{

1
α−1 log2(Trρασ 1−α ), otherwise

+∞, i f α /∈ (0, 1) ∧ supp(ρ) �⊂ supp(σ )
(A1)

where α ∈ [0, 1) ∪ (1,+∞) and the sandwiched Rényi entropy D̃α is defined as [97]

D̃α (ρ||σ ) =
{

1
α−1 log2{Tr[(σ

1−α
2α ρσ

1−α
2α )α]}, otherwise

+∞, i f α /∈ (0, 1) ∧ supp(ρ) �⊂ supp(σ )
(A2)

where α ∈ (0, 1) ∪ (1,+∞) and the relative entropy is de-
fined as

S(ρ||σ ) = Trρ log2 ρ − Trρ log2 σ , (A3)

with suppρ ⊂ suppσ . Thus, one could define a whole family
of resource measures for any QRT R = (F ,O) as follows:

Rα (ρ) = inf
σ∈F

Dα (ρ||σ ) (A4)

with α ∈ [0, 2] and

R̃α (ρ) = inf
σ∈F

D̃α (ρ||σ ) (A5)

with α ∈ [1/2,∞) and

Rrel(ρ) = inf
σ∈F

S(ρ||σ ). (A6)

Now, we will show the following result:
Proposition 13. For any convex QRT admits tensor-

product structure, Rα (ρ||σ ), R̃α (ρ||σ ), and Rrel (ρ||σ ) satisfy
flag additivity for α ∈ [1, 2].

Proof. First, note that for any resource monotone R, since
the flag additivity is equivalent to [A3] and [A4] [15], we
only prove [A3] and [A4] hold for Dα (ρ||σ ), D̃α (ρ||σ ), and
S(ρ||σ ) with α ∈ [1, 2]. We first prove the sandwiched Rényi
entropy based measure R̃(ρ||σ ) satisfies conditions [A3] and
[A4]. The authors in Ref. [1] have shown Dα (ρ||σ ), D̃α (ρ||σ ),
and S(ρ||σ ) satisfy conditions [A3] and [A4]. �

In general, the computation of entropic measures is often
challenging. The introduction of flag additivity, however, can
simplify certain calculations. For instance, consider the rela-
tive entropy of entanglement given by

Rrel(ρAB) = inf
σAB∈Sep

S(ρAB||σAB), (A7)

where the set of free states, Sep, comprises separable states.
Now, we will calculate the relative entropy of entanglement
for the following state using flag addtivity:

ρAA′ |BB′ = 1
3ρAB

1 ⊗ |�+〉〈�+|A′B′ + 2
3ρAB

2 ⊗ |�−〉〈�−|A′B′
,

(A8)
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where

ρAB
1 = λ|�+〉〈�+| + (1 − λ)|01〉〈01|,

ρAB
2 = a|00〉〈00| + b|00〉〈11| + b∗ |11〉 00 + (1 − a)|11〉〈11|,

|�±〉 = 1√
2

(|00〉 ± |11〉).

In Ref. [16], Vedral and Plenio have shown that

E
(
ρAB

1

) = (λ − 2) log2

(
1 − λ

2

)
+ (1 − λ) log2(1 − λ),

E
(
ρA′B′

2

) = e+ log2 e+ + e− log2 e− − a log2 a

− (1 − a) log2(1 − a),

where

e± = 1 ±
√

1 − 4a(1 − a) − |b|2
2

.

By using flag additivity, we obtain that E (ρAA′ |BB′ ) =
1
3 E (ρAB

1 ) + 2
3 E (ρAB

2 ). In essence, flag additivity simplifies the
computation of entropic measures, making tasks like calculat-
ing the relative entropy of entanglement more straightforward.

APPENDIX B: CLASSIFICATION OF QUANTUM STATES
VIA MONOGAMY INEQUALITY OF QRT OF DISCORD

In the QRT of discord, the CKW-type monogamy
inequality

R(ρA|BC ) � R(ρAB) + R(ρAC ) (B1)

can be employed to distinguish between the GHZ state and
the W state [72]. This involves using discord as the chosen
resource measure [98]. Essentially, the three-qubit GHZ state
follows monogamy, and the W state does not [72]. Assuming a
factory produces GHZ and W states, practical quantum states
σABC may deviate slightly from the ideal quantum states ρABC

(GHZ or W states). This discrepancy can occur due to factors
such as noise introduced during the preparation of quantum
states. The term “noise” in this context can be considered as
a depolarizing channel in Eq. (18), leading to a partial loss of
polarization information in the quantum states. This deviation
can be quantified by a known small constant ε > 0, defined as
the (trace) distance between the actual quantum states and the
ideal quantum states, i.e., D(ρABC, σABC ) � ε. The monogamy
inequality

Rε (ρA|BC ) � Rε (ρAB) + Rε (ρAC ) (B2)

of Proposition 13 ensures that, even in the presence of slight
noise in practical scenarios, it is still possible to distinguish
whether the actual quantum state is a GHZ state or a W state.

APPENDIX C: PROOF OF PROPOSITION 12

This approach is based on Ref. [20] and we will first prove
the following lemma:

Lemma 2 (Sparsification of QRT). Consider a normalized
state |φ〉 = ∑

j c j |φ j〉 with c j ∈ C and |φ j〉 ∈ F . We can

construct a random state |�〉 = ||c||1
k

∑k
α=1 |ωα〉 for some in-

teger k, where |ωα〉 (α ∈ [k]) are independent and identically
distributed random copies of random variable |ω〉 and |ω〉 is
sampled from the set {|Wj〉 | |Wj〉 = c j

|c j | |φ j〉} with probability

p j = |c j |
||c||1 . Then, we have

E(|| |φ〉 − |�〉 ||2) = ||c||21
k

, (C1)

with ||c||1 = ∑
j |c j | and || |φ〉 ||2 = 〈φ| φ〉.

Proof. The state |φ〉 can be written as

|φ〉 =
∑

j

c j |φ j〉

= ||c||1
∑

j

p j
c j

|c j | |φ j〉

= ||c||1
∑

j

p j |Wj〉

= ||c||1E[|ω〉].
The last equality hold is due to the random variable |ω〉 sam-
pling from the set {|Wj〉} with probability p j . Because we will
calculate the expectation

E[|| |φ〉 − |�〉 ||2] = E[〈�| �〉] − E[〈φ|�〉] − E[〈�|φ〉]
+ E[〈φ| φ〉]. (C2)

It is only needed to calculate the four expectations in the
right-hand side of Eq. (C2). First, note that |�〉 may not be
correctly normalized. However, we can bound the expectation
E[〈�| �〉] as follows:

E[〈�| �〉] = ||c||21
k2

k∑
α=1

E[〈ωα| ωα〉] + ||c||21
k2

∑
α �=β

E[〈ωα| ωβ〉]

= ||c||21
k

E [〈ω| ω〉] + k(k − 1)

k2

� 1 + ||c||21
k

.

Second, since |�〉 = ||c||1
k

∑k
α=1 |ωα〉 be considered as the av-

erage of the k independent and identically distributed random
copies |ω〉, we have

E[〈φ| �〉] = ||c||21
k

E[〈ω|ωα〉] = 1 (C3)

and

E[〈�|φ〉] = 1. (C4)

By substituting the inequalities above into Eq (C2), we obtain

E(|| |φ〉 − |�〉 ||2) = ||c||21
k

. (C5)

�
Now, we will prove the Proposition 12:
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Proof. From Lemma 2, when we choose k � ||c||21
ε2 , then

E(|| |φ〉 − |�〉 ||2) = ||c||21
k � ε2. Since the random state |�〉 is

a sum of k free states, there must exist one |�〉 that ε approx-
imates |φ〉. Consequently, from the definition of ε measure of

resource rank, we have

Rrk,ε (|φ〉) � 1 + ||c||21
ε

, (C6)

which completes the proof. �
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