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Dynamics of qudit gates and effects of spectator modes on optimal control pulses
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Qudit gates for high-dimensional quantum computing can be synthesized with high precision using numerical
quantum optimal control techniques. Large circuits are broken down into modules and the tailored pulses for
each module can be used as primitives for a qudit compiler. Application of the pulses of each module in the
presence of extra modes may decrease their effectiveness due to crosstalk. In this paper, we address this problem
by simulating qudit dynamics for circuit quantum electrodynamics systems. As a test case, we take pulses for
single-qudit SWAP gates optimized in isolation and then apply them in the presence of spectator modes each of
which are in Fock states. We provide an experimentally relevant scaling formula that can be used as a bound on
the fidelity decay. Our results show that frequency shift from spectator mode populations has to be �0.1% of the
qudit’s nonlinearity in order for high-fidelity single-qudit gates to be useful in the presence of occupied spectator
modes.
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I. INTRODUCTION

With the demonstrations of qudit control in quantum de-
vices, such as trapped ions [1], photonic processors [2],
and circuit quantum electrodynamics (cQED) systems [3–7],
many computational levels can be successfully manipulated
in order to design and execute quantum algorithms [8]. Com-
pared to its qubit counterparts, high-dimensional quantum
computing has many advantages, some of which are lower-
depth circuits, noise improvement with hardware-efficient
solutions [8–11], and efficient means for large-scale quantum
information experiments to be performed in the labora-
tory, such as black hole dynamics modeled as a scrambling
unitary [12].

Quantum devices can be controlled optimally via external
fields [13–15]. Gates can be designed in modules (one- and
two-qudit gates), such as in Ref. [16] for bosonic modes.
To be able to use synthesized gates in the entire space by
preserving their fidelity, one needs to check if the modules
function across the entire space. We leverage Juqbox.jl [17]
to synthesize qudit SWAP gates with B-spline parametrization
following the techniques in Refs. [18,19]. SWAP operations
provide simple yet effective demonstrations for the effects
of frequency shifts, which alter the ideal transitions between
energy levels and cause fidelity decay.

We outline the rest of the paper. In Sec. II, we provide
the effective Hamiltonian of the driven qudit when it inter-
acts with spectator modes, each of which are in Fock states.
In Sec. III, the infidelity scaling is given analytically and
compared with the numerical result. Finally, in Sec. IV, we
conclude the paper by discussing future work, including ways
to alleviate the fidelity decay.

II. EFFECTIVE HAMILTONIAN AND FREQUENCY SHIFT
IN THE PRESENCE OF SPECTATOR MODES

We focus here on a cQED system with many oscilla-
tors/modes. The system Hamiltonian in the rotating frame for
each oscillator is given by [13,14]

H = −
∑

i

ξi

2
(n̂in̂i − n̂i ) −

∑
j>i

ξi j n̂in̂ j, (1)

where ξi is the self-Kerr for each oscillator i, and ξi j is the
cross-Kerr between oscillators i and j. If we take the state at
time t to be a product state of the form |ψ〉 ⊗ |∏ j n j〉, with
the state on the target oscillator |ψ〉 and spectator modes in
Fock states {nj}, it is easy to see that the action of the system
Hamiltonian will be

H |ψ〉 ⊗ j |n j〉 =
⎡
⎣−ξ1

2
(n̂1n̂1 − n̂1)

−
∑
j>1

ξ1 jn j n̂1 + C

⎤
⎦|ψ〉 ⊗ j

∣∣∣∣∣∣
∏

j

n j

〉
, (2)

where C is a constant formed by the action of H on the
spectator modes which we ignore from here on as it only
generates a global phase.

The above Hamiltonian does not generate any evolution
on the spectator modes (because their initial state is a Fock
state), and so focusing only on the target mode and suppress-
ing the subscript 1 for ease of notation we get the effective
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Hamiltonian on the target mode,

Heff = −ξ

2
(n̂n̂ − n̂) −

∑
j

ξ jn j n̂, (3)

where the first term H0 ≡ − ξ

2 (n̂n̂ − n̂) is the time-independent
part of the driven qudit Hamiltonian, ε ≡ ∑

j ξ jn j is the
perturbation parameter, and V ≡ −n̂ is the shift operator ap-
pearing due to spectators. In essence, the cross-Kerr between
the target mode and the spectator modes in Fock states pro-
duces a frequency shift on the target mode. We can write in
short

Heff = H0 + εV. (4)

III. SCALING OF THE INFIDELITY

For the quantum control problem of gate synthesis, the tar-
get action U is known, and we wish to find a time-dependent
drive Hamiltonian Hd (t ) such that the evolution from H (t ) =
H0 + Hd (t ) produces the target unitary. The propagator for the
driven qudit without spectator modes is given by

U0(t ) = T exp

[
− i

h̄

∫ t

0
dt ′[H0 + Hd (t ′)]

]
, (5)

where Hd is the drive term synthesizing the target gate, i.e.,
U0(t = T ) is the target gate U , T is the gate time, and T
is the time-ordering operator. To design a gate using optimal
control techniques, we optimize coefficients of pulse control
terms â + â† and â − â† acting on the target oscillator. Thus,
they commute with the spectator modes. Using the same drive
terms, the effective propagator of the qudit due to spectator
shifts is given by

Ueff(t ) = T exp

[
− i

h̄

∫ t

0
dt ′[Heff + Hd (t ′)]

]
. (6)

Here, we assume that the drive field is not coupled to the
spectator modes, which is a safe assumption for sufficiently
detuned frequencies.

Fidelity between the ideal gate and shifted gate is
defined as

F ≡
∣∣∣∣Tr[Ulog(T )]

d

∣∣∣∣
2

, (7)

where Ulog(t ) ≡ U †
0 (t )Ueff(t ) is the propagator in the logi-

cal frame of the driven qudit [20], and d is the norm of
U0.

Ulog is defined in terms of the perturbation as

Ulog(t ) = T exp

[
− i

h̄

∫ t

0
dt ′Ṽ (t ′)

]
, (8)

where Ṽ (t ) ≡ U †
0 (t )VU0(t ). For small perturbation ε, Ulog is

expanded via the Baker-Campbell-Hausdorff formula as in
Ref. [21],

Ulog(t ) � exp

[
− i

h̄

(
εV̄ t + 1

2
ε2�(t ) + O(ε3)

)]
, (9)

where V̄ is the time average of Ṽ (t ),

V̄ (t ) = 1

T

∫ t

0
Ṽ (t ′)dt ′, (10)

and �(t ) is the integral of the time correlation function,

�(t ) = i

h̄

∫ t

0
dt ′

∫ t

t ′
dt ′′[Ṽ (t ′), Ṽ (t ′′)]. (11)

Ulog(t ) is

Ulog(t ) � I + X + X 2

2
+ · · · , (12)

where I is the identity matrix and X ≡ − i
h̄ [εV̄ t + 1

2ε2�(t )].
In simple terms, Eqs. (8) and (9) describe the concept of
dynamical decoupling. They could be used to manipulate the
reference frame for a quantum system to isolate and control
specific types of interactions, with the goal of preserving the
system’s quantum state against disturbances, which is crucial
for the functioning of quantum computers and error correction
in quantum information processing.

Fidelity is then expressed as [suppressing the time param-
eter of V̄ (t = T ) for notational simplicity]

F � 1 − [Tr(V̄ 2) − Tr2(V̄ )]T 2

h̄2 d2
ε2. (13)

The normalized trace term in the coefficient of ε2 is the vari-
ance of V̄ for the maximally mixed state and the coefficient
of ε2 is known as fidelity susceptibility for time-independent
systems [22,23]. We leave the detailed examination of this
trace term with time-averaged operators for future work. We
compare this analytical scaling (∼ε2) with numerical results
below (cf. Fig. 1).

Transitions between the Fock states |i〉 and | j〉 in the
oscillator are generated by control pulses at the transition
frequency between the states, in our case that is ξ

2 (i2 − j2 +
i − j). The spectator modes, however, shift these frequencies
by

∑
k ξknk (i − j). To demonstrate the effect of this frequency

shift, we can optimize a set of control pulses to produce a
SWAP gate between |0〉 and | j〉 on a spectator mode. For con-
creteness, we use ω/2π = 4.8 GHz and ξ/2π = 0.22 GHz,
with the self-Kerr of the spectator modes being modulated
as some fraction of ξ and cross-Kerr parameters equal to
β j ξ with parameter β j varying for each mode j. We use
these system parameters so that our gates are directly com-
parable to those in Sec. 7 of Ref. [18]. Other parameters,
such as which SWAPs will be generated (SWAPs from |0〉 to
|3〉, |4〉, |5〉, |6〉) and the time for each gate (140, 215, 265,
and 425 ns, respectively) are also taken from that section,
along with the use of a single guard level (which implies that
a SWAP to state |k〉 has k + 1 levels actively participating in
the gate and k + 2 states simulated in the optimization and
frequency-shifted calculations). Our only difference is that
we restricted our optimization of the control parameters for
the ideal (without spectator modes) case to 200 iterations.
Note that our simulations were performed for closed systems
but decoherence is not a bottleneck for this work since pulse
durations are much shorter than typical coherence times for
cQED systems, such as superconducting qubits and cavities
[3,6,7,24–26].
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FIG. 1. Top: Infidelity for the labeled SWAP operation arising
from a frequency shift ε = ∑

j ξ jn j from the presence of nj photons
in the jth spectator mode with cross-Kerr strength to the target mode
ξ j relative to the ideal/target gate. We exclude zero occupation as
the x-axis value would be 0, but the infidelity for that case is that of
the optimal control pulse without spectator modes, namely O(10−4)–
O(10−3) for each gate, as seen at the smallest ε. The slope for small
ε/ξ = O(10−4) is ≈2, meaning that infidelity scales quadratically
with ε. The flat region at very small ε is the region when the per-
turbation is negligible, while for larger ε higher-order terms (in part
due to saturation near infidelity ≈1) take effect. Bottom: Rescaled
fidelity curves such that the value at the ε = 10−4 for each curve is
equal, so as to highlight the similarity of the slope in that region.

A SWAP gate between level |i〉 and | j〉 is defined as

SWAP|i〉←→| j〉 = I + |i〉〈 j| + | j〉〈i| − |i〉〈i| − | j〉〈 j|. (14)

SWAP gates are vital for shifting matrix elements around and
moving quantum states around lattices of qubits, while partial
SWAP operations can generate entanglement and more com-
plicated superpositions. Here, our choice of simple SWAPs
between the ground state and various excited states of the
single oscillator is meant as only an example to illustrate
the effect of spectator mode shift of the target oscillator’s
transition frequencies.

The action on the system Hamiltonian from the spec-
tator modes is conveyed entirely through the term εV̂ =
−n̂

∑
j ξ jn j . Instead of plotting the infidelity as a function of

the populations in adjacent modes, we instead plot it against
the parameter ε (really, ε/ξ as this is the primary dynami-
cally relevant parameter) in Fig. 1 for each of the four SWAP

gates tested. Here, we exclude the zero spectator mode photon
occupation case (as ε = 0 in that case and thus cannot be
placed on a log-log plot). We will simply note that infidelity
is O(10−4) to O(10−3) in the zero-noise case for each sample.
We see that each SWAP gate tested shows the same scaling
with ε/ξ for ε/ξ � 0.001, scaling with a slope of ≈2 on a
log-log plot, denoting quadratic scaling in ε, just as predicted
in Sec. III. We note that these plots compare the implemented
gate with spectator mode state-dependent frequency shifts to
the ideal/target gate, and thus the infidelity is lower bounded
by the infidelity of the noiseless gate (resulting in a saturation
behavior at small shifts).

TABLE I. Slope in the region of ε/ξ = 10−4 of the infidelity
curves to three significant figures for each SWAP gate tested, found by
taking the slope of said curve in the region 10−4.05 < ε/ξ < 10−3.95.

SWAP gate Infidelity slope

|0〉 ←→ |3〉 1.95
|0〉 ←→ |4〉 1.98
|0〉 ←→ |5〉 1.94
|0〉 ←→ |6〉 1.84

To make this even clearer, we also plot a rescaling of these
infidelities in Fig. 1, with each curve’s y values rescaled such
that at a data point for an intermediate value of ε (ε = 10−4)
each curve has the same y-axis value. All the data line up
nearly perfectly for more than an order of magnitude from
just over 10−5 to around 10−3.5 and only diverge as ε/ξ

approaches 0.001. We also provide Table I showing the slope
of the infidelity curves on the log-log plot in the region of
10−4, estimated by taking the slope in the region between
10−4.05 and 10−3.95, and all of the slopes are near 2, i.e., are
approximately quadratic.

Thus, we see both from theory and simulation that the
effect of spectator modes on the fidelity of a gate generated
by a control pulse produced without taking into account the
spectator modes’ frequency shift on the target mode is approx-
imately quadratic in the magnitude of that frequency shift, and
rises rapidly to yield an almost orthogonal gate for shifts on
the order of 10−3 times the qudit nonlinearity.

IV. CONCLUSIONS

We provided a fidelity decay formula and simulated qu-
dit gates in the presence of spectator modes in order to
compare the estimated scaling and numerical results. The
fidelity formula, Eq. (13), is independent of the gate, so we
expect to get a similar scaling for ε → 0 for gates other
than SWAP. In our study, a “useful” gate (as mentioned in
the abstract) is defined as one that maintains an operational
fidelity exceeding 99.9%, a threshold crucial for fault-tolerant
quantum computing. This high-fidelity standard ensures the
gates are sufficiently reliable for practical quantum comput-
ing applications, where precision and error minimization are
essential.

We highlight that these frequency shifts yield extremely
stringent bounds on interaction parameters and spectator
mode occupations. For future directions, one may try to tackle
alleviating the effects of fidelity decay with several useful ap-
proaches from quantum computing and error correction, such
as dynamical decoupling [21,27,28], shortcuts to adiabaticity
and steering [29], circuit optimization and machine learning
[30,31], risk-neutral approaches in robust control [19], and
bosonic error correction [32].
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