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Dissipatively stabilized superposition of squeezed coherent states via periodically breaking
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We propose a scheme to dissipatively stabilize superpositions of squeezed coherent states for single- and
two-resonator modes in superconducting circuits, where a superconducting qubit is coupled to a single or two
parametrically driven transmission-line resonators with different circuit designs. A modulated magnetic flux
applied to the qubit can periodically break the inversion symmetry of the qubit and induce both the parametrically
enhanced transverse and longitudinal couplings to the resonators, resulting in strong nonlinear two-photon
interactions between the qubit and the resonators and enabling the scheme to be implemented in a relatively
weak coupling regime. With an additional microwave drive applied to the qubit, the dissipation of the qubit
used as a resource can help drive the resonators into the desired superpositions of squeezed coherent states at
a steady state with high speed. Numerical simulations show that the target states with high fidelity and highly
nonlinear properties can be created for a long time even in the presence of photon leakage out of the resonators.
The scheme can be generalized to other quantum platforms and may have potential applications in the field of
quantum information processing and the improvement of estimation precision in quantum metrology.
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I. INTRODUCTION

Multiphoton entangled states are essential resources and
denote a key prerequisite for many applications in quan-
tum information science [1,2]. Of particular interest are the
superpositions of coherent states [3]. As nonlocal quantum
superpositions confined in phase space, such states play a key
role in fundamental tests of quantum theory in macroscopic
systems [4–6] and high-precision measurements surpassing
the quantum-noise limit [1,7]. Especially, the superpositions
of coherent states can be used to encode logical qubits, al-
lowing for exponential suppression of bit flips and protection
against photon dephasing errors and single-photon loss, form-
ing an ideal building block for scalable fault-tolerant quantum
computation with a significant reduction in hardware over-
head [8–12]. For superpositions of squeezed coherent states,
the introduction of squeezing can further improve the pro-
tection against decoherence [13,14], while at the same time
enabling us to partially correct errors caused by photon loss
[15]. Such states can be generated by N-phonon detection
or homodyne detection based on preprepared multiphoton
states as resources [13,16,17] or by introducing additional
Josephson junction devices or quadratic optomechanical cou-
pling to induce two-photon interaction between subsystems
[18–20]. Recently, an all-optical scheme was proposed to
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deterministically create superpositions of squeezed coherent
states based on dissipation; however, three optical modes are
needed to induce Fredkin-type interaction [21].

Symmetry breaking provides a promising route to quan-
tum state manipulation [22–24]. It is ubiquitous in many
fields of physics and plays a key role in many physical phe-
nomena, especially in the presence of elementary particles
described by quantum fields, quantum-mechanical descrip-
tions of condensed-matter systems, and so on [25,26]. For
natural atoms and molecules, their inversion symmetry can
be broken by either a strong external field or absorption of a
linearly polarized photon [27,28], while the breaking of the
inversion symmetry for artificial atoms can be controlled by
tuning externally applied parameters [29–31]. For instance,
when the superconducting flux qubit and charge qubit are op-
erated away from their degeneracy point by tuning bias charge
and bias magnetic fluxes, respectively, the inversion symmetry
of their potential energies can be broken. In this case, the
selection rule breaks down, and microwave-photon transitions
between any two energy levels are possible, leading to an
additional longitudinal coupling to radiation fields and allow-
ing for new methods for the manipulation of quantum states,
multiphoton bundle emission, and engineering of universal
multiqubit architecture [22–24,32–36]. In general, supercon-
ducting qubits with broken inversion symmetry suffer from
more susceptibility to offset charge noise or flux noise and
shorter coherence times. However, a recent development in the
optimization of the superconducting-qubit design allows for
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FIG. 1. Schematic diagram of a TLR coupled to a superconduct-
ing qubit. The central line of the TLR is intersected by a SQUID loop,
which can induce a parametric drive on the TLR when an external
magnetic field is applied. The red segments in the superconducting
lines denote Josephson junctions.

both long coherence times and large anharmonicity [37–40],
providing new possibilities for the further application of qubit
inversion-symmetry breaking.

In this work, an efficient scheme is presented for the cre-
ation of long-lived superpositions of squeezed coherent states
in superconducting circuits via periodically breaking the qubit
inversion symmetry. The setup consists of a superconducting
qubit coupled to a transmission-line resonator (TLR). The
TLR is subjected to a parametric driving realized by tuning the
magnetic flux penetrating the resonator-embedded supercon-
ducting quantum interference device (SQUID) loop, enabling
great enhancement of the coupling strength between the qubit
and the resonator and allowing for the implementation of the
scheme in a relatively weak regime. The inversion symme-
try of the qubit can be periodically broken by modulating
the external magnetic field applied to the qubit, resulting in
both transverse and longitudinal couplings of the qubit to
the resonator. The induced nonlinear two-photon interaction
is much stronger than that induced by the cross-Kerr effect
and can be further enhanced by the parametric driving. In
the case that the qubit is driven by an additional microwave
field and is largely damped, the quantized field in the res-
onator will be driven into superpositions of squeezed coherent
states at a steady state with high speed. Moreover, we extend
our scheme to include an additional resonator and study the
generation of superpositions of squeezed coherent states for
two modes, where the circuit can be designed in two different
ways. Fidelities and Wigner functions of the created states are
calculated numerically, and the results show that the created
states exhibit highly nonclassical properties and target states
with high fidelity can be generated at steady state even in
the case when the photon leakage of the resonators is con-
sidered. Compared with the results of previous works [13,16–
20], the target states can be deterministically created without
the preparation of certain initial states or additional quantum
devices or quadratic optomechanical coupling to induce nec-
essary nonlinear interaction.

II. GENERATION OF SUPERPOSITIONS OF SQUEEZED
COHERENT STATES FOR A SINGLE MODE

A. Model

As shown in Fig. 1, the setup under consideration consists
of a TLR coupled to a superconducting qubit. The TLR con-
tains a narrow central conductor with two breaks acting as

capacitors and two ground planes placed on the two sides of
the central line, keeping the resonator well isolated from its
environment [41,42]. In the case that the TLR is modeled as
a simple harmonic oscillator and only the fundamental mode
is considered, its free Hamiltonian takes the form (hereafter
h̄ = 1)

Hr = ωra†a, (1)

where ωr is the resonance frequency of the resonator mode
and a (a†) is the corresponding annihilation (creation) opera-
tor. When the resonator is embedded with a SQUID loop, an
external magnetic field penetrating the loop can modify the
eigenstates of the resonator and lead to a parametric driving
of the resonator with the following form [43–46]:

Hp = −λ(t )

2
(a†2e−iωpt + a2eiωpt ), (2)

in which λ(t ) is the time-dependent two-photon driving ampli-
tude and ωp is the driving frequency. An amplified fluctuation
of resonator photons can be induced by the parametric driving,
resulting in exponentially enhanced effective qubit-resonator
coupling [47,48].

The superconducting qubit could be a flux qubit or a
fluxonium qubit, whose two lowest energy levels are well iso-
lated from the upper levels [29–31]. When projecting the full
Hamiltonian of the qubit onto the two lowest-energy states,
i.e., the ground state |ḡ〉 and the excited state |ē〉, we can obtain
the following reduced Hamiltonian [29,40]:

Hq = 1
2 ω̄qσ̄z + 1

2 ε̄σ̄x, (3)

where σ̄z = |ē〉〈ē| − |ḡ〉〈ḡ| and σ̄x = σ̄+ + σ̄− = |ē〉〈ḡ| +
|ḡ〉〈ē| are the Pauli operators and ω̄q and ε̄ are the energy gap
of the qubit and the magnetic energy bias, respectively. The
magnetic energy bias ε̄ is proportional to (�q

ext − �0/2), with
�0 = h/2e being the flux quantum and �

q
ext being the exter-

nal magnetic flux penetrating the qubit loop; thus, it can be
tuned on demand by choosing appropriate external magnetic
fields, allowing for the controllable breaking of the inversion
symmetry of its energy potential.

The qubit can couple to the quantized microwave field of
the resonator by connecting parallel and series circuits with
wires or via a coupler such as a capacitance. The interaction
Hamiltonian can be written as [37,49,50]

Hint = g(aσ̄+ + a†σ̄−), (4)

where g is the coupling strength of the qubit to the resonator,
describing the hopping of microwave photons between them.

B. Periodic breaking of the qubit inversion symmetry
and the enhanced couplings of the qubit to the resonator

We consider the situation in which an external magnetic
field is applied to the qubit and the magnetic flux �

q
ext is

split into two parts, i.e., a perturbation part oscillating at a
frequency ω f and a fixed offset φ̄. Thus, the flux can be
expressed as �

q
ext = φ̄ + φ0 cos ω f t . If we choose φ̄ = �0/2,

the magnetic energy bias ε̄ is just proportional to the oscil-
lating part, resulting in the periodic breaking of the qubit
inversion symmetry. In this case, the free Hamiltonian of the
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qubit becomes [51]

H ′
q = 1

2 ω̄qσ̄z + 1
2 ε̄(φ0)(eiω f t + e−iω f t )σ̄x. (5)

In a frame rotating at half the parametric drive frequency
ωp/2 = ω f and neglecting the fast-oscillating terms, the
Hamiltonian of the whole system takes the form

H = δra†a + 1

2
δqσ̄z + 1

2
ε̄(φ0)σ̄x − λ(t )

2
(a†2 + a2)

+ g(aσ̄+ + a†σ̄−), (6)

where δr = ωr − ωp/2 and δq = ω̄q − ωp/2 are the resonator
and qubit detunings, respectively.

Next, we perform a single-mode antisqueezing transfor-
mation U (t ) = e

r(t )
2 (a2−a†2 ) with tanh 2r(t ) = λ(t )/δr , leading

to the Hamiltonian in the time-dependent squeezed frame
[47,48]

Hs = U (t )HU †(t ) − iU (t )U̇ †

= Hf + H ′
int + He, (7)

where

Hf = δs
ra†a + 1

2
δqσ̄z + 1

2
ε̄(φ0)σ̄x,

H ′
int = ḡ(a† + a)(σ̄+ + σ̄−) + g̃(a† − a)(σ̄+ − σ̄−),

He = i
ṙ(t )

2
(a2 − a†2), (8)

where ḡ = ger(t )/2 and g̃ = ge−r(t )/2. Here the Hamiltonian
Hf represents the free part with the transformed resonator
detuning δs

r = δr/ cosh 2r. In the interaction Hamiltonian H ′
int,

the parameter ḡ in the first term denotes the effective qubit-
resonator coupling strength, which is exponentially enhanced
by er(t )/2. The second term is suppressed by e−r(t )/2 and can
be dropped in the large-amplification limit e−r(t ) → 0. The
Hamiltonian He provides an undesired correct term, vanishing
explicitly when the drive amplitude r(t ) is independent of
time.

By introducing the eigenstates of the qubit part, i.e., the
ground state |g〉 = − cos θ

2 |ḡ〉 + sin θ
2 |ē〉 and the excited state

|e〉 = sin θ
2 |ḡ〉 + cos θ

2 |ē〉, with θ = arctan ε̄
δq

, the Hamiltonian
of the whole system becomes

H ′
s = δs

ra†a + 1
2ωqσz + gx(a + a†)σx + gz(a + a†)σz, (9)

where gx = −ḡcos θ , gz = ḡ sin θ , σz = |e〉〈e| − |g〉〈g|, and
σx = |e〉〈g| + |g〉〈e|. ωq =

√
δ2

q + ε̄2 is the transition fre-
quency between the ground and excited states.

C. Creation of the superposition of long-lived single-mode
squeezed coherent states

We consider the case that the qubit is driven by an external
microwave field, which can be described by the Hamilto-
nian Hd = �(σ+e−i�d t + σ−ei�d t ) in the frame rotating at
half the parametric drive frequency ωp/2 = ω f . Here �d =
ωd − ω f denotes the detuning of the driving frequency ωd

to the oscillating frequency of the magnetic flux ω f . Mov-
ing to an interaction picture via the unitary transformation
U = e−i(a†a+σz )ωqt/2, with ω = ωq/2 = δs

r = (�d + δd )/2, the

Hamiltonian of the system takes the form

HI = HI1 + HI2, (10)

where

HI1 = he−iωt + h†eiωt ,

HI2 = �(σ+eiδd t + σ−e−iδd t ),

h = gxa†σ− + gzaσz. (11)

Under the condition ω � gx, gz,�, the Hamiltonian HH1

is largely detuned. According to the standard time-average
method [52–54], the effective interaction can be obtained as

H eff
I1 = 1

ω
[h†, h] = g2

x

ω
(aa†σz + |g〉〈g|) − 2gxgz

ω
a2σ+

− 2gxgz

ω
a†2σ− − g2

z

= 2g2
x

ω
a†a|e〉〈e| + g2

x

ω
|e〉〈e| − g2

x

ω
a†a − 2gxgz

ω
a2σ+

− 2gxgz

ω
a†2σ− − g2

z, (12)

where the condition |e〉〈e| + |g〉〈g| = 1 has been used. In
combination with the driving part HI2 and neglecting the
constant term, the effective Hamiltonian for the whole system
takes the form

H̄eff = H eff
I1 + HI2

= 2g2
x

ω
a†a|e〉〈e| + g2

x

ω
|e〉〈e| − g2

x

ω
a†a

− 2gxgz

ω
(a2σ+ + a†2σ−)

+ �(σ+eiδd t + σ−e−iδd t ). (13)

To make further progress, it is instructive to switch to a ro-
tating frame via a unitary transformation of the form U =
eig2

x (2|e〉〈e|+a†a)/ω, with δd = 2g2
x/ω, resulting in

Heff = 2g2
x

ω
a†a|e〉〈e| + 3g2

x

ω
|e〉〈e| − 2gxgz

ω
(a2σ+ + a†2σ−)

+ �(σ+ + σ−). (14)

Note that the nonlinear coupling term in the above Hamilto-
nian allows the conversion of single excitations of the qubit
into pairs of photons of the resonator and vice versa. Such a
two-photon interaction has been widely used to explore fun-
damental quantum-optical phenomena, e.g., nonclassical state
creation, transmission-based noise spectroscopy, and photon
blockade [55–59].

In the case that the resonator exhibits a high quality factor
while the qubit is largely damped via a harmonic oscillator
environment in the Markovian approximation, the dynamics
of the system without photon leakage of the resonator is
governed by the following master equation:

dρ

dt
= −i[Heff , ρ] + γ

2
L[σ−]ρ, (15)

where ρ denotes the system density operator, L[o]ρ =
2oρo† − o†oρ − ρo†o is the standard Lindblad operator for a
given operator o, and γ represents the intrinsic decay rate of
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the qubit. From the above equation, we can find that, on the
one hand, the qubit continuously extracts photon pairs from
the resonator via the two-photon exchange process and then
decays to its ground state due to its energy relaxation. On the
other hand, the external driving field can resonantly drive the
qubit back into the excited state and then send photon pairs to
the resonator. The competition of the two processes enables
the system to evolve to a steady state |�s〉 = |φs〉 ⊗ |ψs〉,
with |φs〉 and |ψs〉 denoting the steady states of the qubit
and the resonator, respectively. By setting dρs/dt = 0, with
ρs = |�s〉〈�s|, we can get the equation that the steady state
satisfies, i.e., Heff |�s〉 = 0. In the presence of large qubit
dissipation, the steady state of the qubit is obviously its ground
state, namely, |φs〉 = |g〉. In this case, the steady state of the
resonator can be obtained by direct calculation:

|ψs〉 = N+|α〉 + N−| − α〉, (16)

which is the superposition of the coherent states for a single
mode, also called a Schrödinger cat state. Note that here
α =

√
�ω

2gxgz
is a complex amplitude, and N+ and N− can be

arbitrary constants. Since the decay of the qubit is used as a
resource for generating the target state, the state creation is
robust against qubit dephasing.

Note that in the absence of resonator dissipation, the pair-
wise exchange of photons between the resonator and the qubit
conserves the photon-number parity of the resonator mode,
which is described by the so-called photon-number parity
operator P = eiπa†a. Such an operator plays a key role in
describing the nonclassical features of electromagnetic fields,
admitting the photon-number Fock states or the Schrödinger
cat states as eigenstates with only two eigenvalues, +1 (even
parity) or −1 (odd parity). Therefore, the steady state of the
resonator is dependent on the photon-number parity of its
initial state. For instance, the resonator will be driven into
the even cat state |ψ+

s 〉 = (|α〉 + | − α〉)/
√

2(1 + e−2|α|2 ) if
the resonator is prepared in the even-parity state |0〉 at the
initial time, while the initial state |1〉 with odd parity leads
to the odd cat state |ψ−

s 〉 = (|α〉 − | − α〉)/
√

2(1 + e−2|α|2 ).
However, the action of the photon annihilation operator a on
the system states, i.e., a photon loss, will transform an odd
cat state into an even cat state and vice versa, resulting in
a statistical mixture of |α〉 and | − α〉 and the destruction
of the coherence. The high quality factor of the resonator is
a necessary condition which guarantees that the photon-pair
exchange rate between the resonator and the qubit can far
exceed the single-photon decay, enabling the dominance of
the two-photon drive and dissipation process in the system
dynamic evolution and thus the maintenance of the coherence.

To verify the validity of the above discussion and study
the effect of the photon leakage and the qubit dephasing,
we introduce fidelity F = Tr[ρtarρ(t )] to measure the overlap
between the evolved state ρ(t ) and the target state ρtar =
|ψs〉〈ψs| and numerically solve the master equation (15) with
two additional dissipator terms, κ

2L[a]ρ and γφ

2 L[σz]ρ, where
κ is the decay rate of the resonator and γφ is the dephasing
rate of the qubit. The numerical results of fidelity F for dif-
ferent decay rates κ with γφ = 0 are displayed in Fig. 2(a)
with the system initially prepared in the ground state |0, g〉
[60]. The target state is |ψ+

s 〉, and the parameters are chosen

FIG. 2. Time evolution of fidelity F vs the dimensionless time γ t
by numerically solving the master equation (15) with two additional
dissipator terms (a) for different κ with γφ = 0 and (b) for different
γφ with κ = 0.

as ω/2π = 2 GHz, ωq/2π = 4 GHz, ḡ/2π = 0.1 GHz, θ =
π/4, �/2π = 0.02 GHz, α = 2i, and γ /2π = 0.02 GHz. It
can be found that fidelity F eventually converges to F ∼ 1
in the absence of photon leakage (κ = 0, black solid line),
suggesting that the target state could be successfully created
at steady state. In the case of small dissipation (κ = 0.0001γ ,
red dashed line), fidelity just slightly deviates from the ideal
case, which means that the two-photon drive and dissipation
process still dominates the system dynamics and thus allows
for the creation of the long-lived target state. For κ = 0.0005γ

(blue dotted line), fidelity gradually decreases as time goes on,
showing the continuous destruction of the coherence with the
resonator heavily damped. In Fig. 2(b), the time evolution of
the fidelity F is depicted for different dephasing rates γφ with
κ = 0. It can be readily seen that F can reach a very high value
close to 1 even in the large-dephasing situation (γφ = γ , blue
dotted line), showing the robustness of the scheme against
qubit dephasing. Note that the nonlinear coupling strength in
the simulation can be calculated as ḡ2/ω ∼ 2π × 30 MHz,
which is about 2 orders of magnitude larger than that obtained
from the cross-Kerr effect [9,18,61,62].

By reversing the squeezing transformation, the steady state
of the resonator takes the form

|ψ±
sc〉 = e

r
2 (a†2−a2 )|ψ±

s 〉
= N+e

r
2 (a†2−a2 )|α〉 ± N−e

r
2 (a†2−a2 )| − α〉, (17)

which means that for a resonator initially prepared in a state
with a determined photon-number parity, the desired super-
position of squeezed coherence states for a single mode,
also called squeezed cat states, can be finally obtained. In
comparison with a cat state, squeezing does not affect the
macroscopicity of the superposition and makes the states more
robust against decoherence. To characterize the nonclassical
property of the created states, we introduce the Wigner func-
tion, which contains complete information about the system
and can be defined as [63]

W (β ) = 2

π
Tr[D(−β )ρa(t )D(β )P], (18)

where D[β] = eβa†−β∗a is the displacement operator and ρa(t )
is the reduced density operator describing the quantized field
in the resonator. The complex β plane plays the role of phase
space; i.e., the real and imaginary parts of β correspond to
position (x) and momentum (p) variables, respectively. It can
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FIG. 3. Wigner function of the created steady state in the absence
of resonator dissipation with r = 0.5.

be seen that the Wigner function at an arbitrary point β is just
the expectation value of the parity operator P of the translated
field of the reduced density operator D(−β )ρa(t )D(β ). The
Wigner function of the created steady state is shown in Fig. 3
in the absence of cavity dissipation, where the squeezing
parameter r is chosen to be a moderate value r = 0.5 and
the initial state of the resonator and the other parameters are
chosen to be the same as those in Fig. 2. We can clearly see
the negative values and several quantum phase-space interfer-
ence fringes between the “dead” (| − α〉) and “alive” (| + α〉)
components, denoted by two red positive peaks, implying
nonclassical quantum features of the created state and a real
quantum superposition. In addition, we can find that the cre-
ated state is squeezed along the p quadrature and stretched
along the x quadrature in the presence of parametric driving.

III. CREATION OF THE SUPERPOSITION OF SQUEEZED
COHERENT STATES FOR TWO MODES

In the following, we extend the above method to prepare
the superposition of squeezed coherent states for microwave
fields in two resonators, which can be realized in setups de-
signed in two different ways.

A. Qubit coupled to two coupled resonators

As shown in Fig. 4, the considered setup is composed of a
superconducting qubit and two TLR resonators. The two res-
onators interact with each other via coherent photon exchange,
and one of them is coupled to the qubit. The Hamiltonian of

FIG. 4. Schematic diagram of a superconducting qubit coupled
to two coupled TLR resonators.

the whole system can be written as

H =
∑

k=1,2

(Hrk + Hdk ) + Hq + Hqr + Hrr, (19)

where Hrk = ωrka†
kak is the free Hamiltonian of the resonator

k, with ωrk being the resonance frequency of the resonator
mode; Hdk = −λk (a†2

k e−iωpkt + a2
keiωpkt )/2 is the correspond-

ing parametric driving; Hq is the free Hamiltonian of the qubit
given by Eq. (3); Hqr = g(a1σ̄+ + a†

1σ̄−) describes the inter-
action between the qubit and resonator 1; and Hrr = J (a†

2a1 +
a†

1a2) denotes the coupling of resonator 1 to resonator 2, with
J being the coupling strength. When an external magnetic
field is applied to the qubit to break its inversion symmetry, the
above Hamiltonian in the frame rotating at half the parametric
drive frequency can be expressed as

H ′ =
∑

k=1,2

δrka†
kak + 1

2
δqσ̄z + 1

2
ε̄(φ0)σ̄x

− λ1(t )

2

(
a†2

1 + a2
1

) − λ2(t )

2

(
a†2

2 + a2
2

)

+ g(a1σ̄+ + a†
1σ̄−) + J (a†

2a1 + a†
1a2), (20)

where the condition ωp1 = ωp2 = ωp has been used, resulting
in the relation δrk = ωrk − ωp/2. Under the antisqueez-
ing transformation for each mode U (t ) = U1(t )U2(t ), with

Uk (t ) = e
rk (t )

2 (a2
k−a†2

k ) and tan 2rk = λk/δrk , the above equa-
tion becomes

Hs =
∑

k=1,2

δs
rka†

kak + +1

2
δqσ̄z + 1

2
ε̄(φ0)σ̄x

+ ḡ(a† + a)(σ̄+ + σ̄−) + J̄ (a†
2a1 + a†

1a2), (21)

where δs
rk = δrk/ cosh 2rk , ḡ = ger1/2, and J̄ = (er1+r2 +

e−r1−r2 )/2. On the basis of the qubit eigenstates {|g〉, |e〉}, the
Hamiltonian can be written as

Hs =
∑

k=1,2

δs
rka†

kak + 1

2
ωqσz + gx(a† + a)σx

+ gz(a† + a)σz + J̄ (a†
2a1 + a†

1a2), (22)

where gx = −ḡcos θ and gz = ḡ sin θ . Here we can see that
the coupling between the two resonators and that of the qubit
to resonator 1 can be greatly enhanced via the parametric
drivings for large r1 and r2.

After introducing canonical transformations A1 = (a1 +
a†

1)/
√

2 and A2 = (a1 − a†
2)/

√
2, the above Hamiltonian takes

the form

H ′
s = (ω + J̄ )A†

1A1 + (ω − J̄ )A†
2A2 + ωq

2
σz

+ �

2
(A†

1A2 + A†
2A1) + gx√

2
(A1 + A2 + A†

1 + A†
2)σx

+ gz√
2

(A1 + A2 + A†
1 + A†

2)σz, (23)

where ω = (δs
r1 + δs

r2)/2 and � = δs
r1 − δs

r2. In the presence
of a driving field applied to the qubit (Hamiltonian Hd ) and by
switching to the interaction picture via the unitary transforma-
tion U = e−i[(ω+J̄ )A†

1A1+(ω−J̄ )A†
2A2+ωqσz/2]t , with ωq = 2(ω + J̄ )
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and �′ = �d − ωq, we have

HI = gx√
2

(A1σ+ei(ω+J̄ )t + A2σ+ei(ω+2J̄ )t )

+ gz√
2

(A1σze
−i(ω+J̄ )t + A2σze

i(ω−J̄ )t ) + H.c.

+ �

2
(A†

1A2e2iJ̄t + A†
2A1e−2iJ̄t )+�(σ+e−i�′t + σ−ei�′t ).

(24)

In the case that ω ± J̄ � gx/
√

2, gz/
√

2, the following ef-
fective Hamiltonian can be obtained by using the standard
time-average method:

Heff = g2
x

2(ω + J̄ )
A†

1A1σz + g2
x

2(ω + 2J̄ )
A†

2A2σz

+
(

g2
x

2(ω + J̄ )
+ g2

x

2(ω + 2J̄ )

)
|e〉〈e|

+ �

2
(A†

1A2e2iJ̄t + A†
2A1e−2iJ̄t )

− gxgz

ω + J̄
A2

1σ+ − gxgz

ω + J̄
A†2

1 σ−

+ �(σ+e−i�′t + σ−ei�′t ). (25)

Performing a new unitary transformation U = e−iH0t , with
H0 = −g2

x(A†
1A1 + 2|e〉〈e|)/2(ω + J̄ ) and �′ = −g2

x/(ω +
J̄ ), the above Hamiltonian becomes

H ′
eff = g2

x

ω + J̄
A†

1A1|e〉〈e| + g2
x

2(ω + 2J̄ )
A†

2A2σz

+
(

3g2
x

2(ω + J̄ )
+ g2

x

2(ω + 2J̄ )

)
|e〉〈e|

− gxgz

ω + J̄
A2

1σ+ − gxgz

ω + J̄
A†2

1 σ− + �(σ+ + σ−)

+ �

2

(
A†

1A2e
i
(

2J̄− g2
x

2(ω+J̄ )

)
t + A†

2A1e
i
(

2J̄− g2
x

2(ω+J̄ )

)
t)

. (26)

Under the condition 2J̄ − g2
x

2(ω+J̄ ) � �, the single-photon ex-
change between modes A1 and A2 can be neglected, and the
above Hamiltonian finally reduces to

Heff = g2
x

ω + J̄
A†

1A1|e〉〈e| +
(

3g2
x

2(ω + J̄ )
+ g2

x

2(ω + 2J̄ )

)
|e〉〈e|

− gxgz

ω + J̄

(
A2

1σ+ + A†2
1 σ−

) + �(σ+ + σ−). (27)

Similar to Eq. (14), the above Hamiltonian enables pairwise
exchange of photons between the qubit and mode A1, which
is crucial for state preparation.

In the absence of resonator dissipation, the time evolution
of the density operator for the system can be described by the
following master equation:

dρ

dt
= −i[Heff , ρ] + γ

2
L[σ−]ρ. (28)

Similarly, the dissipation-repumping process can drive the
system into a steady state |�s〉 = |g〉 ⊗ |ψs〉 for large qubit
dissipation. Direct calculations show that the steady state of
the resonators |ψs〉 is a two-mode Schrödinger cat state, which

FIG. 5. Time evolution of fidelity F vs the dimensionless time γ t
simulated using the Hamiltonian in Eq. (27) (a) for different κ with
γφ=0 and (b) for different γφ with κ = 0.

should be one of the eigenstates of the operator eiπA†
1A1 with

eigenvalues +1 and −1, depending on the parity of the initial
state. For example, when the system is initially prepared in
an even-parity state |0, 0〉, i.e., both of the resonators are in
the vacuum states, the steady state of the resonators can be
described by

|ψ+
s 〉 = (|α, α〉 + | − α,−α〉)/

√
2(1 + e−4|α|2 ), (29)

which is the superposition of coherent states for two resonator
modes with α =

√
�(ω+J̄ )

2gxgz
, i.e., a two-mode cat state with

even parity. For the system prepared in an odd-parity state
(|0, 1〉 + |1, 0〉)/

√
2 at the initial time, the steady state of the

two resonators takes the form

|ψ−
s 〉 = (|α, α〉 − | − α,−α〉)/

√
2(1 + e−4|α|2 ), (30)

which is just a two-mode cat state with odd parity. In com-
parison with single-mode cat states, two-mode cat states can
significantly increase the quantum information capacity and
have been widely used as an import resource in diverse areas
ranging from quantum metrology [64] to quantum teleporta-
tion [65].

As shown in Fig. 5, fidelity F is calculated by numerically
solving the master equation (28) with three additional dissi-
pator terms: κ1

2 L[a1]ρ, κ2
2 L[a2]ρ, and γφ

2 L[σz]ρ, where κ1 and
κ2 denote the decay rates of the two resonators. The system is
initially prepared in the odd-parity state (|0, 1〉 + |1, 0〉)/

√
2;

thus, the target state is the two-mode cat state |ψ−
s 〉 expressed

by Eq. (30). The parameters are set as ω/2π = 1.8 GHz,
J̄ = 0.2 GHz, and κ = κ1 = κ2; other parameters are the same
as in Fig. 2. It can be clearly seen from Fig. 5(a) that the target
state can be successfully created for zero (κ = 0, black solid
line) and a small (κ = 0.00005γ , red dashed line) resonator
decay rate. However, the coherence of the created state will
be greatly damaged as time gets long due to the photon loss
for a large decay rate (κ = 0.0025γ , blue dotted line). The
results of fidelity F for different qubit dephasings illustrated in
Fig. 5(b) also indicate that the state creation is robust against
qubit dephasing.

By reversing the squeezing transformation, we can find that
the steady states |ψsc〉 of the two resonators are the superposi-
tion of squeezed coherent states for two modes. For instance,
if the two resonators are initially prepared in the even-parity
state |0, 0〉 or the odd-parity state (|0, 1〉 + |1, 0〉)/

√
2, the
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FIG. 6. Wigner function of individual resonators in the absence of resonator dissipation of (a) resonator 1 and (b) resonator 2.

corresponding steady states take the form

|ψ±
sc〉 = [U †

2 (t )U †
1 (t )|α, α〉 ± U †

2 (t )U †
1 (t )| − α,

− α〉]/
√

2(1 + e−4|α|2 ). (31)

Different from the superposition of squeezed coherent states
for a single mode, the nonclassical property of the superpo-
sition of squeezed coherent states for two modes cannot be
fully shown by the Wigner function of individual resonator
modes. In Figs. 6(a) and 6(b), we depict the Wigner functions
of resonator 1 and resonator 2, respectively, for the created
state in the absence of resonator dissipation with r = 0.5.
Compared with the superposition of squeezed coherent states
for a single mode shown in Fig. 3, the two components and
the squeezing along the p quadrature and the stretching along
the x quadrature of the generated state in both plots can still
clearly be seen; however, the quantum phase-space interfer-
ence fringes vanish, exhibiting the statistical mixture of two
coherent states and the lack of full quantum information on
the global quantum state. To address this issue, we introduce
the joint Wigner function, defined by [66]

WJ = 4

π2
Tr

[
ρa1a2 D1(β1)D2(β2)PJD1(−β1)D2(−β2)

]
, (32)

where ρa1a2 denotes the reduced operator of the resonator
modes, Dk (βk ) = eβka†

k−β∗
k ak represents the displacement op-

erator for the ak mode with complex parameter βk , and
PJ = P1P2 = eiπa†

1a1 eiπa†
2a2 is the joint photon-number par-

ity operator. It can readily be seen that the joint Wigner
function is a function in the four-dimensional phase space
{Re(β1), Im(β1), Re(β2), Im(β2)}. To globally display the
core features of the created state, the joint Wigner function
is calculated numerically, and its two-dimensional cuts along
the Im(β1) − Im(β2) plane and the Re(β1) − Re(β2) plane are
illustrated in Figs. 7(a) and 7(b), respectively. The two red
peaks in Fig. 7(a) denote the probability distribution of the
two coherent-state components, while the central blue peak
and the fringes with strong negativity in Fig. 7(b) demonstrate
the quantum interference between the two components and
the nonclassical property of the global quantum state. Com-
pared with the two-mode cat states without squeezing, the
created state is squeezed along the Im(β1) − Im(β2) plane and
stretched along the Re(β1) − Re(β2) plane.

B. Qubit coupled to two separated resonators

As illustrated in Fig. 8, the setup under consideration con-
sists of a superconducting qubit coupled to two separated
TLR resonators, with gk being the coupling strength to the
resonator k. The total Hamiltonian in the frame rotating at half
the parametric drive frequency can be written as

H =
∑

k=1,2

δrka†
kak + 1

2
δqσ̄z + 1

2
ε̄(φ0)σ̄x

− λ1(t )

2

(
a†2

1 + a2
1

) − λ2(t )

2

(
a†2

2 + a2
2

)

+ g1(a1σ̄+ + a†
1σ̄−) + g2(a2σ̄+ + a†

2σ̄−). (33)

Under the antisqueezing transformation for each mode

U (t ) = U1(t )U2(t ), with Uk (t ) = e
rk (t )

2 (a2
k−a†2

k ) and tan 2rk =
λk/δrk , the above equation can be described by

H =
∑

k=1,2

δs
rka†

kak + 1

2
δqσ̄z + 1

2
ε̄(φ0)σ̄x

+
∑

k=1,2

ḡk (ak + ak )(σ̄+ + σ̄−), (34)

with ḡk = gkerk /2. On the basis of the qubit eigenstates, the
above Hamiltonian takes the form

H =
∑

k=1,2

δs
rka†

kak + 1

2
ωqσz +

∑
k=1,2

(ak + ak )(gkxσx + gkzσz ),

(35)

where gkx = −ḡk cos θ and gkz = ḡk sin θ . Introducing the
canonical transformations A1 = (a1 + a†

1)/
√

2 and A2 =
(a1 − a†

2)/
√

2 in the presence of the driving field Hd applied
to the qubit, the above Hamiltonian becomes

H ′ = ω(A†
1A1 + A†

2A2) + �

2
(A†

1A2 + A†
2A1) + 1

2
ωqσz

+
√

2gx(A1 + A†
1)σx +

√
2gz(A1 + A†

1)σz

+ �(σ+e−i�d t + σ−ei�d t ), (36)

where gx = g1x = g2x, gz = g1z = g2z, ω = (δs
r1 + δs

r1)/2, and
� = (δs

r1 − δs
r1)/2. In the case that � = 0, the dynamics of

the system is independent of the mode A2; thus, the above
Hamiltonian is similar to Eq. (9) with the driving term Hd ,
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FIG. 7. Two-dimensional cuts of the joint Wigner function of the generated state along (a) the Im(β1) − Im(β2) plane and (b) the Re(β1) −
Re(β2) plane in the absence of resonator dissipation.

leading to the following effective Hamiltonian:

Heff = 4g2
x

ω
A†

1A1|e〉〈e| + 2g2
x

ω
|e〉〈e| − 4gxgz

ω
A2

1σ+

− 4gxgz

ω
A†2

1 σ− + �(σ+ + σ−). (37)

When the qubit is heavily damped, the steady state of
the system can also be described by |�s〉 = |g〉 ⊗ |ψs〉, with
|ψs〉 being a two-mode Schrödinger cat state depending on
the parity of its initial state. For the two resonators initially
prepared in an even-parity state |0, 0〉 and an odd-parity state
(|0, 1〉 + |1, 0〉)/

√
2, the steady state |ψs〉 can be expressed

by |ψ±
s 〉 given by Eqs. (29) and (30) with α = 1

2

√
�ω

2gxgz
,

respectively.
Fidelity F is calculated by numerically solving the mas-

ter equation (28) with three additional dissipator terms
( κ1

2 L[a1]ρ, κ2
2 L[a2]ρ, and γφ

2 L[σz]ρ) and Heff given by
Eq. (37) instead of Eq. (27). The parameters are chosen to be
ω = 2 GHz, � = 0.045 GHz, and α = 1.5i; other parameters
and the initial state of the system are same as in Fig. 5. The re-
sults depicted in Fig. 9(a) illustrate that the target state can also
be successfully generated for zero (κ = 0, black solid line)
and a small (κ = 0.00005γ , red dashed line) resonator decay
rate, while the coherence of the created state is continuously
damaged for a large resonator decay rate (κ = 0.0005γ , blue
dotted line). The results illustrated in Fig. 9(b) show that the
state creation is robust to qubit dephasing.

By reversing the squeezing transformation, we can finally
obtain the desired superposition of squeezed coherent states
for two modes. As illustrated in Figs. 10(a) and 10(b), the
joint Wigner function of the steady state is simulated us-
ing the Hamiltonian in Eq. (37) in the absence of resonator

FIG. 8. Schematic diagram of a superconducting qubit simulta-
neously coupled to two separated TLR resonators.

dissipation. Like in Figs. 7(a) and 7(b), we can readily see the
squeezed central blue feature in Fig. 10(a) and the stretched
quantum interference with strong negativity in Fig. 10(b),
showing highly nonclassical properties of the created
state.

IV. EXPERIMENTAL FEASIBILITY

Finally, we discuss the experimental feasibility of the
proposed method. In experiments, microwave resonators usu-
ally work in the 2–15-GHz microwave regime [29], while
the typical transition frequencies of superconducting qubits
range from hundreds of megahertz to larger than 10 GHz
[38,49,51,67–69]. In our scheme, both the qubit and the
resonator detunings can be further tuned via the parametric
driving frequency. To obtain the target states with high fi-
delity, the largest value of the required quality factor of the
TLRs in the simulations is about 107. This condition can be
readily satisfied since a TLR with a quality factor Q > 107

was fabricated [70] and a quality factor beyond 108 was
reported in three-dimensional microwave resonators [71,72].
Experimentally, both the coupling strength of the qubit to
the resonators and that between the two resonators can reach
hundreds of megahertz and can be dynamically tuned [73–75].
Furthermore, we note that a squeezing parameter r larger
than 1 can be achieved in superconducting quantum circuits
[76,77]. Therefore, the present scheme can be implemented
with currently available parameters.

FIG. 9. Time evolution of fidelity F vs dimensionless time γ t
simulated using the Hamiltonian in Eq. (37) (a) for different κ with
γφ = 0 and (b) for different γφ with κ = 0.
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FIG. 10. Two-dimensional cuts of the joint Wigner function of the generated state along (a) the Im(β1) − Im(β2) plane and (b) the Re(β1) −
Re(β2) plane in the absence of resonator dissipation, which is simulated using the Hamiltonian in Eq. (37).

V. CONCLUSION

In conclusion, we presented an efficient protocol for
the dissipative generation of a long-lived superposition of
squeezed coherent states for a single and two resonator modes.
The considered setup is composed of a superconducting qubit
with periodically broken inversion symmetry coupled to a
single or two parametrically driven TLRs with different circuit
structures. The resulting parametric-driving-enhanced trans-
verse and longitudinal couplings of the qubit to the resonators
can induce strong nonlinear two-photon interactions between
the qubit and the resonators. In combination with an additional
microwave drive applied on the qubit, the superposition of
squeezed coherent states in the resonators can be engineered
at steady state in a dissipative process. Numerical simulations
showed that a target state with high fidelity and highly non-
classical properties can be successfully created. In addition,
our proposal can be implemented in other quantum systems

such as hybrid quantum systems combining a superconduct-
ing qubit and magnons or phonons [78–83].
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