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We have applied a machine learning algorithm to predict the emergence of environment-induced spontaneous
synchronization between two qubits in an open system setting. In particular, we have considered three different
models, encompassing global and local dissipation regimes, to describe the open system dynamics of the qubits.
We have utilized the k-nearest-neighbor algorithm to estimate the long-time synchronization behavior of the
qubits only using the early time expectation values of qubit observables in these three distinct models. Our
findings clearly demonstrate the possibility of determining the occurrence of different synchronization phenom-
ena with high precision even at the early stages of the dynamics using a machine learning-based approach.
Moreover, we show the robustness of our approach against potential measurement errors in experiments by
considering random errors in the qubit expectation values, initialization errors, as well as deviations in the

environment temperature. We believe that the presented results can prove to be useful in experimental studies on

the determination of quantum synchronization.
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I. INTRODUCTION

Machine learning is a rapidly growing field of research
that involves the use of computational algorithms to estimate
complex functions using large amounts of available data.
These functions can then be used to make some predictions
and identify patterns in given datasets. The main difference
between the machine learning approach and other statistical
models is that it allows a computer program to improve its per-
formance or learn, without the need for explicit programming
[1]. In recent years, machine learning methods have achieved
remarkable success in a wide range of applications, including
natural language processing, image recognition, drug dis-
covery, and finance. Machine learning algorithms have been
applied in many areas, including computer science, medicine,
biology, and even social sciences [2]. In physics, machine
learning techniques have been extensively used in various
research fields, encompassing cosmology, particle physics,
condensed-matter physics, and quantum computing [3].

Synchronization is a widespread phenomenon that occurs
across many different systems, from natural systems like the
beating of a heart or flashing of fireflies to social systems
such as the behavior of a crowd. Physical systems can exhibit
synchronous behavior in two ways, namely, forced and spon-
taneous. When two or more systems are forced to oscillate in
unison by an outside influence, such as the regulation of heart
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rate by an external pacemaker through electrical pulses, this
is known as forced synchronization. In contrast, spontaneous
synchronization takes place when two or more systems natu-
rally synchronize in the absence of any external agent. Syn-
chronization in classical systems has been studied in a variety
of contexts over the past few decades with many interesting
outcomes [4-6]. Consequently, the study of this universal
phenomenon has been extended to the quantum domain.

Nevertheless, it needs to be emphasized that synchroniza-
tion is a term of wide scope that can indeed be interpreted
in multiple ways [7-11]. Forced synchronization due to an
external drive, also known as entrainment, has been studied in
driven dissipative oscillators [12,13], van der Pol oscillators
[14-16], and spin-boson-type models [17]. On the other hand,
environment-induced spontaneous synchronization has also
been broadly explored, for example, in harmonic oscillators
[18-21], van der Pol oscillators [22,23], optomechanical ar-
rays [24,25], cold ions in microtraps [26], atomic lattices [27],
spins coupled to common [28-30] and local reservoirs [31],
collectively dissipating few-body atom systems [32], collision
models [33-35], and more recently many others [36—49].

In the last few years, machine learning techniques have
started to be employed in physical systems, where syn-
chronous behavior between their constituents emerges under
suitable conditions. Almost all of these studies have focused
on complex networks composed of classical oscillators, with
the aim of predicting their synchronization behavior [5S0-59].
On the other hand, it has also been demonstrated that a
quantum machine learning protocol with classical feedback
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can enhance synchronization between two two-level systems
within two coupled cavities [60]. Lastly, an artificial neural
network has been shown to be used to infer the dissipation
properties of the environment via a probe observable in an
open system scenario where synchronization manifests, and
the emergence of synchronization improves the performance
of classification and regression tasks in this setting [61].

In this paper, we consider the environment-induced syn-
chronization phenomenon, which spontaneously emerges
between the expectation values of spin observables of a pair
of qubits during the time evolution of the open system. We
present a machine learning-based approach that employs a
supervised learning algorithm to identify the synchroniza-
tion behavior of the qubit pair. In particular, we utilize the
k-nearest-neighbor (KNN) algorithm to identify whether the
pair of qubits tends toward synchronization, antisynchroniza-
tion, time-delayed synchronization, or the complete absence
of these phenomena. In order to quantify the degree of syn-
chronization between the expectation values of local qubit
observables, we calculate the Pearson correlation coefficient
that quantifies the association between two variables that are
measured in the same interval. Whereas we set the final value
of the Pearson coefficient after a long time evolution as the
target of our algorithm, we use the early time expectation val-
ues of the qubit observables during the dynamics as the input
of the algorithm. We demonstrate the effectiveness of our ap-
proach by training and testing it with calculated quantum data
obtained from three distinct open-system models, and show
that it is capable of accurately predicting the synchronization
behavior of the qubit pair even in the presence of random
measurement errors. We establish a tradeoff relation between
the percentage of error in the measurement of expectation
values and the number of measurements required to maintain
high accuracy.

This paper is organized as follows. In Sec. II, we introduce
the open system models that we consider. In Sec. III, we
describe our methodology for obtaining the databases used
to train and test the algorithm. In Sec. IV we provide a brief
overview of how the algorithm works. In Sec. V, we present
the main results, demonstrating the effectiveness of our ap-
proach in predicting the behavior of the simulated quantum
systems, including the addition of random errors to the mea-
surements. Finally, in Sec. VI, we conclude by discussing our
central results and their possible applications.

II. PHYSICAL MODELS

In this section, we introduce three physical models that
display distinct synchronous behaviors [32-34]. Our main aim
is to study the synchronization properties of these models
from a machine learning perspective.

A. Collision models

Two of the models we consider in our analysis are
based on collision models [62,63], which are very versatile
and effective tools for modeling open quantum systems. In
the framework of collision models, each interaction, either
between the subsystems or between the system and the en-
vironment, is described as a short unitary coupling among the
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FIG. 1. (a) First collision model simulating local dissipation for
the system qubit s,. (i) The system qubit s, interacts with the envi-
ronment qubit e,. (ii) The system qubits s; and s, interact directly
with each other. (iii) The system qubits s; and s, evolve freely. (iv)
The environment qubit that has interacted with the system qubit s,
in step (i) is traced out, and the same cycle is iterated with the next
environment qubit e,.;. (b) Second collision model that simulates
global dissipation for system qubits s; and s5. (i) The system qubit s,
interacts with environment qubit e,,. (ii) The system qubit s, interacts
with the same environment qubit e,. (iii) The system qubits s; and
s, directly interact. (iv) The system qubits s; and s, evolve freely,
and the environment qubit that interacted with the system qubits in
steps (i) and (ii) is traced out to continue the cycle with the next
environment qubit e, 1.

involved parties, and the state of the subject system is tracked
through these successive couplings. Before elaborating on the
distinctive properties of the two collision models we will
consider, we would like to outline the common parts. From
this point on, we set i = 1 in both models, and we have two
system qubits labeled as s; and s, with their free Hamiltonians

w1

w3
I_Isl = _?O}ZI , H,

5, = —7052, 1
where o° is the usual Pauli operator in the z direction and
) and w, represent the self-energies of the system qubits s,
and s,, respectively, with their self-evolution operators, Us, =
exp(—iH;, &t;) and Uy, = exp(—iH,,dt;). In addition, we sup-
pose that the environment in both collision models is made
up of identical qubits that are all initiated in their ground
state, i.e., the initial states of environment qubits e,, €41, ...
are |e,) = |e,t1) = ... = |0), and there exist no initial corre-
lations between the system qubits and the environment qubits.
Let us now continue with the specifics of the first collision
model, which is schematically described in Fig. 1(a). Here,
the system qubit s, is coupled to the environment, while s; is
isolated from it and is only allowed to interact directly with
s7. This model can be summarized in a few steps as follows.
First, the system qubit s, interacts with the environment qubit
e, through the Hamiltonian,
H _ ] X X y y
se, = E(Uszae” + GsZaen)’ 2
where o* and o” are the standard Pauli operators in the x
and y directions, with the corresponding unitary evolution
operator given as U,, = exp(—iH,. 0t ). Here, the parameter
J 8t quantifies the strength of the coupling between the open
system qubit s, and the environment qubits. Afterwards, the
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system qubits s; and s, interact with each other directly de-
scribed by the Hamiltonian,

A Ly
His, = 5 (03,07, +03,07), 3)
where the operator Uy, = exp(—iH,s,0;,) describes their dy-
namics with A&t being the coupling strength between s;
and s,. In the third step, the system qubits s; and s,
evolve freely with their self-Hamiltonians. In the last step, a
single iteration of the collision model is finalized by tracing
out the environment qubit e, and moving on to repeat the
procedure described above with the environment qubit e, |.
This cycle is repeated N times to obtain the evolution of the
open system.

In the second collision model, different from the first model
we discussed, both system qubits s; and s, are open to in-
teraction with the environment. We describe a single cycle
in the model below, which is also pictorially summarized in
Fig. 1(b). In the initial step, the system qubit s; interacts with
the environment spin e, via the interaction Hamiltonian,

H _ ‘I( X X y Y

se =5 0,0, + aslae”). 4)

Next, the system qubit s, interacts with the same environment
spin e, through the same Hamiltonian, i.e.,

H,,, = g(o;;o;i +0)0)). 6)
The associated unitary evolution operator is then given by
U,, = exp(—iH,.5t,.) for the interaction of both system qubits
with the environment, and Jd#, quantifies the coupling
strength. After the system-environment interactions, the sys-
tem qubits s; and s, directly interact with each other with the
Hamiltonian,

A
Hy,, = E(O‘SX] ;). (6)
where the corresponding unitary evolution operator becomes
Uss = exp(—iHj,s,8:, ), and Adtg, is the strength of the qubit-
qubit interaction. Lastly, the system qubits s; and s, evolve
freely with their self-Hamiltonians given in Eq. (1), and a
single iteration in the model is concluded by tracing out the
environment qubit e, to continue the dynamics with the up-
coming environment qubit e, ;.

Finally, we briefly highlight the fundamental difference be-
tween the two collision models that we consider in this paper,
as depicted in Fig. 1. While the first collision model describes
a local dissipation scenario, where only one system qubit is
open to interaction with the environment, the second model
lets both system qubits couple to the environmental degrees
of freedom. In other words, as the first model is actually a
simulation of local dissipation affecting a single qubit in the
two-qubit system, the second one serves as an example of
global dissipation, where both qubits are under the effect of
noise. On the other hand, it is also worth noting that despite
the fact that both collision models have various interaction
parameters in common, the qubit-qubit interaction Hamilto-
nian in these models is not exactly the same, which can be
seen by comparing Eqgs. (3) and (6). Indeed, we consider these
different Hamiltonians to display the independence of our

results from a particular form of qubit-qubit interaction on the
prediction of synchronization based on machine learning.

B. Master equation model

The model we consider in this part can be employed to
describe the coupling between a pair of two-level atoms and
a quantized thermal electromagnetic field environment. Here,
we set i = 1 and adjust the units of other parameters in ac-
cordance with this. Then, the self-Hamiltonians of the system
atoms are given as H, = 21‘2:1 w;o}, where w; represents the
transition frequency between the energy levels of the ith atom,
and o® denotes the usual Pauli operator in the z direction.
We also suppose that the system atoms have polarized dipole
moments, deg, and that they are coupled to each other via
the exchange interaction Hamiltonian H; = ZZZ £ fi J-al.*aj‘,
where f;; quantifies the intensity of the atom-atom interaction,
and o* are the up and down operators of the two-level atoms.
Considering the coupling of the atoms to thermal photons
and focusing on the reduced dynamics of two-level atomic
systems, we obtain the well-known quantum optical master
equation (ME) given by [64,65]

p = —il(Hy + Ha), p1 + D_(p) + D1 (p) = L(p), (T)
where D_(p) and D, (p) are defined as

2 1
D_(p)=Y v+ 1)(0;/90? ~ 5l p}), ®)

i,j=1

2 1
Di(p) = Z Vij’_l<0j+,0<7i - E{Giio—;r’ ,0}), ©)

i,j=1

where p represents the density operator for the pair of atoms.
In Eq. (7), as the first term represents the unitary self-evolution
and the exchange interaction between the atoms, the second
term detailed in Eq. (8) describes the spontaneous and ther-
mally induced emission processes. Lastly, the third term given
in Eq. (9) is responsible for the thermally induced absorption
process. The rate at which these processes occur is deter-
mined by the mean number of photons 7 at the transition
frequency. The decay rates in the quantum optical master
equation are expressed as y;; = ,/¥;v;ja(kor;j) where y;;) =
a)?(j)g, ko = (w1 + @2)/2c, and g = dezg/37reoc3. In addition,
condition a(kor;;) < 1 needs to be satisfied to guarantee the
positivity of the dynamics. Here, d,, ¢, €9, and r;; respectively
stand for the identical dipole moment of the atoms, the speed
of light in vacuum, the permittivity of free space, and the
relative position of the ith and jth atoms. While a;; con-
trols the degree of collective behavior in the dynamics of the
atoms, f;; quantifies the strength of the exchange interaction
between them. Explicit forms of these model parameters can
be found in Refs. [65-67]. In our analysis, we focus on the
zero-temperature case 7 = 0, and assume that the two-atom
system undergoes fully collective dynamics, i.e., a;; = 1.

III. DATA STRUCTURE

Data are a very crucial part of all machine learning tech-
niques, since learning algorithms are trained on datasets. To
train these learning models, we need a data structure that
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can effectively represent the information we obtain from
physical simulations. Having introduced the three different
open-system models that we intend to consider in our paper,
we will now elaborate on the formation of the databases to
be used by the machine learning algorithm here to predict the
synchronization behavior of the qubits. In general, data can
be divided into two groups: training data and test data. While
the training data are used to train the algorithm, the test data
are used to evaluate its performance. As the algorithm is
trained, it naturally has access to this part of the data and can
use it to learn how to map inputs to outputs. The test data, on
the other hand, are not utilized to train the algorithm. Instead,
they are used to evaluate the algorithm’s performance by
comparing its predictions with the actual output. Within these
two data groups, we can further distinguish two subgroups:
features and targets. The features are the independent input
variables that the algorithm uses to estimate the target, which
is nothing more than the output that the model aims to predict.

In our analysis, the variables under study are the local ex-
pectation values of the system qubit observables, as we intend
to explore the harmony between their dynamics to witness
the emergence of spontaneous synchronization. Due to the
fact that synchronization is a property of the open system
dynamics rather than a particular choice of observable, it is in
principle possible to choose an arbitrary qubit observable to
study the synchronization properties of the system. Here, we
focus on the expectation values of system qubit observables
along the x direction, that is, (o7, ) and (o7, ), for concreteness.
To determine the eventual synchronization behavior of the
qubit pair, it is in general necessary to trace the long-time
dynamics of the local expectation values of qubits and thus
the open system dynamics itself. However, we will only con-
sider 5 to 100 early time expectation values for each qubit as
features (inputs) of the algorithm to demonstrate the ability
of our machine learning approach to successfully anticipate
the long-time synchronization behavior of the open system.
Moreover, as customary in the literature, we quantify the de-
gree of synchronization between the qubits using the Pearson
coefficient. Particularly, we set the Pearson coefficient as the
target (output) of the learning algorithm, and calculate it in
simulations for the 100 late time expectation values of the
qubit observables.

Let us also introduce the definition of the Pearson coeffi-
cient and briefly elaborate on its significance in quantifying
the synchronous behavior between the qubit observables. The
Pearson coefficient is a statistical measure that can be em-
ployed to quantify the degree of linear association between
two discrete variables. It is defined as

_ Y (i =X — )
Vo i =323 (i — 3)?

where X and y are the average values of x and y respectively,
and n is the number of values that the variables can take.
The Pearson coefficient Cj, can assume values in the inter-
val [—1, 1]. As the case Cy, = 0 indicates that the variables
have no correlation, Cj, = 1 (Cj, = —1) signifies that they
are perfectly positively (negatively) correlated. In particular,
while the perfect positive (negative) correlation tells us that
as one variable changes so does the other variable in the

Ci2

(10)

same (opposite) manner. In our paper, the studied variables
are the expectation values of the local qubit observables (o7 )
and (oy)). In the context of our paper, we are interested in
the asymptotic synchronization behavior of the qubit pair in
the long-time limit. Therefore, in numerical simulations, we
generate the expectation values as discrete samples that cover
the last 100 expectation values for each local qubit observ-
able, also making sure that we choose a sufficiently large n
value for each model. In other words, whereas the asymptotic
value of Cj, &~ 0 implies uncorrelated oscillations for the local
expectation values in the long-time limit, Cj, = 1 (Cj; & —1)
means that full synchronization (antisynchronization) is es-
tablished between them. In addition, it is also possible for
the Pearson coefficient Cj, to reach asymptotic values other
than 1 or —1. This suggests that the mutual oscillations of the
expectation values are still phase locked in the long-time limit,
however, the phase difference between them is neither zero as
in full synchronization nor 7 as in full antisynchronization.
Such cases are known as time-delayed synchronization [9].

Before concluding this section, we want to discuss how we
take into account potential errors in the expectation values of
qubits in our simulations, which can be caused by various
different sources, such as imperfect measurements or deco-
herence, in order to emphasize the robustness of our approach
in an experimental setting. To simulate such errors, we add
random errors of varying percentages to the expectation val-
ues to see whether the considered machine learning algorithm
would still be able to correctly predict the values for our target
in the presence of error. The error is added by summing the
expectation values with a random value € between —1 and
1, multiplied by an error rate between 0.005 and 0.05. This
allows us to determine the accuracy of the algorithm in terms
of the deviation from the calculated expectation values.

IV. k-NEAREST-NEIGHBOR REGRESSOR

Machine learning is a subfield of artificial intelligence that
is concerned with developing algorithms that can learn from
the available data to make predictions or decisions without
being explicitly programed to do so. The majority of learning
algorithms can be classified into two categories, namely, su-
pervised and unsupervised [68]. In supervised learning, the
algorithm is trained with labeled data to make predictions
about future instances. These data can be either numerical or
categorical. As numerical data can be used to predict contin-
uous values, such as the price of a vehicle, categorical data
can be used to classify subjects into one of several categories.
Examples of supervised learning applications include image
classification, speech recognition, natural language process-
ing, and fraud detection. On the other hand, unsupervised
models work with unlabeled data to explore hidden patterns
that may not be directly visible [69].

We will utilize the KNN algorithm, which aims to calculate
the proximity between data points using a metric such as the
Euclidean distance, and then estimates the output of a test
sample by averaging the outputs of its k nearest neighbors in
the training data [70]. The number of neighbors K is a hy-
perparameter that needs to be fixed before training the model.
A small value of K results in a more flexible model that can
recognize complex patterns in the data, but it may possibly
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lead to overfitting. In contrast, a large value of K may result
in a more stable and robust model, but it may fail to capture
local patterns in the data. The algorithm is typically iterated to
find the optimal value of K. The KNN algorithm has several
advantages, including its simplicity and interpretability, as
well as its ability to work with any underlying data distribution
and ease of implementation using basic math [71]. However,
it may turn out to be computationally expensive for large
datasets, and careful tuning of the hyperparameters may be
necessary to achieve good accuracy. The implementation of
the KNN algorithm in this paper has been carried out using the
scikit-learn library in PYTHON [72]. All algorithm parameters
are kept at their default settings.

V. RESULTS

In this chapter, we present our main results related to the
implementation of the KNN algorithm to predict the long-time
synchronization behavior for a pair of qubits in three distinct
open system models introduced previously.

A. Collision models

We will commence this section by considering the first
collision model, outlined in Fig. 1(a), where only one of the
system qubits is directly coupled to the environment. We set
the initial states of the system qubits s; and s, as |Yy,) =
|¥s,) = (10) + |1))/\/§. At this point, let us emphasize that
the emergence of synchronization does not depend on the
choice of initial states since it is a property of the dynamical
process. Furthermore, we fix the model parameters as &t, =
Stgs = 1.0 and 61, = 1.0. To create our data set, we consider
the values of the detuning w;/w, varied from 0.97 to 1.03 in
steps of 0.0015, the direct coupling strength A varied from
0.01 to 0.06 in steps of 0.002, and the system-environment
interaction strength J varied from 0.05 to 0.15 in steps of
0.01. This results in a total of 10 250 different configurations
for the model parameters. For each of these configurations,
we calculate the open system dynamics of the model and
evaluate the expectation values of the observables for the
system qubits, (07,) = Tr[ps, 0] and (03,) = Trlps,0"1, after
each collision, for a total of 4000 collisions, where p;, and py,
denote the reduced density operators for the system qubits s;
and s,, respectively. Confirming that the system has reached
its long-time dynamical behavior with these data, we calculate
the Pearson correlation coefficient C}, by taking into account
the expectation values of system qubits calculated for the last
100 collisions. In Fig. 2(a), we show the Pearson coefficient
C1, plotted as a function of the detuning w; /w, and the direct
coupling strength A for a fixed system-environment interac-
tion strength, that is, J = 0.1, for presentation purposes. It
is straightforward to observe that the synchronization and
antisynchronization regions are separated by the resonance
line on which synchronization is absent [34].

To check the capability of our machine learning-based ap-
proach to predict the synchronization properties of this open
system model, we calculated the corresponding expectation
values (o7 ) and (o)) for the first 100 collisions (features), and
the Pearson coefficient Cy, evaluated for the last 100 collisions
(target) to train the KNN algorithm. To avoid the predictions

(a) Calculation (b) Prediction Cho
1.0
0.05 0.5
A 0.0
0.03
-0.5
0.01 -1.0
0.97 1.00 1.03 0.97 1.00 1.03
w1 /wo

FIG. 2. The first collision model. (a) The Pearson coefficient Cj,,
calculated for the late time 100 expectation values of the system
qubits (o7 ) and (o)), as a function of the direct interaction strength
A between them and the detuning between their self-energies w; /w,,
for the system-environment coupling strength J = 0.1. (b) Predicted
Cy, values given by the KNN regressor using the early time 100
expectation values of the qubit pair as a function of A and w;/w,
forJ =0.1

of C}, based directly on the training data in Fig. 2, we reran
the entire simulation considering slight adjustments +¢ in the
parameters w; /w; and A, where —0.0001 < ¢ < 0.0001. This
has in fact allowed us to train the KNN algorithm using the
original dataset and evaluate its prediction performance on
a new and independent dataset. In Fig. 2(b), we show the
predicted values of the Pearson coefficient Cj, once again,
fixing J = 0.1. However, we note that this particular choice
of J is made just for visualization purposes and that the KNN
algorithm has actually been trained with a certain range of J
values. We show the calculated and predicted Cj, plots side by
side in Fig. 2. As can be seen by comparing the calculated and
predicted Pearson coefficient plots Cj,, the KNN algorithm
appears to perform very well in predicting different synchro-
nization behaviors in this model, i.e., synchronization and
antisynchronization regimes and lack of synchronization. To
quantify the accuracy of the algorithm, we calculate the mean
absolute error (MAE) for the predicted values as compared to
the calculated ones using the expression

1 n
MAE = — i — il 11
=D Iy =3l (11

i=1

where n is the number of data points, y; is the calculated
Cy, value, and J; is the predicted Cj, value. That is, MAE
is simply given by the absolute value of the difference be-
tween the calculated and predicted values averaged over all
data points. For the prediction results displayed in Fig. 2, we
find MAE = 0.009, which exhibits the success of the KNN
algorithm in inferring the long-time synchronization behavior
of the model even though it only has access to early time
expectation values for the system qubits calculated for the first
100 collisions.

Moreover, to examine a more realistic scenario, we take
into account potential errors in the measurement of the local
expectations values of the qubits, which can naturally occur
in an experimental setting. As mentioned previously, we sim-
ulate these errors by summing the expectation values with a
random number € taken from the interval € € [—1, 1], which
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Error added on the test data (%)

FIG. 3. MAE for the Pearson coefficient Cj, in the first collision
model in terms of the percentage error that is added to the calculated
expectation values of the qubits (o7 ) and (o). Four different lines in

the legend correspond to the cases of feeding the KNN regressor with
5, 10, 50, and 100 pairs of qubit expectation values for prediction.

is then multiplied by an error rate between 0.005 and 0.05.
In other words, we consider a percentage error rate between
0.5 and 5% in the expectation value measurements of both
qubits. We also perform the same analysis displayed in Fig. 2,
where the first 100 expectation values are used as the input
of the KNN regressor, but this time using the first 5, 10, and
50 expectation values of the qubit pair as the input of the
algorithm. We summarize the outcomes of our simulations
in Fig. 3, where the dotted red, dot-dashed green, dashed
orange, and solid blue lines display how the MAE for the
Pearson coefficient Cy; scales with the added percentage error
to the expectation values of qubits, (o) and {0y, ), when the
expectation values after the first 100, 50, 10, and 5 collisions
are used for prediction, respectively. Based on these results,
it is quite clear that there exists a tradeoff relation between
the number of expectation values of the qubits used for the
prediction of Cj, and the robustness of the KNN regression
algorithm against errors. Particularly, the predictions of the al-
gorithm regarding the synchronization properties of the model
are quite susceptible to even a small percentage of errors when
its input involves a small number of qubit expectation values,
as can be seen from the case of five expectation values for
each qubit shown by the solid blue line in Fig. 3. On the other
hand, we also observe that once the algorithm has access to 50
or 100 expectation values for each qubit, then it can actually
make quite accurate predictions of the Pearson coefficient
C1». Indeed, in such cases, increasing the percentage error in
the expectation values from 0.5 to 5% only very marginally
changes the MAE, which is not even visible to the eye in
Fig. 3. All in all, these results suggest that, in the case of
the first collision model describing the local dissipation of
one of the qubits in the pair, our machine learning approach
based on the KNN regression algorithm is quite effective in
predicting different regimes of synchronization or its absence
accurately. We should lastly emphasize once again that 50
to 100 expectation value measurements for each qubit at the
early stages of the dynamics turn out to be sufficient to predict
the long-time synchronization behavior of this model with
high accuracy, despite the presence of potential measurement
errors in a given experimental setup.
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FIG. 4. The second collision model. (a) The Pearson coefficient
C\,, calculated for the late time 100 expectation values of the system
qubits (o7) and (0;,),asa function of the direct interaction strength
A between them and the detuning between their self-energies w; /.
(b) Predicted Cy, values given by the KNN regressor using the early
time 100 expectation values of the qubits as a function of A and
[} / wy.

Having demonstrated the performance of our approach in
the first collision model, we now turn our attention to the
second collision model depicted in Fig. 1(b), which describes
the global dissipation of the qubit pair in the sense that both
qubits interact with the same environmental particle at each
iteration. Similarly to the first collision model, we set the
initial states of the system qubits s; and s as |5, ) = |¥s,) =
(10) + |1))/\/§, and choose the model parameters as ¢, =
oty = 0.2, 8t = 0.05, and J = 1.0. After fixing the model
and system parameters, we create our data set considering the
values of detuning w; /@, from 0.93 to 1.08 in steps of 0.002
and the direct coupling strength A from 0.0 to 0.01 in steps of
0.002. This gives us a total of 3876 different configurations for
the model parameters. We obtain the open-system evolution
of the model and the expectation values (o7 ) and (oy,) for
each of these configurations for 5000 collisions, after which
point the expectation values become negligibly small. Then,
we calculate the Pearson coefficient Cj, for the expectation
values of the system qubits considering the last 100 collisions
to see the long-time synchronization behavior. In Fig. 4(a),
the Pearson coefficient C), is plotted as a function of the
direct coupling strength A and the detuning w;/w, between
the self-energies of the qubits. Unlike the first collision model,
where both synchronization and antisynchronization can oc-
cur depending on the detuning between the self-energies of the
qubits, here it is only possible to observe antisynchronization,
which emerges if the direct coupling between the qubit pair is
sufficiently strong to compensate for the detuning.

Using the same approach as we followed in the examina-
tion of the first collision model, we train the KNN regressor
with the corresponding expectation values (o}, ) and (o)) cal-
culated for the first 100 collisions, and the Pearson coefficient
C; evaluated for the last 100 collisions. In Fig. 4(b), we show
the Pearson coefficient Cj, predictions performed by the KNN
algorithm. We should also emphasize that we prevent the re-
gressor from having access to the training data by readjusting
it with small deviations & from the model parameters A and
w1 /wy, as has been done for the case of the first collision
model. Directly comparing the plots for the calculated and
predicted Cj, values side by side in Fig. 4, it can be observed
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FIG. 5. MAE for the Pearson coefficient C;, in the second col-
lision model as a function of the percentage error added to the
calculated expectation values (o7 ) and (o7, ). Four different lines in
the legend correspond to the cases of feeding the KNN regressor with
5, 10, 50, and 100 pairs of qubit expectation values for prediction.

that the KNN regression algorithm achieves a high accuracy
in predicting the long-time synchronization properties of the
considered model. Indeed, MAE in this case turns out to be
0.040. Lastly, we consider possible measurement imperfec-
tions for the expectation values of the qubits. Taking into
account random percentage errors in the qubit expectation
values (o7)) and (oy)) between 0.5 and 5%, we repeat the
same investigation to understand how resilient our machine
learning approach, based on the KNN regressor, is against
potential errors in algorithm input. We present the results
of our calculations in Fig. 5, where the first 5, 10, and 50
expectation values of the qubit pair are considered as an input
in addition to the case of the first 100 expectation values. In
Fig. 5, the dotted red, dot-dashed green, dashed orange, and
solid blue lines demonstrate how the MAE for Cj, changes
with the percentage error in the expectation values of the qubit
pair when the first 100, 50, 10, and 5 expectation values are
used for prediction, respectively. We observe that the KNN re-
gression algorithm can provide reliable predictions regarding
synchronization also in the second collision model, even in the
presence of measurement errors in a realistic setting provided
that the number of expectation values for each qubit, which
are used as input variables, is sufficient.

To summarize this subsection, we see that our machine
learning approach to the prediction of synchronization in
open system dynamics proves to be quite successful in two
distinct models. That is, in both local and global dissipa-
tion regimes described within the collision model framework,
the KNN regressor can accurately foretell the emergence
of (anti)synchronization or its absence in the long-time dy-
namics, only using the early time expectation values of the
considered qubit observables.

B. Master equation model

Up to this point, we have considered two open-system
models which represent local and global dissipation scenarios,
making use of the collisional model framework. We have seen
that our machine learning-based approach to the detection of
the dynamical emergence of synchronization performs quite
accurately in both models despite potential experimental er-

Calculation Prediction
0.05 C12
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0.03 -04
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FIG. 6. The master equation model. (a) The Pearson coefficient
C\,, calculated for the late time 100 expectation values of the qubits
(o) and (o;,), asa function of the exchange interaction strength fi,
between them and the detuning between their self-energies w;/ws.
(b) Predicted Cy, values produced by the KNN regressor using the
early time 100 expectation values of the qubit pair in terms of fi,
and w1 / wy.

rors in the qubit expectation value measurements. As a last
test, we consider an open-system model described by a master
equation, where two two-level atomic particles (or qubits)
interact with an electromagnetic field fully collectively. In this
setting, depending on the detuning between the self-energies
of the qubits and the direct coupling between them, it is
possible to observe phase-locked oscillations of expectation
values, where the phase difference is not necessarily 7 or 0,
i.e., time-delayed synchronization [32].

Let us first recall that we will consider the collective dis-
sipation of the qubit pair in the zero-temperature limit, hence
we fix =0 and g;; = 1. Also, we set the initial states of
the system qubit pair as |y,) = (|0) + |1))/\/§ and |yg,) =
(10) + e=*/3|1))/+/2. To create our data set, we let the de-
tuning between the self-energies of the qubits w;/w, acquire
values between 1.0 and 1.1 in steps of 0.001, and the strength
of the exchange interaction between the qubits f1, between 0
and 0.05 in steps of 0.001. As a result, we obtain 5151 dif-
ferent model parameter configurations, for each one of which
we simulate the open system dynamics and then calculate the
expectation values (o} ) and (oy,) until # = 500. We note that
at this point in the dynamics, the system already displays its
long-time behavior, and here we simulate the time evolution
in discrete time steps, i.e., taking r =0, 1, ...,500. Next,
we evaluate the Pearson coefficient Cj, for the expectation
values of the qubit pair observables, taking into account the
last 100 time steps in the dynamics, which shows us the long-
time synchronization behavior of the open system model. We
demonstrate the outcomes of our calculations in Fig. 6(a). It is
straightforward to notice that when the exchange interaction
between the qubits is sufficiently strong to compensate for the
detuning between their self-energies, full antisynchronization
emerges between the expectation values of the qubit observ-
ables. In addition, for this model, it is known that even if
the expectation values do not get fully antisynchronized, there
still occurs time-delayed synchronization [32]. In other words,
even if the Pearson coefficient Cj; # —1 in a long time, it
still settles to a constant value between 0 and —1 as shown
in Fig. 6(a), which signals the onset of oscillations having a
fixed phase difference between the expectation values.
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FIG. 7. MAE for the Pearson coefficient C}, in the master equa-
tion model in terms of the added percentage error to the calculated
expectation values of the qubits (aj] ) and (ajz ). Four different lines in
the legend correspond to the cases of feeding the KNN regressor with
5, 10, 50, and 100 pairs of qubit expectation values for prediction.

Finally, we will check the ability of the KNN regressor
to predict the synchronization behavior of the qubit pair for
the considered master equation model. As has been done for
the collision models, we feed the KNN regressor with the
dataset for this configuration, which involves the qubit expec-
tation values (o7 ) and (o) calculated at the first 100 time
points, and the Pearson coefficient C}, evaluated considering
the last 100 time points. The predicted C;, values produced
by the KNN regression algorithm are shown in Fig. 6(b) side
by side with the calculated Cj, values. It is obvious from
the comparison of the plots that our approach based on the
KNN regressor performs excellently in predicting the syn-
chronization properties of the model. In fact, the MAE in this
case is calculated to be only 0.002. To complete this section,
we now consider the potential measurement inaccuracies in
the expectation values to assess the robustness of our machine
learning-based approach against errors. Similarly to the pre-
viously studied models, we randomly add percentage errors
to the expectation values of the qubit pair between 0.5 and
5%, and perform the same analysis by considering 5, 10, 50,
and 100 early time expectation values as the input of the
regressor. Figure 7 displays the results of this investigation,
where the dotted red, dot-dashed green, dashed orange, and
solid blue lines show how the MAE for the Pearson coefficient
C1> changes as a function of the percentage error added to
the expectation values (o7)) and (oy.), when the expectation
values at the first 100, 50, 10, and 5 time points are given to
the regressor for prediction, respectively. It is evident from
Fig. 7 that as long as ten or more early time expectation
values for the qubit pair are fed to the algorithm as input, the
KNN regressor does an excellent job predicting the late time
synchronization behavior of the model despite the presence of
errors in the expectation values.

C. Possible physical error mechanisms

In this section, we will investigate possible error mecha-
nisms that could affect the state of the quantum system in
question, prior to the prediction stage. We will assume that
our algorithm is trained with the data obtained from the ideal

0.12 ' ' 5
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FIG. 8. MAE for the Pearson coefficient C, in terms of the error
probability in the initial state that is fed into the KNN regressor for
the ME model, LCM, and GCM using 100 early time expectation
values.

case and try to assess the impact of such potential errors as
quantified via the MAE.

First, we intend to examine the effects of initialization
errors, which might occur in experiments, on the initial state
of the system. To account for realistic conditions, we now
consider a modified initial state for all three models that is
described by the density matrix:

p=pl+H++I+dA-—p)(+ N+ —[+[—F)N=+D.
(12)

This modification accommodates the potential of qubit states
being incorrectly initialized through two specific mechanisms:
a phase error where an intended |+) state initializes as |—),
or a bit-flip error since the state |[+) can be generated from
the |0) state via a Hadamard gate. In the latter case, 1 — p
reflects the probability that the initialization intended for the
state |0) actually ended up to give the state |1), leading to the
unintended creation of a |—) state by the Hadamard trans-
formation. Such errors are relatively common, particularly
in superconducting qubit platforms, where there is always a
nonzero probability of measuring the state |1) (]0)) when the
intention was to create the state |0) (]1)) [73]. In Fig. 8, we
present the MAE as a function of 1 — p, i.e., the probability
of having an initialization error, which shows us how sensitive
our method is to a possible initial-state error in the prediction
stage for the three different models.

In all of the cases investigated in this subsection, we calcu-
late the expectation values using 100 time points. We also note
that here we refer to the first and second collision models as
the local collision model (LCM) and global collision model
(GCM) for presentation purposes. We observe in Fig. § that
the ME model demonstrates the least sensitivity to initial-
ization errors, maintaining a consistently low MAE, with an
increase from 0.002 (in the absence of initialization errors) to
values still below 0.01. In contrast, LCM and GCM exhibit
higher MAEs, with the LCM’s MAE increasing from 0.009 to
approximately 0.02 and the GCM’s MAE rising from 0.04 to
the order of 0.1. Despite these increases, the overall changes
in MAE remain modest, which shows the robustness of our
method against initialization errors. Notably, the GCM expe-
riences a relatively more significant effect, with MAE now in
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FIG. 9. MAE for the Pearson coefficient C}, as a function of the
temperature of the environment for the ME model, LCM, and GCM
considering 100 early time qubit expectation values.

the order of 10% when considering initialization errors. Such
errors still remain relatively low, highlighting the efficiency of
our approach.

Furthermore, we have explored how the temperature of
the environment influences the ability of the algorithm to
predict the emergence of (anti)synchronization across all three
considered models. To this aim, we have evaluated the pre-
diction performance of the KNN regressor in the presence
of nonzero environmental temperatures, when the algorithm
is still trained using the zero-temperature data. In order to
take into account the temperature effects, we assume that the
density matrices of the environmental qubit in both local and
global collision models are given by pg = (1 — p)|0)(0] +
pl1){1]|, with p ranging from 0.01 to 0.05. Physically, this
implies that the environment is actually found in a mixed
thermal state, reflecting the effects of the temperature. In
particular, as p changes from 0.01 to 0.05, a gradual increase
in the environmental temperature is being simulated, where
the probability of the environment being in the ground state
decreases while at the same time its probability of being in
the excited state increases. On the other hand, in case of the
master equation model, we slightly vary the average number
of photons, allowing 7 to change from 0.01 to 0.05 in Egs. (8)
and (9), which lets us analyze the effect of the temperature of
the environment on the performance of the KNN regressor.

In Fig. 9, we display the MAE for our predictions ob-
tained utilizing the KNN regressor, trained with the ideal
dataset, as a function of the environment temperature for all
three models. We observe that for the GCM and ME, the
MAE slightly increases as the environment temperature rises.
Nonetheless, in case of the LCM, where one of the qubits is
not directly in contact with the environment, the performance
of our approach is basically indifferent to the changes in the
environment temperature.

VI. CONCLUSION

To sum up, we have employed a machine learning tech-
nique, based on the KNN regression algorithm, to predict the
emergence of environment-induced spontaneous synchroniza-
tion between the expectation values of observables for a pair
of qubits in the dynamics of open quantum systems. We have
considered three different open system models that cover lo-
cal, global, and collective dissipation regimes. While the first

two models are described within the collisional model frame-
work, the third one is represented by a master equation of
Lindblad form. We have demonstrated that in all of these
three models, our machine learning-based approach is able to
identify the long-time synchronization behavior of the open
system with quite high accuracy, only utilizing the early time
expectation values for the qubit observables as an input. In
fact, we have shown that the machine learning algorithm not
only very accurately estimates the onset of synchronization
or antisynchronization between the qubit expectation values
but also the phase-locked oscillations between them with ar-
bitrary phase difference, i.e., time-delayed synchronization.
The proposed approach has the potential to be useful in
experiments since it can significantly reduce the number of
measurements required to determine the dynamical establish-
ment of synchronous evolution. To see the robustness of our
approach against potential measurement imperfections in an
experimental setting, we added random errors to the simulated
qubit expectation values and benchmarked the capability of
our method to recognize the synchronization behavior in the
models considered. Additionally, we have tested the robust-
ness of our model to small variations in the initial state of
the system, as well as to temperature, showing that despite
a slight increase in the MAE, the predictions remained fairly
accurate. We have established a tradeoff relation between the
degree of randomly introduced error in the expectation values
and the accuracy of the algorithm to predict synchronization.
All in all, our results demonstrate that despite the presence of
errors in the input values of the KNN regressor, the proposed
approach still works with high accuracy as long as a few dozen
early time qubit expectation values are introduced to the algo-
rithm for prediction. The fact that the employed method works
accurately in three different open system scenarios suggests
that it might actually be applied in a wide range of physical
models efficiently. Lastly, motivated by the performance of the
employed machine learning approach in successfully predict-
ing the appearance of mutual synchronization between two
qubits, one can try to apply similar methods to more sophisti-
cated problems involving a higher number of principal quan-
tum spins or oscillators, where exotic dynamical states such as
chimera states can emerge under suitable conditions [74,75].
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APPENDIX: EARLY TIME BEHAVIOR AND EMERGENCE
OF SYNCHRONIZATION

We present the explicit dynamics of the spin expectation
values for all three models we consider in the paper in Fig. 10.
All subfigures include presynchronization dynamics together
with the emergence of (anti)synchronized dynamics in all
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FIG. 10. Dynamics of the local spin expectation values of the two qubits for the LCM (upper), GCM (middle), and ME model (lower),
which display both their presynchronous dynamics and also the emergence of dynamical transition into the (anti)synchronous behavior.

three models. Once the synchronous behavior is established
between the observables, it persists either in the steady state or
until the expectation values decay to zero. The time window
that we use to train the machine learning algorithm consists
of the data after the synchronization is established. Then,
using this algorithm, we try to predict synchronization by

looking at the very early time data (up to first 100 points)
where the synchronization is not yet established, as outlined
in Sec. III. Therefore, we believe that our approach to the
problem is a promising way to guess the late time behavior of
a property of a quantum system by looking at the early time
dynamics.
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