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Inner bounding the quantum entropy cone with subadditivity and subsystem coarse grainings
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We show via explicit construction that all the extreme rays of both the three-party quantum entropy cone and
the four-party stabilizer entropy cone can be obtained from subsystem coarse grainings of specific higher-party
quantum states, namely, extreme states characterized by saturating a (nontrivial) maximal set of instances of
subadditivity. This suggests that the study of the “subadditivity cone,” and the set of its extreme rays realizable
in quantum mechanics, provides a powerful tool for deriving inner bounds for the quantum and stabilizer entropy
cones, as well as constraints on new inequalities for the von Neumann entropy.
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I. INTRODUCTION

The derivation of the fundamental inequalities satisfied by
the von Neumann entropy is an important problem in quantum
information theory. Unfortunately, it is also notoriously diffi-
cult. Since the proof of strong subadditivity (SSA) by Lieb
and Ruskai half a century ago [1,2], no new unconstrained
inequality has been found. New inequalities involving four
or more parties were discovered in [3–5], but they are con-
strained, meaning that they only apply to particular density
matrices which saturate other entropic constraints. In the clas-
sical case, i.e., for the Shannon entropy, new inequalities have
been derived in [6–9], and [4] speculated that they might hold
also in quantum mechanics. However, to our knowledge, at
present there is no strong argument that new unconstrained
inequalities for the von Neumann entropy should exist.

The main goal of this paper is to show that a seemingly
much simpler problem, the quantum marginal independence
problem (QMIP) [10], originally motivated by an approach
[11–13] to the study of entropy inequalities in quantum grav-
ity [14–16], might provide a powerful tool for the derivation
of constraints on the existence of new inequalities and their
structure. Specifically, we will show that already from a partial
solution to the “extremal” version of the QMIP up to nine
parties, we can derive definite inner bounds for the quantum
entropy cone (QEC), which in the case of three parties coin-
cide with the full cone [17], and in the case of four parties
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coincide with the entropy cone of stabilizer states [18]. We
stress that even though we are not in this paper deriving new
bounds on quantum entropy cones for four or more parties, our
method introduces a conceptual idea that may prove fruitful to
explore further.

The structure of the paper is as follows. In Secs. II and
III, we review the main definitions concerning entropy cones,
the QMIP, and its extremal version. In Sec. IV, we formulate
the inner bound to the quantum entropy cone for an arbitrary
number of parties. In Sec. V, we review the definition of
hypergraph models from [19] and the main result from [20]
about their realizability by stabilizer states. We then use this
technology in Sec. VI to derive the main result of this paper,
and conclude in Sec. VII with a list of open questions.

II. QUANTUM ENTROPY CONE

A convenient framework to study entropy inequalities (and
their relations) was introduced in [17], following the anal-
ogous work of [21] for the Shannon entropy. Let [N] =
{1, 2, . . . , N}, and consider an N-party density matrix ρN on
a Hilbert space H1 ⊗ H2 ⊗ . . . ⊗ HN. The entropy vector of
ρN is the vector in RD, with D = 2N − 1, given by

�S = {SJ , ∀J ⊆ [N]}, SJ := S(ρJ ), (1)

where ρJ is the reduced density matrix for the parties in J .
Denoting by �∗

N the set of entropy vectors for all N-party
quantum states, its topological closure �

∗
N is a convex cone

[17] known as the quantum entropy cone (QEC).
For any N, an outer bound of �

∗
N is given by the poly-

hedral cone obtained via the intersection of the half spaces
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specified by all instances of subadditivity (SA) and strong
subadditivity (SSA) of the von Neumann entropy, and we will
denote this cone by �N [17]. For N � 3 it is easy to show that
�

∗
N = �N by constructing quantum states that realize entropy

vectors belonging to the extreme rays of �N [17]. On the other
hand, for N � 4, the constrained inequalities found in [3,4]
imply that this construction is no longer possible, since there
are regions on the boundary of �N which are inaccessible to
quantum states. This however is not enough to conclude that
�

∗
N ⊂ �N (strictly), since there might be quantum states that

approximate the entropy vectors in these regions arbitrarily
well.

III. QUANTUM MARGINAL INDEPENDENCE

An interesting and well-known problem in quantum me-
chanics is the quantum marginal problem [22]. Given density
matrices ρJ for some subsystems, it asks whether there exists
a global density matrix ρ such that all the given ρJ can
be obtained from ρ as marginals. In this context, entropy
inequalities provide necessary conditions for the existence of
a solution [23].

The quantum marginal independence problem (QMIP) [10]
can be interpreted as a simplified version of the quantum
marginal problem, where instead of fixing the marginals for
some subsystems, one only demands that certain subsystems
are correlated and others are not. Specifically, the QMIP
asks the following question: Given an N-party system and
a complete specification of the presence of correlation (or
conversely, the lack thereof) among the various subsystems,
is there a density matrix that satisfies these constraints? As for
the case of the marginal problem, entropy inequalities can be
used to constrain the space of solutions for the QMIP. How-
ever, unlike its parent version, the knowledge of the quantum
entropy cone is sufficient to solve the problem completely. To
see this, let us formulate the QMIP more precisely.

The N-party subadditivity cone (SAC) is defined as the
polyhedral cone in entropy space carved out by all instances
of SA for that N. Consider a face F of the SAC and a
vector �S ∈ int(F ). Notice that the collection of SA instances
which are saturated by �S is independent from the specific
choice of this vector. The saturation of SA is equivalent to
the vanishing of the mutual information, which occurs if and
only two subsystems are independent. We can then interpret
int(F ) to correspond to a specification of which subsystems
are correlated and which are independent, while remaining ag-
nostic about the specific values of the entropies. In its original
formulation [10], the QMIP asked for which faces does int(F )
contain at least one entropy vector that can be realized by a
quantum state. We now slightly generalize this question by
replacing “realized” with “approximated arbitrarily well.” In
this generalized version, the QMIP can then be trivially solved
if �

∗
N is known.

In this paper we proceed in the opposite direction and
attempt to extract information about �

∗
N from the solution

to the QMIP for different values of N′ � N. In particular,
we will be interested in the extremal version of the QMIP,
which we denote as EQMIP, where we only focus on the one-
dimensional faces of the SAC, i.e., its extreme rays. Denoting

by ̂RN the set of all extreme rays of the N-party SAC, the
solution RN to the EQMIP is then

RN := ̂RN ∩ �
∗
N. (2)

We will now explain how to construct inner bounds for �
∗
N

from the knowledge of RN′ for some N′ � N.

IV. INNER BOUNDS FROM EXTREMAL
MARGINAL INDEPENDENCE

A. Subsystem coarse grainings

Given a density matrix ρN′ , we want to consider a coarse
graining of the N′ parties into N composite ones and to re-
late the entropy vectors before and after the coarse graining.
We will also consider purifications of ρN′ , and allow for
coarse grainings of the “purifying” party. Defining �N� =
{0, 1, . . . , N}, where we added zero to account for the purifier,
such a coarse graining can then be specified by a surjective
function

f : �N′� → �N�,

�′ �→ � = f (�′), (3)

which specifies, for each party �′ ∈ �N′�, which of the coarse-
grained �N� parties it belongs to.

Given a density matrix ρN′ with entropy vector �S′, and a
coarse graining f , the components of the entropy vector of the
same density matrix after the coarse graining are then given by

S′
J = S f −1(J ), (4)

where f −1(J ) is the preimage of J [24].
Notice that in general, this map of entropy vectors from

�∗
N′ to �∗

N, which we denote by � f , can formally be extended
to vectors in the full �

∗
N′ , and can map a vector on the bound-

ary of �
∗
N′ to one strictly in the interior of �

∗
N. For example,

any coarse graining to N = 2 of the N = 3 entropy vector
corresponding to the four-party Greenberger-Horne-Zeilinger
(GHZ) state gives an entropy vector strictly inside �

∗
2 (since

no instance of SA is saturated).

B. Inner bounds for �
∗
N

Using this construction, we can now derive an inner bound
for �

∗
N as follows. Suppose that RN′ is known for some N′ �

N. We can then consider all possible coarse graining from N′
to N, mapping all vectors in RN′ to N-party entropy vectors,
and taking the conical hull. Formally, for any given N and
N′ � N, we define

�N′
N = cone {� f ( �R), ∀ f ∈ � ∀ �R ∈ RN′ }, (5)

where � is the set of all possible functions f from Eq. (3). We
then have the following lemma.

Lemma 1. For any fixed N, and any i, j ∈ N with i < j,
�N+i

N ⊆ �
N+ j
N .

Proof. It suffices to show that for any N′ � N and �R ∈ RN,
there exists some �R′ ∈ RN′ and a coarse graining f from N′

to N such that � f ( �R′) = �R. For the case where �R is realized
by a density matrix ρ, we can realize the desired �R′ with
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ρ ′ = ρ ⊗ |0〉〈0|[N′]\[N], and choose f such that the additional
factors are coarse grained with the purifier for ρ ′. For the
general case, we refer the reader to Sec. 3.4 of [25]. �

By Lemma 1 and the definition of �N′
N in Eq. (5), we obtain

the following chain of inclusions:

�N
N ⊆ �N+1

N ⊆ �N+2
N ⊆ · · · ⊆ �

∗
N ⊆ �N. (6)

It is then natural to ask how well this sequence approximates
�

∗
N, and if there is some “maximal” ̂i (which implicitly

depends on N) such that

�N+̂i
N = �N+i

N , ∀ i >̂i. (7)

In the following sections, we will answer this question for
N = 3 and provide a partial answer for N = 4. First, how-
ever, we need to review a construction that will allow us to
determine at least a subset of solutions to the EQMIP for
sufficiently large N.

V. HYPERGRAPH MODELS

The hypergraph models of entanglement were introduced
in [19] as a generalization of the graph models used in [16]
to study entropy inequalities in quantum gravity. An N-party
hypergraph model is a simple [26] weighted hypergraph H =
(V, E ) with vertices V , hyperedges E with positive weights, a
specification of a subset ∂V ⊆ V of vertices called boundary
vertices, and a surjective (but not necessarily injective) map
ξ : ∂V → �N�.

Given an N-party hypergraph model, one associates to it an
entropy vector as follows. For a nonempty subset J ⊆ [N],
an J cut is a subset VJ ⊂ V such that ∂V ∩ VJ = ξ−1(J ),
where ξ−1 denotes the preimage. The cost of any such cut
is the sum of the weights of the hyperedges that connect a
vertex in VJ to one in V c

J , the complement of VJ in V . In
other words, given an J cut VJ , and a hyperedge h (thought
of as a collection of vertices), the weight of h contributes to
the cost of the cut if and only if h contains at least one vertex
in VJ and at least one in V c

J . The entropy SJ is then defined
as the cost of the J cut with minimal cost.

The prescription we just described associates to each N-
party hypergraph model a vector in RD. The collection of all
these vectors (at fixed N) is again a convex cone [27], and we
have the following theorem [20].

Theorem 1. The entropy cone of hypergraph models is
contained in the entropy cone of stabilizer states.

While in principle hypergraph models may not be sufficient
to solve the EQMIP completely at arbitrary N (see Sec. VII),
they at least provide a partial solution that will be sufficient
for our purposes.

VI. CONSTRUCTIONS FOR SMALL N

Having reviewed the necessary tools from hypergraph
models, we now use this technology to construct inner bounds
for �

∗
N for N � 4. The logic will be as follows: we will

construct hypergraphs that realize certain extreme rays of the
SAC which, by Theorem 1, are automatically solutions to the
EQMIP. Even without a full solution to the EQMIP, we will
then show via particular coarse grainings that we can obtain

FIG. 1. A hypergraph giving an element of R6. The hyperedge
(yellow blobs) has weight 2, and edges (blue lines) have weight 1.

entropy vectors for a smaller number of parties, which give
powerful inner bounds.

A. Bounds for N = 2

This case is trivial, but we include it for completeness. The
outer bound �2 to �

∗
2 is the SAC, and its extreme rays are

realized by Bell pairs. We then have

�2
2 = �

∗
2 = �2. (8)

B. Bounds for N = 3

As we mentioned in Sec. II, it was already shown in [17]
that �

∗
3 = �3. This equivalence follows from the fact that the

extreme rays of �3 contain entropy vectors realized by Bell
pairs, the four-party GHZ state, and the four-party absolutely
maximally entangled state (also known as the four-party per-
fect tensor) [28]. With the only exception of the four-party
GHZ, all these states also generate extreme rays of the three-
party SAC and are hence elements of R3. Their conical hull is
�3

3, which coincides with the three-party holographic entropy
cone [16].

To show that the sequence in Eq. (6) converges to �
∗
3, we

need to consider �3+i
3 for i � 1. The sets R4 and R5 were

already found in [10], and it is straightforward to verify that
they imply �3

3 = �4
3 = �5

3. Hence, we need i � 3. It turns out
that i = 3 is sufficient, since one can verify that the entropy
vector associated to the hypergraph in Fig. 1 is in R6, and
under the coarse graining

{0, 1, 2, 3, 4, 5, 6} → {0, 1, 1, 2, 2, 3, 3} (9)

results in a hypergraph model of the GHZ state. In summary,
we have

�3
3 = �4

3 = �5
3 ⊂ �6

3 = �
∗
3, (10)

which by Eq. (6) also implies �6+i
3 = �6

3 for all i ∈ N.

C. Bounds for N = 4

As mentioned in Sec. II, the QEC for N = 4 is not known.
However, we will show that our construction, even with a
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FIG. 2. A hypergraph giving an element of R9. The hyperedge
(yellow blobs) has weight 2, and edges (blue lines) have weight 1.

relatively small value of N′, suffices to derive an inner bound
that coincides with the subset of �

∗
4 of entropy vectors real-

ized by stabilizer states. This subset, which we denote by 

∗
4,

was shown in [18] to coincide with its outer bound 
4, defined
as the polyhedral cone specified by SA, SSA, and Ingleton’s
inequality [29]. Our goal is to show that there is some i ∈ N
such that

�4+i
4 = 


∗
4. (11)

To see this, we can use a result from [19], which con-
structed hypergraph models realizing the entropy vectors that
generate the extreme rays of 
4. It is then enough to show
that each of these models (seven in total) can be obtained
from coarse graining another hypergraph involving N′ parties
(for some N′ � 4), whose corresponding entropy vector is an
extreme ray of the N′-party SAC. Four out of these seven cases
are trivial, since they correspond to elements of R4. For the
remaining three nontrivial cases (which require i > 0), we
construct the hypergraphs shown in Figs. 1–3. As one can
verify, they are all associated to extreme rays of the SAC
for their corresponding number of parties. By an appropriate
choice of coarse grainings, we can reduce these hypergraphs
to the ones labeled by 4, 6, and 7 in Fig. 4 of [19] (up to a

FIG. 3. A hypergraph giving an element of R8. The two hyper-
edges (yellow and purple blobs) have weight 2, and edges (blue lines)
have weights either 1 (when unspecified) or 2.

trivial permutation of the parties). Specifically, these coarse
grainings are

{0, 1, 2, 3, 4, 5, 6} → {0, 1, 1, 2, 2, 3, 4},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9} → {0, 1, 1, 2, 2, 3, 3, 4, 4, 0},

{0, 1, 2, 3, 4, 5, 6, 7, 8} → {0, 1, 1, 2, 2, 3, 3, 4, 4}.
We then have

�4
4 = �5

4 ⊂ �6
4 ⊂ 


∗
4 ⊆ �9

4 ⊆ �
∗
4 ⊆ �4, (12)

where the first equality follows trivially from the explicit
knowledge of R4 and R5 [10], and the strict inclusion of �6

4 in



∗
4 follows from the results of [30] regarding R6. It is possible

that R8, or even R7, might be enough to obtain 

∗
4, and we

leave this for future work.

VII. DISCUSSION

We conclude by commenting on a few open questions
regarding the strength of our bound, which we believe to be
particularly interesting.

For the bounds that we have explicitly constructed in this
paper, we relied on the hypergraph models of [19] and the
result of [20]. However, it was shown in [31] that for N � 5
the inclusion of the entropy cone of hypergraphs in the cone of
stabilizer states is strict. This implies that hypergraph models
might not be sufficient to derive the most stringent possible
bounds. On the other hand, we cannot rule out the possibility
that hypergraph models do suffice to solve the EQMIP for
arbitrary N, in which case our bounds would not converge to
the full QEC for any N � 4. To resolve this, one direction is
to look for elements in RN that can be realized by stabilizer
states but violate the “hypergraph” inequality found in [31] at
N = 5.

A similar limitation might also affect stabilizer states, since
it is possible that for some value of N, the solution to the
EQMIP requires nonstabilizer quantum states. This question
is related to the most stringent bound that can be realized at
N = 4. Indeed, any �4+i

4 such that 

∗
4 ⊂ �4+i

4 requires an ele-
ment of R4+i that cannot be realized by a stabilizer state, since
it has to violate Ingleton’s inequality. Such violations have al-
ready been investigated for classical probability distributions
[32], and another question for the future is to determine if
for some N there exist extreme rays of the SAC that violate
Ingleton’s inequality while being realizable by quantum states
(at least approximately).

More generally, deep structural properties of the QEC
might be extractable by exploring the behavior of the sequence
of approximations given in Eq. (6). As we already mentioned
at the end of Sec. IV, one possibility (for any given N) is that
there exists some ̂i such that the sequence does not change
beyond this point [see Eq. (7)]. This is the case for N = 3,
where we have shown that the approximation is exact, and
the sequence already converges to the full �

∗
3 at i = 3 [see

Eq. (10)]. However, in principle this behavior is possible even
if the approximation is not exact. For example, this would be
the case for N = 4 if stabilizer states were sufficient to solve
the EQMIP. Another possibility is that (at least for some N)
the sequence continues to grow indefinitely and no such ̂i
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exists. In that case, it would be important to understand if it
converges, and how its limit is related to �

∗
N.

These possibilities are also related to the question about the
polyhedrality of the QEC. For N = 3, the exact approximation
of �

∗
3 at finitêi is possible only because �

∗
3 is a polyhedral

cone, since any �N′
N is polyhedral by construction. For N > 3,

it is currently not known whether �
∗
N is polyhedral. If it is not,

as is the case for the subset of �
∗
N corresponding to classical

probability distributions [9], the sequence in Eq. (6) might still
converge, but only at infinite i.

Finally, let us comment on the role of the outer bound �N,
and in particular SSA. As we mentioned in the Introduction,
to our knowledge there is currently no strong evidence against
the possibility that the QEC also coincides with �N for N > 3.
To explore this possibility, a natural way to proceed is to ex-
amine the gap between our inner bound and �N. In general, an
extreme ray of �N is the intersection of facets corresponding
to multiple instances of both SA and SSA, and it may not be
an extreme ray of the N-party SAC. Thus, one may wonder if
such an extreme ray can be obtained from coarse graining an
extreme ray of the SAC involving more parties and realizable

(at least approximately) in quantum mechanics. It is intriguing
that an example of this is already present at N = 3. In this
case, one of the extreme rays of �3, namely, the one corre-
sponding to the four-party GHZ state described in Sec. VI B,
does not saturate any instance of SA, and nevertheless, it can
be obtained from our construction via the coarse graining in
Eq. (9) of the element of R6 shown in Fig. 1. This suggests
that further explorations of the gap between our inner bound
and the outer bound �N might provide powerful insights on
the structure of the quantum entropy cone.
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