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A protocol for regulating the distribution of quantum information between multiple parties is put forward. To
prohibit the unrestricted distribution of quantum-resource states in a public quantum network, agents can apply a
resource-destroying map to each sender’s channel. Since resource-destroying maps only exist for affine quantum
resource theories, censorship of a nonaffine resource theory is established on an operationally motivated subspace
of free states. This is achieved by using what we name a resource-censoring map. The protocol is applied to
censoring coherence, reference frames, and entanglement. Because of the local nature of the censorship protocol,
it is, in principle, possible for collaborating parties to bypass censorship. Thus, we additionally derive necessary
and sufficient conditions under which the censorship protocol is unbreakable.
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I. INTRODUCTION

As Shor’s algorithm for the efficient factoring of prime
numbers exemplified [1], quantum information can be used
to break certain cryptographic schemes [2,3], being founda-
tional for quantum [4,5] and postquantum cryptography [6].
Because of the prospects that modern information societies
will one day be dealing with a quantum internet [7–10] in
which quantum channels of increasing complexity connect
numerous senders and receivers, establishing certain restric-
tions on the sharing of quantum resources becomes a subject
of ever increasing interest.

To prevent the unregulated spreading of quantum re-
sources, such as coherence and entanglement, to malicious
parties in their preparation of cryptographic attacks on critical
infrastructures, governmental agencies might try to establish
a form of quantum censorship. In such a protocol, quan-
tum information which is deemed benign crosses a network
unaltered while hazardous quantum information is rendered
classical (Fig. 1). A less dystopian, but an information-
processing equivalent, scenario might be the censorship of a
commercialized network, with a provider offering free trans-
mission of classical information, but demanding premium fees
for the sharing of quantum information.

In this work, we devise a protocol for such quantum cen-
sorship applications. The protocol is based on a network
of multiple sender-receiver pairs, being controlled by some
dominant, protective agency (e.g., a governmental authority, a
commercial provider, etc.) that applies a resource-destroying
(RD) map [11] locally to each sender. This ensures that only
free states of a quantum resource theory (QRT) [12] are trans-
mitted over the network. RD maps distinguish themselves
from resource-breaking [13,14], resource-annihilating [15],
and resource-erasing protocols [16,17] in that they destroy the
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quantum resource but do not alter free states. Moreover, RD
maps are single-shot operations, thus avoiding costly proce-
dures such as tomography, by the agency.

The issue regarding RD maps is that they are not physi-
cally implementable for all QRTs. Indeed, only affine QRTs
can give rise to a linear RD map; necessary and sufficient
conditions for a QRT to have a (unique) RD map were de-
rived in Ref. [18]. Examples of affine QRTs that possess
RD maps include quantum coherence [19,20], quantum ther-
modynamics [21,22], and quantum reference frames [23,24].
However, there do not exist linear RD maps for real-valued
quantum mechanics (affine) [25,26], quantum entanglement
(convex) [27–29], quantum discord (nonconvex) [30], and
non-Gaussianity (convex [31] and nonconvex [32]). At first
sight, this appears to set a fundamental limitation to which
resources a quantum censorship can be imposed. In the case
of a nonaffine QRT, we identify affine subspaces of free states
on which a censorship can still be enforced. Since these sub-
spaces are operationally motivated (while QRTs are physically
motivated), we introduce the notion of a resource-censoring
(RC) map being a generalization of RD maps.

Once the censorship protocol is established, the ques-
tion arises if the sending parties can use nonlocal resources,
such as shared entanglement, to overcome the censorship,
meaning that a resource reaches the receivers. This is, in
principle, possible because the agent applies RC maps locally
to each sender-receiver channel. Thus, we establish neces-
sary and sufficient constraints on when collaborating parties
can break the censorship. In particular, we find that a cen-
sorship that is realized via an RD map is unbreakable. It
follows that the transmission of classical information (inco-
herent states) and speakable information (reference frames)
can be enforced perfectly by the censorship protocol. By
contrast, censorship of the (nonaffine) QRT of entanglement
can be overcome by using preshared entanglement between
multiple senders. Finally, the effect of noise on the protocol is
discussed.
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FIG. 1. In the quantum censorship protocol, a dominant, protec-
tive agency oversees quantum communication in a public-domain
quantum network.

II. QUANTUM RESOURCE THEORIES

When trying to establish censorship on quantum infor-
mation, we first have to split the set of quantum states into
resource states, whose distribution one wants to prevent, and
free states, which propagate in the network unaltered. Making
this distinction is the subject of QRTs [12]. Each QRT comes
with an assigned set of free states F (A), being a subset of
the set of density operators, which we denote as D(A). The
set D(A) contains positive-semidefinite, unit-trace operators
ρ acting on the (here, finite-dimensional) Hilbert space HA of
a system A.

A QRT is said to be affine if the free states form an affine
space; i.e., for any σa ∈ F (A), the state σ = ∑

a taσa, with
ta ∈ R and

∑
a ta = 1, is again a free state. For F (A) ⊆ D(A),

its affine hull is here defined as

Aff(F ) =
{∑

a

taσa

∣∣∣∣∣ σa ∈ F (A),
∑

a

ta = 1

}
∩ D(A). (1)

Since an affine combination of states σ a does not always yield
a physical state, we made use of an intersection with the set of
density operators D(A) in Eq. (1) such that Aff(F ) contains
only physical states. For example, this could be free states that
admit a quasiprobability representation [33] while resourceful
states are nondecomposable; see Ref. [34] for an experiment.

Similarly, a QRT is said to be convex if the resource-free
states form a convex set; i.e., for any σa ∈ F (A), the state σ =∑

a taσa, with ta � 0 and
∑

a ta = 1, is again a free state. The
convex hull of F (A) ⊆ D(A) is

Conv(F ) =
{∑

a

taσa

∣∣∣∣∣ σa ∈ F (A),
∑

a

ta = 1, ta � 0

}
.

(2)
Note that Conv[F (A)] ⊆ Aff[F (A)] holds true because con-
vex sums are a special case of affine sums where 0 � ta � 1
is a probability.

We denote by D(A1, . . . , AN ) the set of quantum
states of an N-partite composite system. The convex
hull Conv[D(A1) ⊗ · · · ⊗ D(AN )] corresponds to the set
of N-partite, fully separable states [35,36]. Note that
we here employ the following notation of tensor prod-
ucts of sets: D(A1) ⊗ · · · ⊗ D(AN ) = {ρA1 ⊗ · · · ⊗ ρAn |ρA1 ∈
D(A1), . . . , ρAN ∈ D(AN )}. Further, we suppose that the set

of composite free states F (A1, . . . , AN ) contains at least
F (A1) ⊗ · · · ⊗ F (AN ) [12]. This means that the independent
preparation of free states by multiple parties gives a free state
on the composite system. Moreover, discarding subsystems
may not create a resource; i.e., for σ ∈ F (A1, . . . , AN ), its
marginals Tra(σ ) ∈ F (A1, . . . , Aa−1, Aa+1, . . . , AN ), for a =
1, . . . , N , are free as well. Therefore, if F (A1), . . . ,F (AN )
are affine, then one defines

F (A1, . . . , AN ) = Aff[F (A1) ⊗ · · · ⊗ F (AN )]. (3)

If F (A1), . . . ,F (AN ) are convex, then one has

F (A1, . . . , AN ) = Conv[F (A1) ⊗ · · · ⊗ F (AN )]. (4)

In addition, for a general QRT, F (A1, . . . , AN ) ⊇ F (A1) ⊗
· · · ⊗ F (AN ) holds true.

Resource-destroying maps and resource-censoring maps

Physical operations are mathematically expressed as quan-
tum channels [37], i.e., linear maps � : D(A) → D(B) that
are completely positive and trace-preserving. A quantum
channel � is said to be RD if it additionally satisfies

(i) ∀ρ ∈ D(A) : �(ρ) ∈ F (B), (resource-destroying)

(ii) ∀σ ∈ F (A) : �(σ ) = σ. (freeness-preserving)

In Ref. [11], it was shown that the existence of a RD map
implies that F (A) was affine; see also Refs. [12,18]. To see
this, let σ = ∑

a taσa /∈ F (A) be an affine combination, and
σa ∈ F (A) are free states. If an RD map � would exist for
a nonaffine theory, then �(

∑
a taσa) = ∑

a ta�(σa) has to be
a free state by condition (i). However, condition (ii) implies
�(σa) = σa for all a, thus �(σ ) = σ . However, σ is not a
free state by the initial assumption. Thus, we are left with a
contradiction, showing that such a map � cannot exist.

Nevertheless, for a nonaffine QRT, a generalization of RD
maps can be introduced, which we dub RC maps.

Definition 1. A channel �′ is said to be RC if it satisfies

∀ρ ∈ D(A) : �′(ρ) ∈ F (B), (resource destroying)

∀σ ∈ F ′(A) : �′(σ ) = σ, (almost freeness-preserving)

where F ′(A) ⊆ F (A) is a chosen affine subspace.
We emphasize that RC maps are not just RD maps belong-

ing to a smaller QRT F ′(A), with F ′(A) ⊆ F (A) since we
do not demand an RC map �′ to map any state ρ ∈ D(A)
onto a state in F ′(B). Moreover, free states F (A) of a QRT
are commonly motivated by physical limitations while the set
F ′(A) is motivated operationally. Simply speaking, F ′(A) is
a subset of free states for which one can guarantee that these
pass the channel unaltered while any resource ρ /∈ F (A) is
destroyed. The free states in F (A) \ F ′(A) might also undergo
changes. Since F ′(A1), . . . ,F ′(AN ) are, by definition, affine,
F ′(A1, . . . , AN ) is given by the affine hull in Eq. (3). For an
affine QRT, one has �′ = �, with F ′(A) = F (A). However,
for any nonaffine QRT F (A), one can always find at least a
minimal construction F ′(A) = {σ }, containing a single state
σ ∈ F (A); then, �′(ρ) = Tr(ρ)σ is RC.
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III. QUANTUM CENSORSHIP

In the following, the quantum censorship protocol is
introduced. First, the protocol is studied for noiseless chan-
nels. Second, we discuss under which circumstances multiple
senders can coordinate their resources to potentially overcome
censorship. After the discussion of important special cases,
the effect of noise on the protocol is investigated.

A. Censorship over noiseless channels

Consider N senders A1, . . . , AN who have access to local
quantum resources, e.g., party Aa can prepare any state ρAa ∈
D(Aa). In an unregulated network, each sender is connected
to one of the receivers B1, . . . , BN via the noiseless channel
idAa→Ba . However, to prevent the transmission of resource
states, an agent sits in between each sender-receiver pair. The
agent’s goal is to limit the type of quantum states that can
be shared between parties to the free states F (Aa) of a QRT.
The agent informs the senders that only the transmission of
free states in an affine subspace F ′(Aa) ⊆ F (Aa) is autho-
rized, the user agreement. To enforce that policy, the agent can
implement an RC map �′. Thus, the information processing
protocol of (noiseless) quantum censorship is

As long as each sender A1, . . . , AN only has access to
local quantum resources, i.e., the composite system is in a
product state ρA1 ⊗ · · · ⊗ ρAN , receiving parties B1, . . . , BN

obtain �′(ρA1 ) ⊗ · · · ⊗ �′(ρAN ), which is a free state in
F (B1 . . . BN ), as intended by the agent. If, however, an initial
state σA1 ⊗ · · · ⊗ σAN belongs to F ′(A1) ⊗ · · · ⊗ F ′(AN ), it
remains unchanged by the action of (�′)⊗N . This allows the
users of the network to carry out (undisturbed) communica-
tion only with messages σ ∈ F ′(A1, . . . , AN ).

B. Breakable and unbreakable censorship

Clearly, a single sender cannot break censorship as ρ ∈
D(A) is mapped onto a free state �′(ρ) ∈ F (B). But sending
parties A1, . . . , AN might coordinate their actions to prepare a
nonlocal resource state ρ ∈ D(A1, . . . , AN ). In this case, the
circuit is

where the vertical line between the senders indicates pre-
shared entanglement (and randomness [12]) necessary to
prepare an arbitrary N-partite quantum state. Because of the
local action of the agent’s operation �′, the question arises if
the censorship can be overcome in this manner. Formally, we
define the notion of breakable censorship as follows.

Definition 2. A censorship is breakable if there exists a
state ρ /∈ F (A1, . . . , AN ) such that (�′)⊗N (ρ) = ρ. Other-
wise, censorship is said to be unbreakable.

Simply speaking, censorship is breakable if a quantum
correlated resource state reaches the receivers unaltered. The
receivers can coordinate their actions to make use of the
resource.

When censorship is unbreakable, malicious users
A1, . . . , AN cannot proliferate quantum resources, thus
making it easier to attribute the origin of a cryptographic
attack in places, wherever postquantum cryptography is
not at its state-of-the-art. In a commercial setting, where
a provider demands premium fees for sharing quantum
resources, overcoming the censorship creates a free-rider
problem, in which users can transmit quantum information
without paying. This, in turn, destroys a provider’s incentive
to participate in the build-up of a global quantum internet.

The following theorem establishes for which QRTs the
censorship can be overcome.

Theorem 1. A censorship is breakable, if and only if
F ′(A1, . . . , AN ) \ F (A1, . . . , AN ) is nonempty.

Proof. If F ′(A1, . . . , AN ) \ F (A1 . . . , , AN ) is nonempty,
then there exists a resource state ρ /∈ F (A1, . . . , AN ) that
is stabilized by (�′)⊗N , i.e., (�′)⊗N (ρ) = ρ. This follows
from the linearity of �′ and the definition of the affine
hull F ′(A1, . . . , AN ); see Eq. (3). Hence, (�′)⊗N (ρ) = ρ /∈
F (B1, . . . , BN ) and censorship is breakable. Conversely,
if censorship is breakable, then there exists a state ρ /∈
F (A1, . . . , AN ) such that (�′)⊗N (ρ) = ρ. By the above argu-
ment, ρ lies in F ′(A1, . . . , AN ) \ F (A1, . . . , AN ), completing
the proof. �

Intuitively, this breaking of the censorship can be under-
stood as follows. The subset F ′(A) of the free states F (A)
was motivated operationally as a space on which one could
establish a censorship for a single sender-receiver pair. How-
ever, its affine hull F ′(A1, . . . , AN ) as defined in Eq. (3) might
contain states that are resourceful on the composite system.

C. Special cases

For the case �′ = �, being the (unique [18]) RD map of a
QRT, we have the following theorem.

Theorem 2. Let � be the RD map of a QRT. Then, the
censorship is unbreakable.

Proof. Since � is RD, the set of free states F (A) is affine.
Hence, F (A1, . . . , AN ) = F ′(A1 . . . , , AN ), and by virtue of
Theorem 1, the censorship is unbreakable. �

In principle, the censorship protocol can be made un-
breakable for any QRT. This can be achieved by choosing
F ′(A) = {σ } as a single-state edge case. The RC map of
the theory is the replacement channel �′(ρ) = Tr(ρ)σ . Then,
F ′(A1, . . . , AN ) = F ′(A1) ⊗ · · · ⊗ F ′(AN ), which is always
contained in F (A1, . . . , AN ). It follows from Theorem 1 that
censorship is unbreakable.

Next, suppose we are concerned with the censorship of a
convex QRT. The set F (A1, . . . , AN ) as defined by the con-
vex hull in Eq. (4) contains free, N-partite separable states.
Thus, entanglement-breaking channels play a distinct role in
the censorship of these resources. The channel �′ is entan-
glement breaking [13] if idA1→B1 ⊗ �′ maps any bipartite
state ρ onto a separable state; i.e., (idA1→B1 ⊗ �′)(ρ) is an
element of Conv[D(B1) ⊗ D(B2)]. As �′ is additionally RC,
idA1→B1 ⊗ �′ is a projection onto Conv[D(B1) ⊗ F ′(B2)]. For
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an entanglement-breaking RC map, the following theorem
holds true.

Theorem 3. If �′ is an entanglement-breaking RC map of
a convex QRT, then censorship is unbreakable.

Proof. Let �′ be entanglement breaking. Then, (�′)⊗N is a
mapping from D(A1, . . . , AN ) to the set Conv[F ′(B1) ⊗ · · · ⊗
F ′(BN )]. However, since (�′)⊗N stabilizes states in the affine
hull F ′(A1, . . . , AN ) given by Eq. (3), it follows that

F ′(A1, . . . , AN ) ⊆ Conv[F ′(A1) ⊗ · · · ⊗ F ′(AN )]

⊆ F (A1, . . . , AN ), (5)

where the second line follows from F ′(A) ⊆ F (A), and be-
cause F (A1, . . . , AN ) is defined via the convex hull in Eq. (4).
Hence, F ′(A1, . . . , AN ) \ F (A1, . . . , AN ) is empty and Theo-
rem 1 implies unbreakable censorship. �

For the purpose of illustration, we can make use of the
minimal construction F ′(A) = {σ } in which σ is a single free
state belonging to a convex QRT F (A). An RC map is given
by the replacement channel �′(ρ) = Tr(ρ)σ . Since �′ is en-
tanglement breaking, Theorem 3 ensures that the censorship
is unbreakable, which might also be obvious from the form of
the channel �′.

D. Censorship via noisy channels

So far, we restricted ourselves to perfect communication;
that is, each sender is connected to a receiver via an identity
channel. In realistic communication scenarios, however, we
expect information transmission to be performed over a noisy
channel � : D(Aa) → D(Aa). While this is a well-known is-
sue for any information processing task, in the context of the
censorship protocol, we ought to be worried that the RC map
�′ introduces additional errors. Thus, we consider the noisy
process � to occur before the operation �′. The protocol for
the noisy case reads

Throughout, it is assumed that � is resource nongenerating
[11,12]; that is, for any free state σ ∈ F (Aa), one has �(σ ) ∈
F (Aa). This seems to be a reasonable assumption because we
rarely expect a noisy map � to create a resource from a free
state. If censorship is established via a RD map �′ = �, then
�(σ ) = σ for any σ ∈ F (A). This implies that the noise �

commutes with � on the set of free states, i.e.,

∀σ ∈ F (A) : (� ◦ �)(σ ) = (� ◦ �)(σ ). (6)

In this scenario, the censorship protocol does not introduce
additional errors through the RD map �. This means that if
a sender transmits only free states (as the agent wants them
to do), their message σ is obtained by the receiver as �(σ ).
Of course, noiseless communication is infeasible in real-world
settings, but the agent (e.g., a network provider) can aim
at high-fidelity communication, avoiding the introduction of
additional noise by enforcing censorship via �.

The situation is more delicate if we consider censorship
using a RC map �′. The RC map stabilizes only an affine

subspace F ′(A) ⊆ F (A). States in F (A) \ F ′(A) could be al-
tered by �′. Then, any resource-non-generating � that takes
elements in F ′(A) to elements in F (A) \ F ′(A) does not gen-
erate a resource, but it might lead �′ to alter these states.
The protocol then introduces additional changes to the state
that distort the sender-receiver experience in addition to the
already present noise generated by �. Thus, to ensure that
customers can exchange free states in F ′(A) without interfer-
ence caused by the RC map �′, the provider must, in general,
keep the sender-receiver channels free of any noise process
that is not an automorphism �′ : F ′(A) → F ′(A).

However, due to �′ being a projection onto F ′, there might
be practical situations in which the action of �′ has a cor-
recting effect, i.e., �′[�(σ )] is closer (with respect to some
metric) to σ that the noisy message �(σ ).

IV. CENSORSHIP OF SPECIFIC RESOURCES

In the following, the censorship protocol is illustrated for
several resources including coherence, reference frames, and
entanglement.

A. Censorship of coherence

In the QRT of coherence [20,38], one quantifies the amount
of superpositions in a general mixed state with respect to
a fixed orthonormal basis {|x〉}x, the incoherent basis. Free
(likewise, incoherent) states admit a diagonal representation
in that basis, σ = ∑

x px |x〉 〈x|. This QRT is affine since, by
Eqs. (1) and (2), the definitions of convex and affine hull
coincide in the example under study. An RD map is given by
the completely dephasing channel [11,12]

�(ρ) =
∑

x

|x〉 〈x| ρ |x〉 〈x| . (7)

Imposing censorship on coherence using � means that only
incoherent states (classical information) are preserved during
the communication. Since � is RD, the censorship is unbreak-
able, Theorem 2. This is a positive result for any provider
(agent) trying to reserve quantum communication for specific
costumers, while restricting the general users of the network
to classical communication only. Senders have to accept such
policies as there is no way of breaking the censorship.

A physical realization of the censorship can be im-
plemented by linear optics. The sender A prepares the
coherent superposition |ψ〉 = αH |H〉 + αV |V 〉 in their lab-
oratory. Here, horizontal and vertical polarization |H〉 and
|V 〉 define the incoherent basis, with |αH |2 + |αV |2 = 1. To
prevent the transmission of coherent quantum information to
B, the agent simply applies a polarization filter to the state |ψ〉.
This realizes a projective measurement of |H〉 〈H | or |V 〉 〈V |,
depending on the filter. Since the agent conceals which mea-
surement was performed, B′s best description is given by the
incoherent state σ = |αH |2 |H〉 〈H | + |αV |2 |V 〉 〈V |.

B. Censorship of reference frames

Certain types of quantum information are, without a com-
mon reference frame, of no use to the communicating parties
in a network. For instance, in the QRT of coherence, one can
only decide if a given state is free or not if the incoherent
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basis {|x〉}x is known. Mathematically, we describe a change
of the reference frame by a unitary operator Ua, relating a
sender’s state ρ to a receiver’s state via UaρU †

a . However,
if Ua is unknown, the description of the state is obtained by
averaging over all possible values in a group G = {Ua}a, i.e.,
�(ρ) = 1

|G|
∑|G|

a=1 UaρU †
a . The channel � is also known as

the G-twirling map [12]. If we consider a lack of a shared
reference frame to define the free states F (A) = {�(ρ) | ρ ∈
D(A)}, then � is a projection onto F (A). In particular, due
to F (A) being affine, it is the RD map of the QRT. Thus, the
censorship of reference frames in unbreakable; see Theorem
2. Note that the same conclusion cannot be reached using
Theorem 3. Even though F (A) is affine, and thus convex, �

is generally not entanglement breaking.

C. Censorship of entanglement

In the QRT of entanglement [12,28], the set of free states
F (A) contains all separable bipartite states of the system A,
i.e., HA = XA ⊗ YA. A quantum state σ ∈ D(A) is said to be
separable if it can be written as a probabilistic mixture of pure
product states [35]

σ =
∑

x

px |ψx〉 〈ψx|XA
⊗ |φx〉 〈φx|YA

, (8)

where px � 0 and
∑

x px = 1. Mathematically, F (A) is the
convex hull of D(XA) ⊗ D(YA). Since F (A) is convex, but
not affine, there is no RD map for the theory. However, if
the agent informs a sender-receiver pair to agree on a fixed
orthonormal basis {|x〉}x for their subsystems XA and XB, a
censorship between them can be established. This is done on
the affine subspace F ′(A), containing classical-quantum states
σ = ∑

x px |x〉 〈x|XA
⊗ σ x

YA
[39], which are diagonal with re-

spect to {|x〉}x in XA, and we have arbitrary σ x
YA

. To see that
F ′(A) is indeed affine, consider the affine combination σ =∑

a taσ a of free states σ a = ∑
x px,a |x〉 〈x|XA

⊗ σ x,a
YA

, viz.

σ =
∑

x

qx |x〉 〈x|XA
⊗ ωx

YA
∈ F ′(A), (9)

where ωx
YA

= ∑
a ta px,aσ

x,a
YA

/
∑

a ta px,a and
∑

a,x ta px,a =∑
x qx = 1. An RC map for entanglement is defined as

�′(ρ) =
∑

x

(|x〉 〈x|XA
⊗ 1YA )ρ(|x〉 〈x|XA

⊗ 1YA ). (10)

Note that �′ acts trivially on the subsystems YA, i.e., �′ =
� ⊗ idYA→YB , with � being the dephasing channel, Eq. (11).
The channel in Eq. (10) can be used to impose censorship on
entanglement. To see this, note that �′ takes any bipartite state
ρ ∈ D(A) to a separable state in F (B). However, not all free
states σ ∈ F (A) are stabilized by the map in Eq. (10), but only
those in F ′(A).

In the QRT of entanglement, F (A1, . . . , AN ) is given
by the convex hull in Eq. (4). In contrast, the affine
hull F ′(A1, . . . , AN ), as defined in Eq. (3), contains states
possessing entanglement between senders A1, . . . , AN . It fol-
lows that F ′(A1, . . . , AN ) \ F (A1, . . . , AN ) is nonempty, and
Theorem 1 thus implies that censorship can be broken. To see
this explicitly, consider two senders A1 and A2 sharing the

state

ρA1A2 =
∑
x,y

pxy |x〉 〈x|XA1
⊗ |y〉 〈y|XA2

⊗ ρ
xy
YA1YA2

, (11)

where at least one ρxy is entangled. The protocol for this
case is

It is not hard to see that �′
A1

⊗ �′
A2

leaves the states ρxy un-
altered. Thus, entanglement is passed on to the receivers, and
censorship has been broken. Note that the agent might enforce
an unbreakable censorship of entanglement by resorting to a
(stricter) censorship on coherence, using the RD map �⊗2

from Eq. (11), and redefining F ′(A) as the set of (bipartite)
incoherent states. This suffices because there cannot be en-
tanglement without coherence, and censorship of coherence
is unbreakable.

In general, the RC map in Eq. (10) does not commute with
resource nongenerating (i.e., nonentangling [40,41]) noise �

on the set of free states F (A). Thus, the agent must be wor-
ried that their action �′ introduces additional errors into the
message, despite a sender A using the network permissibly,
i.e., sending only messages σ ∈ F ′(A) according to the user
agreement.

To illustrate the undesirable effects such noise can have on
a state σ = ∑

x px |x〉 〈x|XA
⊗ σ x

YA
, consider a swap channel

�(ρ ⊗ σ ) = σ ⊗ ρ. Clearly, the noise � is resource non-
generating (nonentangling). After the agent, applies the RC
map in Eq. (10), a receiver B is left with the incoherent state

(�′ ◦ �)(σ ) =
∑
x,y

px 〈y| σ x
YA

|y〉 |y〉 〈y|XB
⊗ |x〉 〈x|YB

. (12)

This leaves B without any quantum properties left in the state.
While a swap channel might be a nonintuitive form of noise,
mixing up a bit sequences is certainly possible, and it high-
lights some of the difficulties (quantum) network providers
(i.e., the agent) faces when trying to establish a quantum
censorship, while still keeping the network operable.

A physical realization of the censorship can be devised us-
ing linear optics. Two senders A1 and A2 prepare the entangled
state

ρA1A2 = |H〉 〈H |XA1
⊗ |V 〉 〈V |XA2

⊗ |φ+〉 〈φ+|YA1YA2
.

Here, horizontal and vertical polarization |H〉 and |V 〉 define
the incoherent basis and |φ+〉 = (|HH〉 + |VV 〉)/

√
2 is a Bell

state. The agent tries to prevent the transmission of entangle-
ment to receivers B1 and B2 using the RC map (10). There,
the agent performs a (nonselective) polarization measurement
on the subsystems XA1 and XA2 , thus realizing a dephasing
with respect to the states |H〉 and |V 〉 [see Eq. (11)]. See also
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Ref. [42] for experimental results on a controllable dephasing
channel. However, the agent does not apply any operation to
the subsystems YA1 and YA2 [see Eq. (10)]. It follows that
the state ρA1A2 is not altered by the RC map �′

A1
⊗ �′

A2
. The

entangled state |φ+〉 〈φ+|, thus reaches the receivers B1 and
B2. The censorship has been broken.

V. CONCLUSION

We introduced a protocol for quantum censorship. Therein,
an agent can apply RC or RD maps locally to each sender-
receiver connection, thus prohibiting the distribution of
resource states through the network at will. By using such
maps, the protocol avoids any measurements of a state, which
would render the network unusable for quantum communi-
cation. Since RD maps exist only for affine QRTs, RC maps
were utilized to impose censorship on an affine subspace of
free states. Our necessary and sufficient conditions reveal un-
der which censorship is unbreakable. This was the case for the
QRT of coherence and reference frames while the censorship
of entanglement could be overcome.

Quantum censorship protocol becomes especially urgent
once we are confronted with the emergence of a widely ac-
cessible quantum internet. See, for instance, Refs. [43,44]
for recent experimental progress in this direction. On the
one hand, quantum censorship allows governmental au-
thorities to prevent ill-intentioned parties from quantum-
cryptographic attacks. On the other hand, commercial en-
terprises may offer free classical services but want to
charge premium fees for quantum communication. Also,
future studies of more advanced (possibly nonlocal) cen-
sorship protocols might be a worthwhile endeavor. We
hope our work paves the way for a discussion of quantum
censorship as a previously unappreciated tool in quantum
communication.
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