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The capability of the quantum approximate optimization algorithm (QAOA) in solving combinatorial opti-
mization problems has been intensively studied in recent years due to its application in the quantum-classical
hybrid regime. Despite having difficulties that are innate in the variational quantum algorithms (VQA), such as
barren plateaus and the local minima problem, QAOA remains one of the applications that is suitable for the
recent noisy intermediate scale quantum (NISQ) devices. Recent works have shown that the performance of
QAOA largely depends on the initial parameters, which motivate parameter initialization strategies to obtain
good initial points for the optimization of QAOA. On the other hand, optimization strategies focus on the
optimization part of QAOA instead of the parameter initialization. Instead of having absolute advantages, these
strategies usually impose trade-offs to the performance of the optimization problems. One such example is
the layerwise optimization strategy, in which the QAOA parameters are optimized layer by layer instead of the
full optimization. The layerwise strategy costs less in total compared to the full optimization, in exchange of
lower approximation ratio. In this work, we propose the iterative layerwise optimization strategy and explore the
possibility for the reduction of optimization cost in solving problems with QAOA. Using numerical simulations,
we found that by combining the iterative layerwise strategy with proper initialization strategies, the optimization
cost can be significantly reduced in exchange for a minor reduction in the approximation ratio. We also show
that in some cases, the approximation ratio given by the iterative layerwise strategy is even higher than that given
by the full optimization.
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I. INTRODUCTION

The quantum approximate optimization algorithm
(QAOA) is a quantum-classical hybrid algorithm introduced
in 2014 [1], aimed at solving combinatorial optimization
problems on a universal quantum computer using the
paradigm of discretized adiabatic quantum computation
[2]. Many recent works have explored the potential of QAOA
to have a quantum advantage in some of the optimization
problems against their classical counterparts [3–7], and thus
many variants of QAOA have been suggested to satisfy their
respective needs [8–11]. However, QAOA inherits properties
that are innate in the variational quantum algorithms (VQA),
such as the existence of barren plateaus in the optimization
landscape [12–15], and the exponential increase of local
minima as the circuit depth increases [16,17], rendering the
optimization of QAOA difficult. To tackle these problems,
various initialization strategies are proposed so that QAOA
can be initialized near the desired optima [5,18–20], aiding
the convergence of the classical optimizers.

Besides the initialization strategies, optimization strategies
are also essential in improving the optimization of QAOA.
The layerwise strategy (or layerwise training) [21] is an
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optimization strategy which trains the QAOA parameters
layer by layer. In layerwise training, only the latest parameters
are updated while the other parameters are fixed as constant.
This has led to a reduction in the optimization cost, but also
causes the optimization to occur in a restricted search space,
and the premature saturation (saturation before the approxi-
mation ratio reaches 1) of the layerwise training is reported
in Ref. [21] for a projector Hamiltonian Hz = |0〉〈0|. We
found that premature saturation also occurs in the max-cut
Hamiltonian. However, layerwise training is shown to perform
better in the quantum neural network [22].

In this work, we propose the iterative layerwise (abbrevi-
ated as ITLW) strategy, which improves the layerwise strategy
and helps to prevent premature saturation. We found that the
trainability of the parameters in ITLW is highly sensitive to
the initial parameters used. Therefore, by combining ITLW
with some initialization strategies, e.g., bilinear initialization
[23] and Trotterized quantum annealing (TQA) initialization
[18], we successfully reduce the optimization cost (evaluated
by the total number of function calls) significantly in exchange
for a minor reduction in the approximation ratio. The bilinear
initialization uses information of parameters from previous
depths to produce a high approximation ratio, while TQA
directly initializes the parameters as a linear function at a
specific depth (refer to Sec. II and Appendix A for details).
For some small number of iterations k = 2, ITLW managed to
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reduce the cost by almost half with a 4 × 10−3 reduction of the
approximation ratio when combined with these initialization
strategies.

The structure of the paper is summarized as follows. In
Sec. II, we introduce the background of QAOA and the lay-
erwise training. In Sec. III, we discuss the idea of the ITLW
strategy and how the expected optimization cost scales with
the QAOA circuit depth. In Sec. IV, we present and discuss the
simulation results for ITLW combined with the initialization
strategies (bilinear and TQA). Lastly, we conclude in Sec. V.

II. QAOA AND LAYERWISE TRAINING

The objective of QAOA is to maximize the expectation
of a given cost Hamiltonian Hz with respect to the ansatz
state |ψ (γ,β)〉 prepared by the evolution of the alternating
operators:

|ψp(γ,β)〉 =
p∏

j=1

e−iβ j Hx e−iγ j Hz |+〉⊗n, (1)

where γ = (γ1, γ2, . . . , γp) and β = (β1, β2, . . . , βp) are the
2p variational parameters. |+〉

⊗
n corresponds to n qubits in

the ground state of Hx = ∑n
j=1 Xj , where Xj is the Pauli X

operator acting on the jth qubit.
The symbol p denotes the circuit depth of QAOA. It is

defined as how many pairs of operators (layers) are in the
quantum circuit. In our context, we use the term layer, or
usually l , to represent which layer of the circuit is concerned.
The total number of layers is equal to the circuit depth. We
also use the subscript p to represent a quantity at the cir-
cuit depth p, e.g., |ψp〉 means the ansatz state |ψ〉 at circuit
depth p.

Definition 1 (Depth of QAOA circuit). The depth of a
QAOA circuit is defined by the number of alternating
operator pairs (the cost and mixer Hamiltonians) applied to
the initial state, usually denoted as p. A system of the standard
QAOA consists of 2p parameters.

Definition 2 (Layer of QAOA circuit). The layer of a
QAOA circuit is defined as the index of the depth, starting
from 1: l = 1, 2, ..., p. It is used to represent which layer of
the circuit is concerned.

In this paper, we consider the infamous max-cut problem,
which maximizes the number of edges between two partitions
of a graph. The cost Hamiltonian Hz for the max-cut problem
for an unweighted graph G = (V, E ) is given as

Hz = 1

2

∑
( j,k)∈E

(1 − ZjZk ), (2)

where Zj is the Pauli Z operator acting on the jth qubit. We
define the expectation of Hz with respect to the ansatz state in
Eq. (1):

F (γ,β) = 〈ψ (γ,β)|Hz|ψ (γ,β)〉. (3)

We can then use a classical optimizer to search for the max-
imum expectation and the parameters that maximize it. We
also define the approximation ratio α as

α = F (γ∗,β∗)

Cmax
, (4)

where the superscript * denotes quasi-optimal parameters re-
turned by the classical optimizer and Cmax is the maximum cut
value (ground truth) for the graph. The approximation ratio is
a typical evaluation metric indicating how near the solution
given by QAOA is to the ground truth. 0 � α � 1, with the
value of 1 nearer to the true solution.

Theoretically, α approaches 1 as p → ∞. However, due
to the exponential increase of the number of local minima
at larger p, optimizers tend to converge to an undesired local
minima if QAOA is initialized randomly. This leads to various
initialization strategies being proposed to obtain good-quality
solutions for QAOA. Most of the initialization strategies ex-
ploit the fact that the optimal parameters of QAOA exhibit a
smooth and monotonous pattern, with monotonically increas-
ing γi and monotonically decreasing βi, within the QAOA
periodic bound. Depth-progressive initialization strategies,
such as the bilinear strategy [23] and INTERP [5], are known
to produce high α by fine tuning the parameters depth by
depth so that the errors do not accumulate. This is at the cost
of depth-progressive strategies requiring the optimization of
every p′ for p′ = 1, 2, ..., p, which is very costly. A strategy
like TQA [18] uses direct initialization at depth p without the
requirement of starting from small depths, but the result is also
suboptimal at large depths [17].

Another type of strategy is the optimization strategy, in
which the manipulation of parameters occurs during the op-
timization step. The layerwise strategy [21] falls under this
category. The layerwise strategy only updates the parameters
of the latest depth. This form of training method greatly re-
duces the optimization (classical computational) cost, as only
two variables need to be optimized, compared with the full
optimization of 2p variables. However, the layerwise strategy
encounters premature saturation in the approximation ratio
α, due to the restricted search space with only two latest
variables. This behavior of premature saturation is observed in
the projector Hamiltonian [21] and the max-cut Hamiltonian
[23]. Here, we want to make a clear distinction between the
initialization strategies and the optimization strategies as two
different categories, for both of them can be combined to work
together, or they can work independently on their own.

III. ITERATIVE LAYERWISE

We propose the ITLW strategy, which iteratively updates
the QAOA parameters in the layerwise manner, for a certain
number of iterations k. We use the notation ITLW(k, p) to
denote the ITLW strategy with k iterations for circuit depth
p. We can say that the layerwise training is similar to a special
case of ITLW at k = 1, i.e., layerwise for circuit depth p
is similar to ITLW(1, p). However, there is a subtle differ-
ence between the layerwise training discussed in Ref. [21]
and ITLW(1, p). In layerwise, the parameters are optimized
on a shallower circuit starting from p = 1, then the QAOA
layers are gradually appended as the depth increases. For
ITLW(1, p), we first generate 2p random parameters for a
desired depth p, then the parameters for each layer, (γl , βl )
for l = 1, 2, ..., p, are optimized separately. This modification
is done for a simpler repetition procedure at larger k. Table I
shows an example of both strategies for the target depth p = 3.
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TABLE I. Difference between the layerwise strategy and
ITLW(1, p). Layerwise starts with shallower circuits, then more
layers are appended as the depth increases. For ITLW, the random
full parameter vector of a desired depth p is generated, then they are
optimized layer by layer.

Layer Layerwise ITLW(1, p)

Optimized Fixed Optimized Fixed
l = 1 (γ1, β1) – (γ1, β1) (γ2, γ3, β2, β3)
l = 2 (γ2, β2) (γ1, β1) (γ2, β2) (γ1, γ3, β1, β3)
l = 3 (γ3, β3) (γ1, β1, γ2, β2) (γ3, β3) (γ1, γ2, β1, β2)

A brief description for the iterative layerwise strategy is as
follows. First, choose a QAOA circuit depth p and the number
of iterations k. Then, initialize a parameter buffer � with
random parameters of length 2p: � := (γ1, ..., γp, β1, ..., βp).
For each iteration, the parameters are optimized in a layer-
wise manner: each pair of parameters (γl , βl ) are optimized
layer by layer and update � with the optimized parameters
(γ ∗

l , β∗
l ), for l = 1, 2, ..., p. This procedure is repeated for k

iterations. Note that the parameter buffer � is inherited to the
next iteration. The algorithm for ITLW(k, p) is summarized
in Algorithm 1.

ALGORITHM 1. Iterative layerwise.

Input: No. of iterations k, circuit depth p.
1: Initialize parameter buffer � := (γ1, ..., γp, β1, ..., βp).
2: for k′ = 1, ..., k do
3: for l = 1, ..., p do
4: (γ ∗

l , β∗
l ) := arg maxγl ,βl

F (�)
5: Update � with (γ ∗

l , β∗
l ).

6: end for
7: end for
8: �∗

p := �

9: Output: Optimized parameters �∗
p and their expectation Fp(�∗).

Figure 1 shows the variation of the approximation ratio α

with the iteration index k′ of ITLW(5, 5), for a graph with six
vertices, for ten random sets of initial parameters, i.e., without
initialization. Each line represents the variation for one set of
initial parameters. It can be seen that the trainability (whether
α’s improve through the iterations) depends strongly on the
initial parameters used to initialize ITLW. Some of the pa-
rameters improve greatly through layerwise iterations, while
some barely increase after the iterations. This, again, leads to
the requirement for a good selection of initial parameters for
ITLW.

A. Combining with initialization strategies

We expect a better performance for ITLW using good
initializations. In order to generate better initial parameters,
we use two types of initialization strategies along with ITLW:
the bilinear strategy [23] (depth progressive) and the TQA
strategy [18] (direct initialization). The details of the strategies
are described in Appendix A, but we will introduce them
briefly here.

The bilinear strategy is a depth-progressive strategy which
generates the initial parameters for the current depth p with

1 2 3 4 5
k -th iteration

0.60

0.65

0.70

0.75

0.80

0.85

A
pp

ro
xi

m
at

io
n

ra
ti
o

α

FIG. 1. ITLW(5, 5) applied on solving the QAOA of a six-
vertices graph. The lines represent ten different sets of random initial
parameters starting at k′ = 1. The trainability varies depending on
the initial parameters. Some α′s can be improved through layerwise
iterations, while some of them stay almost the same throughout the
iterations.

the optimized parameters of the two previous depths: p − 1
and p − 2. The strategy is motivated by the linear-like pat-
tern (a smooth, monotonous variation) that QAOA parameters
exhibit in two directions: the parameter index and the circuit
depth. The optimal parameters in p − 1 and p − 2 are extrap-
olated by taking linear differences to generate the new initial
parameters for p. Therefore, optimization is required at every
depth in order to find their respective optimal parameters.

The TQA strategy offers a more direct way to initialize
QAOA, without requiring the information of the parameters
from previous depths. TQA starts by establishing a linear
relation between the parameters (γi and βi) and the total
annealing time T . Then, the gradient T of the straight line
passing through the origin is optimized to find the straight line
which gives the minimum or maximum expectation. QAOA
is then initialized with the straight line with the optimized
gradient T ∗.

The procedure of ITLW combined with initialization
strategies is essentially the same as in Algorithm 1. The ini-
tialization step is replaced with their respective initialization
procedures instead of random initialization. In short, Line 1
of Algorithm 1 is replaced with the initial parameters output
from Algorithm 2 (bilinear) or Algorithm IV (TQA) shown in
Appendix A. For depth-progressive strategies, an outer loop
of p′ = 1, 2, ..., p is added (Algorithm 3).

B. Optimization cost

There are many evaluation metrics for the optimization
cost of a classical optimizer. We use the number of function
evaluations of the expectation function Eq. (3) (number of
calls to the quantum circuit) as our evaluation metric for the
optimization cost, as this quantity scales with the number of
parameters to be optimized. Also, in classical simulations,
the optimization time is mostly determined by the number of
function evaluations.

052406-3



LEE, YAN, XIE, CAI, SAITO, AND ASAI PHYSICAL REVIEW A 109, 052406 (2024)

Assume that the number of function calls scales with the
number of parameters, and hence the circuit depth p. Let V (p)
be the number of function calls required to optimize the ex-
pectation function Fp given in Eq. (3), for the entire parameter
space with 2p parameters. We call this the full optimization
(FO). For a certain fixed p, it requires V (p) evaluations for
FO, while it requires kpV (1) evaluations for ITLW(k, p). This
is because for ITLW(k, p), two parameters are optimized per
layer for a total of p layers, and for k iterations. Therefore,
it is expected that at large p, ITLW will have an advantage
in cost over the FO if V (p) scales superlinearly with p, i.e.,
V (p) = O(pm) for m > 1, as kpV (1) = O(p), given that k is
a sufficiently small constant.

When used with depth-progressive initialization strategies
[5,23], FO requires a total of S(p) ≡ ∑p

p′=1 V (p′) evaluations.
This leads to a total cost of S(p) = O(pm+1), given that
V (p) = O(pm). On the other hand, ITLW calls for a total
of

∑p
p′=1 kp′V (1) = O(p2) evaluations. This shows ITLW is

also polynomially faster than FO at large p when combined
with depth-progressive initialization, under the assumption
that V (p) is superlinear. This inference is important for future
references and is therefore summarized as Corollary 1.

Corollary 1. At large circuit depth p, ITLW is polynomi-
ally faster than FO if V (p) is superlinear with respect to p
[V (p) = O(pm) for m > 1].

IV. RESULTS AND DISCUSSION

We apply the iterative layerwise strategy ITLW(k, p) with
different initialization strategies in solving the max-cut prob-
lem using QAOA. Our experimental settings are as follows:

(1) Simulator: The quantum circuits are simulated using
QISKIT state vector simulation (exact simulation of quantum
circuits).

(2) Dataset: We use 30 nonisomorphic graph instances
with number of vertices n = 10 to n = 12. The graph
instances are generated randomly, comprising different
classes including the three- and four-regular graphs and the
Erdös-Rényi graphs with varied edge probabilities.

(3) Initialization strategies: Two different initialization
strategies are used: the bilinear strategy [23] and the TQA
strategy [18].

(4) Optimization bounds: The parameters are bounded by
γ ∈ [0, π )p and β ∈ [0, π/2)p due to the symmetry and the
periodicity of QAOA operators [5,17,23,24], so that the op-
timal parameters reproduce the linear-like pattern for good
initialization.

(5) Optimizers: The performances are compared with
two different classical optimizers that are widely used in
other works: the limited-memory Broyden-Fletcher-Goldfarb-
Shanno bounded (L-BFGS-B) algorithm [25] and the Nelder-
Mead algorithm [26]. L-BFGS-B is gradient-based and
Nelder-Mead is gradient-free. The hyperparameters for the
optimizers are the default values provided by the SCIPY

package.
(6) Evaluation metrics: The performance of the strategy is

evaluated in terms of two different metrics: the approximation
ratio α (for the quality of the solution) and the number of
function evaluations (for the optimization cost).

(7) No. of ITLW iterations: The performances of dif-
ferent numbers of iterations for ITLW are compared: k =
1, 2, 3, 4, 5. We also consider adaptive values for k that de-
pend on the circuit depth p, i.e., k = �p/2� and k = �p/2� −
1, where �·� represents the floor function.

The main comparison is done between the results produced
by ITLW and the FO. We define the error in the approximation
ratio ε as

ε = αFO − αITLW, (5)

where αFO is the approximation ratio obtained from FO, and
αITLW is the approximation ratio from ITLW. Note that to write
Eq. (5) out explicitly, it will become

εp = αp,FO − αp,ITLW. (6)

However, for simplicity, we will omit the subscript p as we
assume that the readers are aware that this quantity (and those
defined later) are different at different p’s. The quantity ε

allows us to know how much the α given by ITLW deviates
from that of FO. If ε > 0, FO approximates better, and if
ε < 0, ITLW approximates better. Note that since 0 � α � 1,
ε can take values between the range −1 � ε � 1.

We define another quantity, known as the cost reduction
ratio r, to evaluate how much reduction in the number of
function evaluations for ITLW:

r = ṼITLW

ṼFO
. (7)

We use the notation Ṽ to denote the empirical number of func-
tion evaluations (instead of the theoretical V in the previous
section). If r < 1, it means there is a reduction in the number
of function evaluations for ITLW compared to FO. If r > 1, it
means ITLW costs more than FO.

For depth-progressive strategies, we introduce another
quantity called the cumulative-cost reduction ratio rc:

rc =
∑

p Ṽp,ITLW∑
p Ṽp,FO

, (8)

where
∑

p Ṽp means the sum of the number of function evalua-
tions up to the target depth p. This is a more objective quantity
for the total cost as we need to consider the cost for every
depth for depth-progressive strategies.

When calculating ε, r, and rc, we use the values that are
generated under the same experimental conditions, e.g., same
optimizer, same circuit depth, and same initialization strategy,
so that the only difference between the values is caused by the
different optimization strategies, i.e., ITLW and FO. However,
since FO does not have the parameter k, we use the same
value for all k’s when comparing with ITLW, while keeping
the other conditions the same. For a simpler interpretation,
having lower values of the quantities ε and r (and rc) implies
better results.

A. Bilinear initialization

Figure 2 shows the results of ITLW with bilinear initializa-
tion, averaged over the 30 graphs that we considered. For the
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FIG. 2. The results for ITLW with bilinear initialization. The columns show the mean error in approximation ratio ε, the cost reduction
ratio r, and the cumulative-cost reduction ratio rc, respectively. Different colors of lines show the results for different number of iterations k.
The top row shows the results for the L-BFGS-B optimizer. The bottom row shows the results for the Nelder-Mead optimizer. The dashed gray
lines in the r and rc figures show the critical ratio of 1 when ITLW has an advantage over FO.

bilinear initialization, we initialize from p = 3, then slowly
raise the depth to p = 10. Each depth is optimized using
the ITLW strategy. Figures 2(a)–2(c) show the results for the
L-BFGS-B optimizer; Figs. 2(d)–2(f) show the results for the
Nelder-Mead optimizer. It can be observed that the overall
trend does not change much when comparing Figs. 2(a) and
2(d), implying that the choice of optimizers does not have
much effect on the errors in α under this experimental condi-
tion. Figure 2(a) shows the errors ε decrease as the number of
iterations k increases. This says that the parameters generated
from the bilinear strategy are trainable as the error decreases
with increasing k (αFO is the same for all k for a certain
p). Also, the strategy is able to achieve a considerably small
error ε < 4 × 10−3 even for a small k at ITLW(2, 10) [the
orange triangle markers in Fig. 2(a)]. The error ε continues to
decrease as k increases.

Figures 2(b) and 2(e) show the cost reduction ratio r av-
eraged over 30 graph instances. The horizontal gray dashed
lines show the critical value r = 1, in which ITLW costs less
(faster) than FO if r is below the critical value. Overall, the
Nelder-Mead optimizer has lower r compared to the L-BFGS-
B optimizer. The general trend shows that r is lower for larger
circuit depth p, caused by the difference between the costs of
ITLW and FO mentioned in Sec. III B. This result agrees with
Corollary 1. Recall that the costs for ITLW and FO differ by
a polynomial degree of p, so we would expect that more cost
is saved at larger p. For L-BFGS-B, ITLW(4, 10) is able to
achieve a borderline advantage at r ≈ 1 [the red star markers

in Fig. 2(b)]. Although ITLW(5, 10) fails to achieve an ad-
vantage, it is expected to have an even lower r if p is further
increased. For Nelder-Mead, the cost reduction ratio is lower
than 1 for all k at the target depth p = 10. Although the cost
is lower at larger circuit depths, the errors have a tendency to
increase at larger p as shown in Figs. 2(a) and 2(d). Thus, the
ITLW strategy is more like a trade-off strategy rather than a
strategy with an absolute advantage. The approximation ratio
is compromised in exchange for a reduction in cost. However,
we still need to consider whether it is worth it to exchange a
reduction in α by 4 × 10−3 given that the cost is almost halved
[in the case of ITLW(2, 10)].

For the adaptive number of iterations k = �p/2�, the mean
error at p = 10 is near to that of k = 4 for L-BFGS-B, and
is near to the mean error of k = 5 for Nelder-Mead. It can
be observed from Figs. 2(c) and 2(f) that the total cost for the
ITLW is less than that of FO for this adaptive k (comparing the
red star and the brown plus markers), which means it is worth
switching to the adaptive strategy. However, since the cost for
the constant k will decrease further for larger p, we expect that
the adaptive k will cost more than the constant k at larger p.
For k = �p/2� − 1, the same patterns occur. The mean error
at p = 10 is near to that of k = 3 and the cost is less. The cost
is expected to grow for larger p. It is interesting to compare
both adaptive values for the L-BFGS-B optimizer, where the
total cost of ITLW is less than that of FO for �p/2� − 1, but
is more than FO for �p/2�, despite only having one iteration
difference for each depth.
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FIG. 3. The results for ITLW with TQA initialization. The mean error in approximation ratio ε and the cost reduction ratio r, respectively.
The top row shows the results for the L-BFGS-B optimizer and the bottom row shows the results for the Nelder-Mead optimizer. The dashed
gray lines show the critical values ε = 0 and r = 1 when ITLW has an advantage over FO.

B. TQA initialization

Figure 3 shows the results for ITLW with the TQA ini-
tialization, relative to FO. The general trend for ε [shown in
Figs. 3(a) and 3(c)] with increasing k remains as expected. As
k increases, the overall mean ε decreases, which shows the
approximation ratio α improves as we increase the number
of iteration. The Nelder-Mead optimizer also gives less errors
than the L-BFGS-B optimizer for the same k. Also, for the
Nelder-Mead optimizer, as k increases, we can see that ITLW
yields higher α than FO, which is rarely seen in the ITLW
with bilinear initialization. The improvement is as much as
8 × 10−3 at ITLW(5, 5) (purple diamond marker). This might
be because the α obtained from TQA is relatively lower than
that obtained from the bilinear, giving more room for improve-
ment when ITLW is applied.

Figures 3(b) and 3(d) show the respective cost reduction
ratio for L-BFGS-B and Nelder-Mead. For both of the opti-
mizers, the mean r decreases monotonically as p increases.
Comparing the cost reduction ratio of the two optimizers, we
can see a large difference in the magnitude of the values of

r. However, for L-BFGS-B, the costs still pass through the
critical value r = 1 as p increases. For Nelder-Mead, r < 1 for
all k’s, despite having higher α than FO for k = 3, 4, 5 at some
of the depths. This shows that the Nelder-Mead optimizer
exhibits a significant cost advantage with TQA initialization.

Since TQA is a direct initialization method, we did not
include the results (ε and r) for the adaptive k as they are the
same as those at their respective number of iterations.

V. CONCLUSIONS

Our research brought out the possibility of combining ini-
tialization strategies and optimization strategies in QAOA. We
proposed the ITLW optimization strategy for QAOA and use
it to solve max-cut problems with the size of 10–12 qubits.
As an improvement to the layerwise training, ITLW prevents
the premature saturation that occurs in the layerwise training,
which allows the parameters to be further trained to achieve
a higher approximation ratio. However, the trainability of the
parameters is still highly sensitive to the initial parameters, so
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we combine ITLW with the bilinear and TQA initialization
strategies for a better initialization. Instead of being a strategy
with an absolute advantage, the strategy imposes a trade-off
between the approximation ratio and the optimization cost.
The simulation results show that ITLW has a lower opti-
mization cost in exchange for a lower approximation ratio on
average, compared to FO. The cost reduction gets more signif-
icant as the QAOA circuit depth increases. By combining with
the bilinear initialization strategy, ITLW is able to reduce the
cost by half in exchange for a reduction of 4 × 10−3 in the
approximation ratio [see orange triangles in Fig. 2(a)]. There
are some exceptions in the case of the TQA strategy optimized
with the Nelder-Mead optimizer, where we observe slight
improvements in the approximation ratio at shallow depths,
despite the cost reduction [c.f. Fig. 3(c)].

Although we proposed and tested ITLW on QAOA, this
idea has a broader view in the sense that it can also be applied
in other VQAs, such as the variational quantum eigensolver
(VQE) and the variational circuits in quantum machine learn-
ing. Some details can also be tweaked—for example, the
optimization can be parameter-wise (optimize parameter by
parameter) instead of layer-wise to yield a further reduction
in the optimization cost.

APPENDIX A: DETAILS OF THE
INITIALIZATION STRATEGIES

In this section, we briefly discuss the details of the ini-
tialization strategies used in conjunction with ITLW. We used
two different initialization strategies: the bilinear strategy [23]
for depth-progressive (depth-by-depth) initialization, and the
TQA strategy for direct initialization.

ALGORITHM 2. Bilinear initialization for a single depth.

Input: Circuit depth p, �∗
p−1 and �∗

p−2.
1: for i = 1...p do
2: if i � p − 2 then
3: φ

p
i := φ

p−1
i + 	

p−1,p−2
i

4: else if i = p − 1 then
5: φ

p
i := φ

p−1
i + 	

p−1,p−2
i−1

6: else if i = p then
7: φ

p
i := φ

p
i−1 + 	

p
i−1,i−2

8: end if
9: end for
Output: Initial parameters �p for QAOA at depth p.

The bilinear strategy takes the optimal parameters from
two previous depths p − 1 and p − 2 to predict the initial
parameters for the current depth p. It leverages the linear-like
pattern of the QAOA optimal parameters discussed in many
works [5,27], which resembles the linear annealing schedule.
Moreover, it is also discovered that the values of the optimal
parameters do not stay the same for different depths, coined
as nonoptimality in Ref. [23]. Using these properties, the pa-
rameters for p can be extended by taking the linear difference
between the parameters in p − 1 and p − 2. The idea is to
extrapolate the amount of difference between �∗

p−1 and �∗
p−2

to �p, where �p ≡ (γ,β)p are the parameters at depth p. φ
p
i

denotes the parameter (regardless of γ or β) at depth p with
index i. For parameters with indices i � p − 2, the parameters

are extrapolated using nonoptimality:

φ
p
i = φ

p−1
i + 	

p−1,p−2
i

= 2φ
p−1
i − φ

p−2
i ,

(A1)

where the notation 	i, j ≡ φi − φ j . This also applies to the
symbols on the superscript. For the parameters with i = p −
1, we cannot use Eq. (A1) to extend as the parameter φ

p−2
p−1

does not exist ( j � p for φ
p
j ), so we take the difference from

the previous index i = p − 2 instead:

ALGORITHM 3. Depth-progressive bilinear initialization with
ITLW.

Input: Target depth pt , �∗
1 and �∗

2.
1: for p = 3...pt

2: Build the initial parameters �p:
3: for i = 1...p do
4: if i � p − 2 then
5: φ

p
i := φ

p−1
i + 	

p−1,p−2
i

6: else if i = p − 1 then
7: φ

p
i := φ

p−1
i + 	

p−1,p−2
i−1

8: else if i = p then
9: φ

p
i := φ

p
i−1 + 	

p
i−1,i−2

10: end if
11: end for
12: Initialize QAOA with �p and perform optimization with

ITLW (Algorithm 1).
13: end for
Output: Optimal parameters �∗

pt
and F (�∗

pt
) for the target depth pt .

φ
p
p−1 = φ

p−1
p−1 + 	

p−1,p−2
p−2 . (A2)

For the newly added parameter, we use the linear-like adia-
batic pattern to extend

φp
p = φ

p
p−1 + 	

p
p−1,p−2

= 2φ
p
p−1 − φ

p
p−2.

(A3)

Equations (A1)–(A3) are essentially all the rules required
to generate the new initial parameters �p. The overall pro-
cedure for the bilinear strategy (and the depth-progressive
version starting from p = 3) is summarized in Algorithm 2
(Algorithm 3).

ALGORITHM 4. TQA initialization.

Input: Circuit depth p.
1: Establish the relation between the parameters and the

annealing time T , and hence F (T ):
γi(T ) = iT/p;
βi(T ) = (1 − i/p)T/p;
〈Hz〉 = F (T ) = F [γ (T ),β(T )].

2: Optimize F (T ) to obtain the optimal annealing time T ∗.
Output: Initial parameters [γ (T ∗), β(T ∗)].

The TQA strategy aims to find the “optimal annealing
time” T for the QAOA to generate the initial parameters,
using the angle-index relation: γi = i	t/p; βi = (1 − i/p)	t ,
where i is the angle index. 	t is the annealing time step and
can be related with the total annealing time T with the relation
	t = T/p. Hence, we get the angle-index relation in terms

052406-7



LEE, YAN, XIE, CAI, SAITO, AND ASAI PHYSICAL REVIEW A 109, 052406 (2024)

0 2000 4000

0.950

0.975

1.000
k = 1

2000 4000

k = 2

2000 4000

k = 3

BL (total) BL+ITLW (total) TQA TQA+ITLW

2000 4000

k = 4

2000 4000

k = 5

0 5000 1000015000

0.950

0.975

1.000

0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000

Number of function calls, Ṽ

A
pp

ro
x.

ra
ti
o,

α

FIG. 4. The approximation ratio α vs the number of function calls Ṽ for all the graph instances at depth p = 10. The top row shows the
results for the L-BFGS-B optimizer. The bottom row shows the results for the Nelder-Mead optimizer. Each column shows a different number
of iteration k. Each plot shows four methods: the bilinear strategy (BL), bilinear combined with iterative layerwise (BL + ITLW), TQA, and
TQA combined with iterative layerwise (TQA + ITLW).

of T :

γi(T ) = iT

p2
; βi(T ) =

(
1 − i

p

)
T

p
. (A4)

Substituting Eq. (A4) into (3) gives the expectation function
in terms of T . Then, the optimal annealing time T ∗ is found
by maximizing F (T ):

T ∗ = arg maxT F (T ). (A5)

T ∗ is then substituted back into (A4) to generate the initial
angles [γ (T ∗),β(T ∗)]. The initial angles generated take a
linear form against the angle index i. We summarized the
procedure for TQA in Algorithm 4.

APPENDIX B: OVERALL RESULTS

Figure 4 shows the exact values of the approximation ratio
α versus number of function calls Ṽ , instead of the relative
values shown in Figs. 2 and 3. The data shown is at circuit
depth p = 10.
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