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Quantum-assisted Hilbert-space Gaussian process regression
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Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning.
Due to their probabilistic nature, they can be used to capture prior information on the statistics of noise,
smoothness of the functions, and training data uncertainty. However, their computational complexity quickly
becomes intractable as the size of the data set grows. We propose a Hilbert-space approximation-based quantum
algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination
of classical basis function expansion with quantum computing techniques of quantum principal component
analysis, conditional rotations, and Hadamard and SWAP tests. The quantum principal component analysis
is used to estimate the eigenvalues, while the conditional rotations and the Hadamard and SWAP tests are
employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial
computational complexity reduction over the classical method.
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I. INTRODUCTION

Gaussian processes (GPs) are probabilistic machine learn-
ing methods widely used in applications such as robotics
and control, signal processing, geophysics, climate model-
ing, financial markets, and data mining, as well as Bayesian
optimization and probabilistic numerics [1–4]. GPs are non-
parametric probabilistic models that can be used for modeling
multidimensional nonlinear functions through their mean
and covariance functions [5,6]. However, the traditional GP
regression (GPR) methods struggle with computational ef-
ficiency, especially when handling large datasets [7]. This
limitation becomes particularly pronounced in fields where
rapid processing of large-scale data is critical. In this paper, to
tackle this challenge, we aim to accelerate the GPR through
quantum computing.

The main computational complexity of GPR arises from
the computation of the mean and variance of the posterior dis-
tribution. This process becomes increasingly computationally
heavy with larger datasets, with computational and memory
requirements scaling as O(N3) and O(N2), respectively, for N
observations of input data. To alleviate this problem, various
methods have been proposed. In the inducing-point meth-
ods [8–10] the covariance matrix is approximated using a
smaller number M of inducing points than the full training set,
which reduces the computations to O(NM2) or O(M3) (for
likelihood evaluation and prediction, respectively).
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In this paper, we concentrate on low-rank methods [11–13]
which are based on approximating the precision matrix via a
set of M basis functions which also brings the computational
complexity down to O(NM2) or O(M3). In particular, we use
the method proposed by Solin and Särkkä [7] which uses the
Hilbert space of eigenfunctions defined by a Laplace operator
to approximate the covariance function, which offers a tunable
balance between computational complexity and approxima-
tion accuracy [7,14].

In recent years, quantum computers have emerged as po-
tential replacements for classical computers [15]. They offer
exponential reductions in computational complexity for ma-
chine learning tasks. Quantum computing uses the principles
of quantum mechanics to implement computational tasks and
has been demonstrated for certain types of problems [16],
for example, integer-number factoring [17], fast database
search [18], and matrix inversion [19].

Many quantum algorithms have been proposed for ac-
celerating machine learning tasks. Among the plethora of
quantum algorithms, the Harrow-Hassidim-Lloyd (HHL)
matrix-inversion algorithm [19] is often used to accelerate
machine learning tasks. It serves as the foundation for vari-
ous other algorithms such as quantum linear regression and
quantum support vector machines [20–22]. However, the HHL
algorithm has its challenges, for example, in quantum state
preparation, unitary simulation, sparsity, and matrix condi-
tioning [23].

An HHL-based algorithm for quantum-assisted Gaussian
process regression was introduced in [24]. This algorithm
assumes that quantum state preparation and unitary simula-
tion can be performed efficiently. Importantly, this algorithm
addresses the inherent limitations of the HHL approach by
appropriately selecting the covariance function to construct
s-sparse matrices and also carefully adjusts the noise param-
eters to ensure that the matrix remains well conditioned, as
indicated by a condition number κ . To achieve a desired
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level of accuracy ε, it exhibits a run time that scales as
O( log(N )κ2s2/ε).

The quantum principal component analysis (qPCA) is
another quantum machine learning algorithm that draws in-
spiration from the HHL algorithm to estimate the dominant
eigenvalues and eigenvectors [25]. The authors of [26] pro-
posed a method to prepare the covariance matrix on a
quantum computer using annihilation and creation opera-
tors and implemented the concept of qPCA to approximate
the mean and variance of the GPR. This approach aims to
achieve polynomial speedup compared to classical algorithms
by overcoming the quantum-state-preparation and efficient-
unitary-simulation assumptions.

Our methodology begins with the approximation of the
kernel function using Hilbert-space basis functions. Subse-
quently, we provide encoding schemes for the dataset on a
quantum computer. One of them aims to reduce the classical
preprocessing of the algorithm by implementing the Hilbert-
space functions through quantum unitary operations. We then
apply qPCA to extract dominant eigenvectors and eigenvalues
for a nonsparse low-rank matrix and insert them into a quan-
tum register. To derive the posterior mean and variance for
reduced-rank Gaussian process regression, we employ con-
ditional controlled rotations followed by the Hadamard tests
for the mean and the SWAP tests for the variance. We also
include numerical examples to demonstrate and validate the
effectiveness of our proposed method.

The contribution of this paper is to develop a fast
Gaussian-process-regression algorithm by implementing the
Hilbert-space approximation of the kernel presented in [7]
on a quantum computer. This classical approach already
shifts the prediction complexity of Gaussian processes from
O(N3) to O(M3), reducing the dependence from the num-
ber of observations N to the number of eigenfunctions M
used to approximate the kernel. Our implementation re-
duces the quantum Gaussian-process-regression complexity
O(log(N )κ2s2/ε) of the method in [24], when data are given
in quantum states, to O(log(M )ε−3κ2). Furthermore, when
we consider data uploading, the method has a complexity
reduction to O(poly[log(NM )] log(M )ε−3κ2). Finding real-
world applications in which quantum solutions show superior
performance over classical methods is a challenging task.
This paper demonstrates a polynomial speed advantage over
existing classical algorithms for low-rank approximation in
GP regression.

The structure of this paper is as follows. In Sec. II,
we review the classical formulation for the Hilbert-space
approximation of GPR. We provide the quantum-assisted
Hilbert-space GPR algorithm in Sec. III. The complexity
analysis of the proposed algorithm and a comparison with
state-of-the-art methods are given in Sec. IV. Section V dis-
cusses the numerical implementation of our algorithm on a
classical simulator. We then conclude our findings in Sec. VI.

II. HILBERT-SPACE APPROXIMATION OF GAUSSIAN
PROCESS REGRESSION

In this section, we summarize the classical Hilbert-space
method for reduced-rank GPR [7] and show how GPR can
be rewritten in terms of eigenvalues and eigenvectors. We

first briefly review the classical GPR. Then, we show how
to approximate the kernel using a Hilbert space of functions
defined by the eigenspace of the Laplace operator. Finally, we
show how GPR can be expressed in terms of singular-value
decomposition (SVD). This allows us to write these quanti-
ties in a suitable form so that they can be calculated using
quantum states.

A. Gaussian process regression

Gaussian process regression [5] is a method for model-
ing and predicting multidimensional data. Consider a dataset
D = (xi, yi )N

i=1, where each {xi}N
i=1 is a d-dimensional input

vector and yi is its corresponding measurement. In GPR, we
aim to estimate an underlying function f (x) by modeling it
as a realization of a Gaussian process. The measurements
are then Gaussian distributed with added Gaussian noise εi ∼
N (0, σ 2):

f ∼ GP (0, k(x, x′)), (1)

yi = f (xi ) + εi, (2)

where k(x, x′) denotes the covariance function (kernel),
which is a positive-semidefinite function k : � × � → R.
The choice of kernel function drives the quality of the es-
timation. A common kernel choice for GPR is the square
exponential covariance function [5]:

k(x, x′) = σ 2
f exp

(
− 1

2l2
‖x − x′‖2

)
, (3)

where σ f and l are the signal-scale and length-scale hyperpa-
rameters, respectively.

The objective in GPR is to predict the mean and variance
of the output for new inputs x∗. These predictions are derived
from the posterior distribution, which is also Gaussian:

p( f∗ | x∗) = N ( f∗ | E [ f∗],V [ f∗]). (4)

The mean and variance of the posterior distribution are given
by [5]

E [ f∗] = k�
∗
(
K + σ 2I

)−1
y, (5)

V [ f∗] = k(x∗, x∗) − k�
∗
(
K + σ 2I

)−1
k∗. (6)

Here, we denote by y the vector with components yi from the
dataset; K is the N × N matrix, with entries Ki j = k(xi, x j )
consisting of covariance functions between all input points
in the training set, and k∗ is the covariance vector, with the
ith entry being k(x∗, xi ). The kernel function can be approx-
imated by a set of basis functions in a suitable Hilbert space,
as will be discussed next.

B. Kernel-function approximation

We can approximate a kernel function by considering the
eigenvalue problem of the Laplace operator [7]:

−∇2φ j (x) = λ jφ j (x), x ∈ �,

φ j (x) = 0, x ∈ ∂�, (7)

where the domain � behaves well enough that the eigen-
functions and eigenvalues exist. The functions φ j (·) are
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orthonormal with respect to the inner product,∫
�

φi(x)φ j (x)dx = δi j, (8)

which also defines a Hilbert space.
All the eigenvalues λ j of the Laplace operator are real and

positive. If the kernel function is isotropic k(x, x′) = k(||x −
x′||), then its eigenvalues are given by the scalar function
S(ω), called the spectral density, which is the Fourier trans-
form of h 
→ k(||h||). It turns out that we can approximate the
kernel function in the domain � by [7]

k(x, x′) ≈
M∑

j=1

S(
√

λ j )φ j (x)φ j (x′). (9)

Using this Hilbert-space approximation of the kernel function,
we can reformulate Eqs. (5) and (6). This modification allows
for computationally efficient approximations for the mean and
covariance of the GP:

E [ f∗] ≈ φ�
∗ (��� + σ 2�−1)−1��y, (10)

V [ f∗] ≈ σ 2φ�
∗ (��� + σ 2�−1)−1φ∗, (11)

where � is a diagonal matrix with components � j j =
S(

√
λ j ), the matrix � has components �i j = φ j (xi ), and φ∗

has components φ j (x∗). We refer to this approximation as
the Hilbert-space approximation for Gaussian process regres-
sion (HSGPR) [14]. The approximation of the kernel now
depends on the domain � and the set of eigenfunctions cho-
sen in this domain. For the implementation in this paper,
we chose � in the domain [−L, L]. The Laplace operator in
this domain gives rise to the set of sinusoidal eigenfunctions
φ j (x) = L−1/2 sin[π j(x + L)/2L] with their corresponding
eigenvalues λ j = (π j/2L)2. Additionally, we implement the
approximation over the square exponential covariance func-
tion, whose spectral density is S(ω) = σ 2

f

√
2π l exp(− l2ω2

2 ).
This kernel approximation allows us to reduce the complexity
of the matrix inversion needed to find the mean and variance
of the GPR.

C. Mean and variance of reduced-rank GPR
using singular-value decomposition

In this section, we will convert the mean and variance
expressions of GPR into a form that enables them to be ex-
pressed as expected values of quantum states and calculated
using a quantum computer. Before applying our quantum
algorithm, we modify Eqs. (10) and (11). For the GPR, we
need the eigenvalues and eigenvectors of (��� + σ 2�−1)
which we wish to express in terms of ���. We need to
reformulate in such a way that both quantities have the same
set of eigenvectors, allowing us to write the mean and variance
of the GPR in terms of this common set of eigenvectors. This
will enable us to write these quantities in terms of the expected
values of quantum states.

To address this, we define X = �
√

� ∈ RN×M , where√
� is a diagonal matrix with elements

√
�ii =

√
S(

√
λi),

which gives

E [ f∗] = X�
∗ (X�X + σ 2I)−1X�y, (12)

V [ f∗] = σ 2X�
∗ (X�X + σ 2I)−1X∗, (13)

where X�
∗ = φ�

∗
√

�. Now the eigenvectors of (X�X + σ 2I)
are the same as those of X�X.

We then begin by applying the SVD to the real data ma-
trix X, which is then expressed as X = U�V�. Here, � ∈
RR×R is a diagonal matrix containing the real singular values
λ1, λ2, . . . , λR, and the orthogonal matrices U ∈ RN×R and
V ∈ RR×M correspond to the left and right singular vectors,
respectively. Taking into account the sum of X�X and σ 2I, we
derive X�X + σ 2I = V�′V�, where �′ is a diagonal matrix
with elements �′

ii = λ2
i + σ 2. Then, the eigendecomposition

of (X�X + σ 2I)−1X� is given by

(X�X + σ 2I)−1X� = V�′′U�, (14)

where �′′ has diagonal components �′′
ii = λi

λ2
i +σ 2 . We can write

Eq. (14) as

(X�X + σ 2I)−1X� =
R∑

r=1

λr

λ2
r + σ 2

vru�
r . (15)

Then, the mean of the GPR can be expressed using the
SVD as

E [ f∗] = X�
∗ (X�X + σ 2I)−1X�y =

R∑
r=1

λr

λ2
r + σ 2

X�
∗ vru�

r y.

(16)

Similarly, we can write the variance of GPR using the SVD
as

V [ f∗] = σ 2X�
∗ (X�X + σ 2I)−1X∗

= σ 2
R∑

r=1

1

λ2
r + σ 2

X�
∗ vrv�

r X∗. (17)

We have now expressed the mean and variance of GPR in
a form that allows us to compute each of them as expected
values of quantum states, which we will do in the next section.

III. QUANTUM-ASSISTED HILBERT-SPACE GPR
ALGORITHM

In this section, we propose a low-rank method for
quantum-assisted Gaussian process regression which we call
quantum-assisted Hilbert-space Gaussian process regression
(QA-HSGPR). For its implementation, we have to encode
the data matrix X�X into a quantum state. After that, we
can implement a quantum algorithm that allows us to extract
its eigenvalues. Then, we build the quantum circuits whose
expected values correspond to the mean and variance that
characterize the GPR.

A. Quantum state preparation from the dataset

Quantum computers encode classical information into
quantum states using qubits [27]. A quantum state with n
qubits can be expressed as a 2n-dimensional vector |ψ〉 =
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∑2n−1
i=0 ai |i〉, where {|i〉} represents the computational basis

{|0 · · · 0〉 = |0〉 , . . . , |1 · · · 1〉 = |2n − 1〉}. The coefficients ai

are complex numbers that satisfy the normalization condition∑2n−1
i=0 |ai|2 = 1. We use the notation 〈ψ | to represent the

conjugate transpose of the quantum state |ψ〉.
We use an amplitude-state-encoding scheme to prepare the

quantum state [28]. The amplitude quantum state encoding
encodes the classical vector (α1 α2 · · · αn)� into the coeffi-
cients of the quantum state. We begin by obtaining a matrix
X ∈ RN×M using the eigenfunction of the Laplace operator in
the given domain. We then vectorize the matrix X and encode
it using the amplitude-state-encoding scheme [28]. We can en-
code the vectorized matrix X into a quantum state in two ways.
First, the computation of the sinusoidal functions and spectral
density is performed on a classical computer. We can com-
pute these functions classically with O(NM ) computational
complexity. A second method is provided in the Appendix.
That method aims to reduce the classical preprocessing of
the algorithm by implementing the basis functions through
quantum unitary operations. The resulting state is

|ψX〉 =
M−1∑
m=0

N−1∑
n=0

xm
n |m〉 |n〉. (18)

Here, xm
n represents the value of the classical data at position

n, m of the data matrix X. It is important to note that the entries
xm

n must satisfy the condition
∑

n,m |xm
n |2 = 1. This ensures

that the quantum state is properly normalized.
Encoding data into a specific quantum state |ψX〉 as given

in Eq. (18) generally involves a computational complex-
ity of O(NM ) in the conventional quantum-state-preparation
methodologies [28,29]. This complexity measure refers to
the total number of quantum gates necessary to achieve
the intended outcome. An approximate quantum-amplitude-
encoding procedure was recently proposed for more efficient
state preparation [30]. In that scheme, quantum state prepa-
ration is achieved in O(poly[log(NM )]) when dealing with a
real data matrix. The low-rank matrix X for HSGPR consists
of real-valued entries, which would allow us to prepare it
efficiently.

B. Estimation of eigenvalues

In this section, we show how to extract the eigenvalues
of the symmetric matrix X�X and store them in an ancillary
quantum register. This allows us to easily perform the con-
ditional rotation operation, which is necessary to obtain the
desired amplitude quantities in Eqs. (16) and (17). Using the
Gram-Schmidt decomposition in Eq. (18), we can reexpress
|ψX〉 as [31]

|ψX〉 =
R∑

r=1

λr |vr〉 |ur〉. (19)

Let us consider the density matrix ρX�X = Trn |ψX〉 〈ψX| by
disregarding the |n〉 register, where Trn is the partial trace on
n qubits, which can be written as

ρX�X = Tr j{|ψX〉 〈ψX|} =
R∑

r=1

λ2
r |vr〉 〈vr | . (20)

τ

log (M)

log (N)

|0〉 R1

ψ1

|0〉 H QFT † QFT H

|ψX〉

FIG. 1. Here, qPCA is first employed on the matrix ρX�X. Fol-
lowing this, a conditionally controlled unitary operation is executed
based on the eigenvalue register. Finally, we revert the additional
τ -qubit register to its original state by executing the corresponding
inverse quantum operations to prepare the quantum state |ψ1〉.

This method of construction eliminates the requirement for
explicit computation of the term X�X on classical systems.
Next, we apply the unitary-evolution technique of qPCA [25]
ρX�X to register |m〉 of |ψX〉, resulting in

|ξ1〉 =
Z∑

z=0

|z�t〉 〈z�t | ⊗ e−ι̇zρX�X�t |ψX〉 〈ψX| eι̇zρX�X�t (21)

for some large Z , where the states |ξi〉 are intermediate
states along the algorithm. By utilizing the quantum-phase-
estimation algorithm, we can take the R dominant eigenvalues
of the operator ρX�X and write (cf. [31])

|ξ2〉 =
R∑

r=1

λr |vr〉 |ur〉
∣∣λ2

r

〉
, (22)

in which the singular values λr are encoded in the τ qubits of
an extra register.

C. Mean of Gaussian process regression

In this section, we provide the quantum method for com-
puting the mean of GPR. We employ the conditional unitary
on the ancilla qubit to invert the singular values. We add an
extra ancilla qubit. The added ancilla qubit is conditionally
rotated based on the eigenvalue register such that

|ξ3〉 =
R∑

r=1

λr |vr〉 |ur〉
∣∣λ2

r

〉

×
⎡
⎣

√
1 −

(
c1

λ2
r + σ 2

)2

|0〉 + c1

λ2
r + σ 2

|1〉
⎤
⎦,

where the parameter c1 is chosen such that the quantity c1
λ2

r +σ 2

remains upper bounded by 1. After the conditional unitary, we
reverse the computation in the τ -qubit register by performing
inverse operations of qPCA to bring them back into |0〉 states,

|ψ1〉 =
R∑

r=1

λr |vr〉 |ur〉 |0〉

×
⎡
⎣

√
1 −

(
c1

λ2
r + σ 2

)2

|0〉 + c1

λ2
r + σ 2

|1〉
⎤
⎦.

The quantum circuit for preparing the quantum state |ψ1〉 is
shown in Fig. 1.
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η|0〉

|0〉

|ψ1〉 |ψ2〉

H H

FIG. 2. Hadamard test circuit to estimate the mean of GPR. Here,
η = log2(NM ) + τ + 1 qubits.

We then prepare another quantum state |ψ2〉 =
|X∗〉 |y〉 |0〉 |1〉, where |X∗〉 = ∑

l xl
∗ |l〉 and |y〉 = ∑

l yl |l〉
are normalized quantum states that encode the X∗ and y
vectors, respectively. We use the Hadamard test to estimate
the inner product between these two states. The circuit
diagram of the Hadamard test is shown in Fig. 2.

The implementation of the Hadamard test begins with the
application of a Hadamard gate on the ancilla qubit. Depend-
ing on the state of the ancillary qubit, different quantum states
are generated: |ψ1〉 for state |0〉 and |ψ2〉 for state |1〉. This
results in the composite quantum state

|ψ3〉 = |0〉 |ψ1〉 + |1〉 |ψ2〉√
2

. (23)

Applying the Hadamard gate on the ancilla qubit leads to

|ψ3〉 = 1
2 [|0〉 ⊗ (|ψ1〉 + |ψ2〉) + |1〉 ⊗ (|ψ1〉 − |ψ2〉)]. (24)

Both |ψ1〉 and |ψ2〉 are real vectors, and their inner products
〈ψ1|ψ2〉 and 〈ψ2|ψ1〉 are equal. When measuring the ancilla
qubit, the probability p(0) of measuring the ancilla in state 0
is given by

p(0) = 1
2 + 1

2 〈ψ1|ψ2〉, (25)

where

〈ψ1|ψ2〉 = c1

R∑
r=1

λr

λ2
r + σ 2

〈X∗|vr〉 〈y|ur〉. (26)

Thus, we obtain an expression equal to the GPR mean as given
in Eq. (16) up to a multiplicative constant. This mean value
approximates the output function based on the data points and
can be estimated using a quantum circuit.

D. Variance of Gaussian process regression

In this section, we build the quantum circuit which com-
putes the variance of the Gaussian process regressor. For that
purpose, conditional rotation is applied on the eigenvalue reg-
ister such that

|ξ4〉 =
R∑

r=1

λr |vr〉 |ur〉
∣∣λ2

r

〉

×

⎡
⎢⎣

√√√√1 −
(

c2

λr

√
λ2

r + σ 2

)2

|0〉 + c2

λr

√
λ2

r + σ 2
|1〉

⎤
⎥⎦,

where the parameter c2 is chosen such that the quantity
c2

λr

√
λ2

r +σ 2
remains upper bounded by 1. We proceed with the

algorithm for measuring the ancilla qubit and consider only
the measurements in state |1〉. Then, discarding the eigenvalue

τ

log2(M)

log2(N)

log2(M)

|0〉 R2

|0〉 H QFT †

|ψX〉
e−iρ

X�X
t

|X∗〉

|0〉 H H

FIG. 3. Here, we illustrate the application of qPCA on the matrix
ρX�X. Initially, qPCA identifies the eigenvalues and eigenvectors of
the matrix. We then apply a conditionally controlled unitary on the
ancilla register based on the eigenvalue register. Finally, the SWAP

test is employed to estimate the variance of the GPR.

register, ancilla register, and right eigenvector register results
in the final state

|ψ ′
1〉 = 1√

p(1)

R∑
r=1

c2√
λ2

r + σ 2
|vr〉, (27)

where the probability of acceptance is given by

p(1) =
∑

r

∣∣∣∣∣ c2√
λ2

r + σ 2

∣∣∣∣∣
2

. (28)

We use the SWAP test to obtain the variance of GPR. We
prepare another quantum state |ψ ′

2〉 = |X∗〉. Using the SWAP

operations multiple times between 〈ψ ′
1〉 and 〈ψ ′

1〉, we can cal-
culate |〈ψ ′

1|ψ ′
2〉|2, which corresponds to the posterior variance

|〈ψ ′
1|ψ ′

2〉|2 = c2
2

p(1)

R∑
r=1

1

λ2
r + σ 2

|〈X∗|vr〉|2. (29)

This is the same expression as we derived in Eq. (17), up
to a multiplicative constant. We then multiply by the noise
variance σ 2 to obtain the variance of the Gaussian process
regressor. Figure 3 shows the circuit implementation for com-
puting the variance.

IV. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity
associated with our proposed method. The algorithm starts
with the quantum-state-preparation step. We employ an ap-
proximate quantum encoding scheme to prepare the quantum
state |ψX〉 ∈ RN×M . This process requires a computational
complexity of O(poly[log(NM )]). Similarly, the preparation
of the quantum state |ψ2〉 mirrors this complexity. The to-
tal complexity for the preparation of the quantum state is
O(poly[log(NM )]).

Following the state-preparation step, we implement qPCA.
The computational complexity for qPCA is O( log(M )ε−3),
where ε denotes the desired error tolerance. The next
phase involves a conditional unitary operation, achievable in
O( log( 1

ε
)). However, its complexity is relatively negligible

compared with the complexity of qPCA. For both the mean
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TABLE I. The time complexity of each step in the proposed
method.

Step Time complexity

Quantum state encoding O(poly[log(NM )])
qPCA O( log(M )ε−3)
Ancilla rotation O( log( 1

ε
))

Ancilla measurement O(κ2)

and variance calculations in GPR, the initial algorithmic steps
remain the same.

To calculate the mean of the GPR, we employ the
Hadamard test. The computational complexity of this test is
linear in the number of qubits, with measurement accounting
only for a constant factor which can be ignored. In the vari-
ance computation of the QA-HSGPR algorithm, the method
involves measurement after the unitary conditional rotation.
This requires O(κ4) operations on average to measure the
ancilla in the excited state. However, applying the techniques
of [19,20], we can reduce this to O(κ2). Following this, the
SWAP test, which is linear in the number of qubits, is ap-
plied. The measurement accounts for only a constant factor
which can be ignored. Therefore, the overall computational
complexity of the GPR is O(poly[log(NM )] log(M )ε−3κ2). A
detailed comparison of the computational complexity of each
step is summarized in Table I.

Classical Hilbert-space methods for GPR generally endure
a computational load of O(M3) [7]. In contrast, the mean
and variance computations of our algorithm demonstrate a
polynomially faster speed. We also compare our model with
that of Zhao et al. [24], whose algorithm complexity is
O( log(N )κ2s2/ε), depending on the number of observations
N , assuming that the data matrix is already prepared in the
quantum state. If we consider such an assumption, our method
would have a complexity O( log(M )ε−3κ2), which is primar-
ily dependent on the number of eigenfunctions M. This shifts
the focus in complexity to M rather than N in our model,
which significantly reduces the computational complexity,
especially in scenarios with large datasets where, usually,
M � N .

Furthermore, our method demonstrates significant im-
provements over the recently proposed quantum algorithm
for Gaussian process regression. This contemporary model
reports a time complexity of O(κ[ 1√

Pk
dN log( d

δ
) log(N )ε−3 +

poly[log(N )]]), where Pk denotes the probability of success
for creating the quantum state and δ indicates the precision of
the preparation of the state [26]. This complexity depends on
the dimension of the data points, which is not the case for our
method. We present a detailed comparison of our method with
existing approaches in Table II. This comparison reveals that
the overall complexity of our proposed scheme is substantially
lower than that of other existing methods.

V. NUMERICAL SIMULATIONS

In this section, we present the numerical results of our
proposed scheme. Our focus is on demonstrating the effective-
ness of the method by performing simulations on a classical

TABLE II. The time complexity of our proposed algorithm
against existing quantum and classical counterparts.

Computational complexity

With data Without data
Algorithm loading loading

QA-HSGPR O(poly(log NM ) log Mε−3κ2) O(log Mε−3κ2)
Zhao et al. [24] O(log Nκ2s2/ε)
Chen et al. [26] O( 1√

Pk
dN log d

δ
log Nε−3κ )

HSGPR [7] O(NM2)

computer. We use the built-in QISKIT function for quantum
state encoding in our simulation [32].

A. Quantum circuit simulation

Several factors influence the performance of our method.
A key aspect is the time parameter in the qPCA algorithm,
which we use to estimate the eigenvalues λ2

r in the quantum
register, as shown in Eq. (22). This estimation is done us-
ing the unitary operator U = e−iρX�Xt , where we define the
time parameter as t = 2π/δR. Following the phase-estimation
bounds detailed in [33], we can assert that δR > λ2

max, where
λ2

max represents the largest eigenvalue of operator ρX�X. But
for a good approximation of eigenvalues, δR should be slightly
greater than λ2

max. The qPCA estimation algorithm could also
give two different approximations to the same eigenvalue. To
avoid this problem, we checked the similarity between the dif-
ferent excited states after the qPCA algorithm and discarded
the states that likely represent the same eigenvalue in our
simulation. The distinguishing of the eigenvalues improves
when we increase the τ -qubit register.

We then select the dominant R eigenvalues. The selection
of the dominant eigenvalues R is a critical factor here. In
our demonstration, the selection is made such that the lowest
of the Rth eigenvalues exceeds 0.01. Specifically, the prob-
ability p of finding the desired state, as outlined in [31], is
bounded by

p � R

∣∣∣∣ λmin

λmax

∣∣∣∣
2

.

It is important to note that a significant decrease in the small-
est eigenvalue will proportionally decrease the probability of
measuring the desired state, requiring a higher number of
shots for an accurate estimation. We define the constant c1

as λ2
r + σ 2 and constant c2 as λr

√
λ2

r + σ 2 in our simulations.
To precisely mirror the classical results using a quantum

computer, a substantial number of qubits and a high number of
shots are required. Furthermore, optimizing the hyperparame-
ters is crucial for effective implementation of the algorithm.
Our algorithm is ideally suited for fault-tolerant quantum
computers.

B. Simulation results

To demonstrate the functionality of our method, we suc-
cessfully implemented it on a much smaller scale. Our
simulation involved N = 16 data samples derived from an
oscillating function in a symmetric length interval L = 2π ,
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FIG. 4. Mean of the GPR using the squared exponential kernel
(gray), the Hilbert-space approximation of the kernel with M = 4
eigenfunctions (black dashed line), and our reduced-rank approxi-
mation using a quantum circuit (blue lines) with N = 16 data points
(red cross). The blue lines range over R = 1, 2, 3, 4, showing how
taking a larger rank increases the accuracy of the estimation.

with additive white Gaussian noise σ = 0.1, length scale
l = 1, and signal variance σ f = 1.5. We use 106 shots for this
demonstration and τ = 13 qubits for the eigenvalue register.
We implement the approximation using a set of sinusoidal
eigenfunctions in the domain � = [−L, L] to approximate
the kernel. First, we chose M = 4 and performed estimations
for R = 1, 2, 3, 4. We show the behavior of the mean for
different R.

Figure 4 compares the GPR using the exponential ker-
nel, its Hilbert-space approximation, and the reduced-rank
approximation implementing a quantum circuit proposed in
this paper. We can see how with R = 4 the estimation already
follows the tendency of the data. However, the estimation
result is not exact. There are several reasons for this; first,
we are using a limited number of qubits in the precision
of the eigenvalues, which reduces the precision of the mean
estimation. Moreover, along the circuit, we have to implement
controlled gates of the unitary operator eι̇ρX�Xt multiple times,
as well as controlled rotations of small angles, which lead to
numerical errors in the simulations.

We also performed another simulation with M = 8 and the
same number of data points with a different function. We
performed an estimation with R = 4, as illustrated in Fig. 5.
The additive white Gaussian noise σ = 0.1, length interval
L = 2, length scale l = 1, and signal variance σ f = 0.5. We
used τ = 16 qubits for the eigenvalue register and 106 shots.
As can be observed in Fig. 5, the estimation of the mean
and variance of GPR through a quantum computer gives a
close approximation of HSGPR. These simulations demon-
strate the effectiveness of our algorithm and how it could
be implemented when fault-tolerant quantum computers are
available.

VI. CONCLUSION

In this paper, we introduced a quantum-assisted GPR al-
gorithm leveraging a low-rank representation of the GP. Our

−1.0 −0.5 0.0 0.5 1.0
x

−1.5

−1.0

−0.5

0.0

0.5

1.0

f
(x

)

Data points
GPR
HSGPR
QA-HSGPR R = 4

FIG. 5. Mean and variance of GPR using the squared exponential
kernel (gray solid line), the Hilbert-space approximation of the kernel
with M = 8 eigenfunctions (black dashed line), and our QA-HSGPR
(blue line) with N = 16 data points (red cross). Each point on the
blue line represents a simulation. The shaded areas around each ap-
proximation line indicate the 95% confidence intervals, providing a
visual representation of the uncertainty associated with each method.
We can see that our proposed scheme approximates the HSGPR
method well with R = 4.

algorithm addresses the high computational demand of GPR,
showcasing how quantum computing can significantly en-
hance the scalability and efficiency of GPR models. A novel
element of our contribution is the incorporation of the Hilbert-
space basis-function approximation [7] into the quantum
computing paradigm. This integration leads to significant im-
provements in computational efficiency, particularly in terms
of reducing the computational complexity compared to classi-
cal algorithms. We also provided numerical examples within
a quantum setting, which showed that the method also works
in practice.

As for future work, probabilistic numerics techniques [3]
provide a means to obtain probabilistic approximations for
numerical integrals. A Bayesian quadrature treats the integral
as a Gaussian process [34,35]. Because it is based on Gaussian
process regression, Bayesian quadrature is faced with a signif-
icant computational challenge when evaluating the integral.
The present methodology provides a promising method to
evaluate large-scale integrals using Bayesian quadrature on a
quantum computer.

The algorithm proposed here is suitable for fault-tolerant
quantum computers, which makes its implementation in noisy
intermediate-scale quantum devices a challenge for further
work. The complexity of the circuit is mainly dominated
by the qPCA and quantum-phase-estimation algorithm; then,
alternative versions of these algorithms can be considered
to reduce the complexity of the circuit. For the qPCA
algorithm, a hybrid classical-quantum approach that imple-
ments a variational circuit can be considered to reduce the
depth of the circuit [36,37]. The previous proposal would
reduce the depth of the circuit but increase the classical
resources needed to execute the algorithm. On the other
hand, it has been shown that iterative approaches of the
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quantum-phase-estimation algorithm reduce the complexity
of the circuit needed for this task [38,39]. The application of
iterative versions of the quantum-phase-estimation algorithm
would reduce the complexity of the circuit needed to imple-
ment our method, enabling the possibility of executing it on
quantum hardware.

The open-source implementation of our simulation is avail-
able from GitHub [40].
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APPENDIX: QUANTUM-STATE-PREPARATION SCHEME
TO ENCODE THE HILBERT-SPACE BASIS FUNCTIONS

The vectorization of the matrix X = �
√

� can be repre-
sented as

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

φ1(x1)
√

�1
...

φ1(xN )
√

�1

φ2(x1)
√

�2
...

φM (xN )
√

�M

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

We can directly encode the vectorized matrix X on a
quantum computer using only the data inputs x j instead of
computing the sinusoidal functions and spectral density on a
classical computer. This approach reduces the dependence on
classical preprocessing using Hadamard gates and conditional
multicontrolled Ry gates.

In our quantum computing framework, we utilize two dis-
tinct registers: the first one consists of a two-qubit ancilla, and
the second register is dedicated to encoding the data matrix.
The initial state of the quantum system is represented as

|X 〉1 = |00〉1 |0 · · · 0〉2. (A2)

Applying the Hadamard gate on all qubits of the data-matrix
register results in

|X 〉2 = 1

2NM/2

NM−1∑
i=0

|00〉1 |i〉2. (A3)

For simplicity, we can decompose the single-index
state

∑NM−1
i=0 |i〉 into a tensor product of two states,∑M−1

m=0

∑N−1
n=0 |m〉 |n〉. We then apply the control rotation

on the first ancilla qubits by all possible states of the data
qubits using sequences of the so-called multicontrolled
Ry(θmn) rotations, such as [29]

|X 〉3 = 1

2NM/2

M−1∑
m=0

N−1∑
n=0

|0〉1 [cos (θmn) |0〉1

+ sin (θmn) |1〉1] |m〉2 |n〉2, (A4)

where θmn = (m + 1)π (xn+1 + L)/2L. Next, we apply an op-
eration similar to the previous one on the second qubit of the

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

H

|ψX〉H

H

Ryy (θ00, ϕ0) Ryy (θ01, ϕ0) Ryy (θM−1N−1, ϕM−1)

FIG. 6. Here, we show quantum circuit for efficiently preparing
the normalized quantum state |ψX〉 as given in Eq. (18). The proce-
dure begins by applying Hadamard gates to each qubit in the data
register, excluding those in the ancilla register, to create a superposi-
tion of states. Subsequently, a series of controlled Ryy rotations target
the first and second qubits of the ancilla register, with the control
conditioned on every possible state combination of the data qubits.
The ancilla qubits are then measured with successful preparation of
the desired quantum state when the measurement outcome is 11.

ancilla register with multicontrolled rotation Ry(ϕm), such as

|X 〉4 = 1

2NM/2

M−1∑
m=0

N−1∑
n=0

[cos (θmn) cos (ϕm) |00〉1

+ sin (θmn) cos (ϕm) |01〉1 + sin (θmn) cos (ϕm) |10〉1

+ sin (θmn) sin (ϕm) |11〉1] |m〉2 |n〉2 , (A5)

where ϕm = sin−1[2NM/2L−1/2√�m+1]. The angles ϕm can be
computed just once since they are independent of the data,
meaning that they can be precomputed and therefore do not
affect the complexity of the algorithm.

This controlled operation can be written as a controlled
operation whose targets are both ancilla registers with rota-
tion Ryy(θmn, ϕm) = Ry(θmn) ⊗ Ry(ϕm). After that we measure
the ancilla qubits and continue with the quantum-state-
preparation procedure only if the measurement outcome
corresponds to 11, which results in the normalized quantum
state of the vectorized data matrix X being

|X 〉5 = 1

2NM/2
√

p(11)

M−1∑
m=0

N−1∑
n=0

sin (θmn) sin (ϕm) |m〉2 |n〉2,

(A6)
where

p(11) =
M−1∑
m=0

N−1∑
n=0

|L−1/2
√

�m+1φm+1(xn+1)|2. (A7)

Following successful quantum state preparation, the an-
cilla qubits are no longer required and are thus discarded.
Figure 6 shows the quantum state preparation of the data
matrix X. If we denote the elements of the state vector as xm

n ,
then the normalized equation derived through the quantum-
state-preparation technique results in Eq. (18). We can also
easily extend the quantum-state-preparation circuit to han-
dle d-dimensional GPR data at the expense of additional
ancilla qubits.

The preparation of the quantum state using multi-
controlled rotations involves NM gates. From [29], we
know that we can decompose the multicontrolled rotations
into equivalent NM basic quantum gates. The compu-
tational cost of the final measurement compared to the
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sequence of multiple gates is almost negligible in this
case because it involves only measuring in ancilla qubits.
This results in the preparation of a quantum state using

multicontrolled rotations with a computational complexity
of O(NM ), similar to the standard quantum-state-preparation
techniques.
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