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Optimization for the propagation of a multiparticle quantum walk in a one-dimensional lattice
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The quantum walk is a quantum counterpart of the classical random walk that exhibits nonclassical behaviors
and outperforms the classical random walk in various aspects. It has been known that a single particle can be
propagated by a discrete-time quantum walk with a quadratic time scaling in the variance of position distribution,
beating the linear time scaling in a classical random walk. In this paper, we consider the discrete-time quantum
walk for multiple particles in a one-dimensional lattice, and investigate the optimization of the joint coin state
to enhance the spatial propagation of the particles in the lattice. We study the asymptotic evolution of position
distribution for multiple particles in the long-time limit, and analytically optimize the joint coin state to derive
the maximum variance of the position distribution between the particles after the evolution of the quantum walk.
An interesting result is that an optimized coin state always possesses specific exchange symmetry which can be
characterized by a graph consisting of two disconnected complete subgraphs and the exchange symmetry can
significantly influence the position correlations between the particles, showing the critical role of coin symmetry
in the propagation of multiple particles by the quantum walk. We further study the entanglement of the optimized

coin states to show the relation of the coin correlations to the particle position distribution.
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I. INTRODUCTION

The quantum walk is an interesting quantum protocol with
distinctive properties, such as quadratic speedup in the prop-
agation of particles [1] and exponentially fast hitting [2,3],
compared to its classical counterpart. These nonclassical be-
haviors have motivated intense research interest in exploring
the intrinsic nature of the quantum walk and its potential ap-
plications [4,5]. So far, the quantum walk has been found to be
a powerful tool in many quantum computing and quantum in-
formation tasks, e.g., spatial search [6-8], graph isomorphism
testing [9-12], universal quantum computation [13-15], and
quantum teleportation [16,17]. Quantum walks can also sim-
ulate physical phenomena in condensed matter physics such
as Anderson localization and Bloch oscillations. Anderson
localization [18], the absence of diffusion of a quantum me-
chanical state, can be produced in a quantum walk when the
walk is subjected to disorder [19,20] or when the walk is
inhomogeneous in the transition of a walker from one site to
the others dependent on both the coin state and the position
state [21,22]. The relation between the localization and the
degeneracy of the eigenstates of a quantum walk is studied in
Refs. [23,24]. Lin et al. simulated the non-Hermitian topologi-
cal Anderson insulator experimentally by disordered photonic
quantum walks [25].

Quantum walks have been realized experimentally in a
vast variety of physical systems [26] such as superconduct-
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ing qubits [27,28], optical lattices [29], photons [30—40],
Bose-Einstein condensates [41,42], and trapped ions [43—46].
Experimental realizations of quantum walks via photons
[47,48] and particularly the Hong-Ou-Mandel effect [49,50]
exhibit different dynamics depending on the photon indistin-
guishability and statistics. Vertex search in graphs and graph
isomorphism testing have been implemented on silicon pho-
tonic quantum walk processors [51].

Two types of formulations have been developed for quan-
tum walks so far: the discrete-time quantum walk and the
continuous-time quantum walk. The continuous-time quan-
tum walk was proposed by Farhi and Gutmann as a powerful
computational model that provides exponential speedup in
penetrating a decision tree to outperform its classical counter-
part [52]. The discrete-time quantum walk was introduced by
Aharonov et al. [53], and it differs from the continuous-time
quantum walk in that the walkers evolve with discrete time
steps, and extra degrees of freedom, coins, are introduced to
control the shift directions of the walkers at each step. The
discrete-time quantum walk is also found useful in different
quantum algorithms [54]. And it inspires many variations of
quantum walk models: the coin-flip operator can be position
dependent [55], leading to the quantum-walk-based search
algorithms [6]; the walker can possess more than one coin and
the coins can be entangled [56—58]; etc. Extension of quantum
walks to higher-dimensional lattices [59,60], entangled parti-
cles [11,12], and interacting particles [11,12,61-64] have also
been explored.

The introduction of coin degrees of freedom has a sub-
stantial influence on quantum walks, as the coins enlarge
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the dimension of the joint Hilbert space of the particles and
can be entangled or interacting with each other, which gives
more possibility and flexibility in various quantum tasks. For
example, the presence of coins may enhance the distinguish-
ing power of quantum walks on nonisomorphic graphs [12],
the Grover coin can enable the quantum-walk-based search
algorithm to reach the time complexity O(+/N) for a database
of size N [8] in analogy to the well-known Grover search
algorithm [65,66], the coin symmetry can lead to different
conditions for infinite hitting time [67—69], the correlations
between two coins can develop spatial correlations between
the walkers [70], and the conditional shift can generate en-
tanglement between the coin and position degrees of freedom
[71-73]. Moreover, Tregenna et al. have analytically investi-
gated the general two-dimensional unitary coin operation for a
single-particle quantum walk and showed the effect of the coin
operation on the asymmetry of the walker position distribution
[74]. The effect of decoherence in the coins of a quantum
walk has also been studied, showing that decoherence could
slow down the spatial spreading of the particles in a quantum
walk and lead to approximately linear growth of the position
distribution, which is typically a classical behavior [75].

A fascinating property of discrete-time quantum walks
is that the variance of the position distribution of a single-
particle quantum walk scales quadratically with time, com-
pared to the linear time scaling of position variance in the
classical random walk [54], implying a particle propagates
much faster by quantum walk than by the classical counter-
part, which is essentially rooted in the interference effect of
different evolution paths in quantum walks [53,76]. And the
coin state can tune the interference effect of the quantum walk
and influence the position distribution of the particles [74]. In
particular, Omar et al. [77] elucidate that for a two-particle
discrete-time quantum walk, the exchange symmetry and en-
tanglement of the joint coin states can significantly change the
position correlations of the particles and, as a consequence,
alter the average distance between the particles and the speed
that the particles are propagated by the quantum walk.

As the fast propagation of particles is a prominent advan-
tage of quantum walks over classical random walks and the
coin states can change the position distribution of particles as
reviewed above, we consider the following question in this
paper to explore the limit of advantage that quantum walk
can reach in propagating particles: For an arbitrary number
of particles, what kind of joint coin state can maximize the
relative distance between the particles in a quantum walk?
We quantify the relative distance of multiple particles by
the variance of the position distribution between the parti-
cles, and use the asymptotic analysis approach to study the
evolution of a multiparticle discrete-time quantum walk in a
one-dimensional lattice. The position variance between the
particles is obtained asymptotically in the long-time limit, and
the joint coin state is further analytically optimized to derive
the maximum of position variance. An interesting result is that
the optimized coin states always possess specific partial ex-
change symmetry between the particles and the symmetry can
be characterized in a graphical approach. The entanglement
and the two-particle correlations of the optimized coin states
are also investigated in detail and illustrated by numerical
computation.

The paper is structured as follows. In Sec. II, we pro-
vide preliminaries for the discrete-time quantum walk and
the extension to the multiparticle case. Section III studies
the evolution of multiparticle quantum walks for an arbitrary
number of particles and obtains the asymptotic position vari-
ance between the particles to characterize the propagation
property of multiparticle quantum walks. In Sec. IV, we ap-
ply the result of position variance to the case that the coins
can be initially entangled and analytically optimize the coin
state to derive the bounds of the position variance between
the particles. Section V reveals the exchange symmetry of
the optimized coin state and its crucial role in the position
variance of the particles, and explores the entanglement and
position correlations between the walkers. The paper is finally
concluded in Sec. VI.

II. PRELIMINARIES

In this section, we introduce preliminaries of multiparticle
discrete-time quantum walks and notations that will be used
in this paper.

For discrete-time quantum walks in an infinite one-
dimensional lattice, particles are located on discrete sites and
possess coins to determine the shift directions of the particles
at each time step. The Hilbert space of single-particle quan-
tum walks in a one-dimensional lattice can be decomposed
as = Hposition @ Heoin, in Which a single-particle state at
position x with the coin upwards or downwards can be written
as |x) ® [ 1) or |x) ® || ), respectively. The unitary evolution
of the particle is given by

0=58-U®0), (D

where C is a coin operator that flips the coin and § is the shift
operator that changes the position of the particle dependent on
its coin state. S usually takes the following form:

S=0 M) (M+0" 1)) (I, 2)

where O and Q' are the shift operators in the one-dimensional
lattice. If |x) denotes the eigenstate of the position operator X
with eigenvalue x, then O and O can be chosen as

0= x+Dixl, O'=) lx—hxl. @)

To generalize the quantum walk in a one-dimensional
lattice to noninteracting multiparticle cases, the evolution op-
erator becomes the tensor product of single-particle evolution
operators; i.e., Un =0%® forn particles. For an initial state as
|¥0), the final state after ¢ steps of evolution is |;) = lj,i [¥o).
A general n-particle initial state for a discrete-time quantum
walk can be written as

|W0> = Zax]sl,...,x,,s,, |.X1S1) K- & |ann). (4)

Here |x;) and |s;) denote the eigenstates of the position op-
erator X and the Pauli operator 6, of the ith particle. After
t steps of evolution, the final state of the particles can be
obtained by calculating the linear combination of the evolved
basis states, which are the tensor products of the final states of
single-particle walks,

W) = ansns U 0151) @ - @ U lxusy). (5)
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The quantum walk with two particles was studied in Ref. [77],
and the exchange symmetry of the two particles was shown to
have significant influence on the evolution. For more particles,
Chandrashekar and Busch [78] considered the multiparti-
cle quantum walk initialized in an uncorrelated state. When
the particles are uncorrelated initially, the final state can be
written as U’ |¢) @ U'|¢n) ® - - - @ U'|¢,), where |¢;) is the
initial single-particle state of the ith particle. But in this paper,
we consider a more general situation in which the initial
state is in the form of Eq. (4), which generally describes dis-
tinguishable particles but can also describe indistinguishable
particles when it is invariant under arbitrary particle exchange.

The coin operator can be an arbitrary SU(2) transformation
in general; i.e., regardless of a global phase,

é B \/ﬁ /T = peie
mew _\/ﬁei(w—@) ’

where 0 < p < 1 and 0 < 0, ¢ < m. In the current work, we
choose the Hadamard operator to be the coin operator.

(6)

III. POSITION VARIANCE OF THE MULTIPARTICLE
QUANTUM WALK

In this section, we define the position variance between
particles and calculate the position variance of a general n-
particle state for a sufficiently large number of walk steps.

In a classical multiparticle random walk, the variance of
the position distribution between the particles grows linearly
with the number of time steps, as is proven in Appendix 1.
In this paper, we first show that for a general multiparticle
quantum walk, the position variance can grow quadratically
with the number of time steps, which also holds true when the
particles are initially entangled and the different walk paths
may interfere [76].

The variance of the position distribution between particles
is defined as

2
N 1
D=Z|:55i—ZZ)ACj:| ) (7
i j

where £; represents the position of the ith particle, and D can
be decomposed into two parts,

D=""1Y %Y, ®)

i J#T

consisting of single-particle operators and two-particle op-
erators. Note that this definition considers only the position
variance between the particles, excluding the position variance
of each single particle which is studied in Refs. [1,54,79] and
also scales quadratically with time. When n = 2, the variance
D can be reduced to the squared distance between the two
particles in Ref. [77].

A. Diagonalization of the evolution operator

Diagonalizing the evolution operator of the particles will
help simplify the calculation of the evolution. Following the
idea of discrete-time Fourier transform for quantum walks
[75,79], one can transform the state of the particles from the

position space into the momentum space, and the transforma-
tion between the two spaces is given by

IK) = e x), (€))

S2)
where |K) and |x) are the basis states of the momentum space
and the position space, respectively. It can be verified that |K)
preserves the orthonormality (K'|K) = §(K’ — K) and is the
eigenstate of O with eigenvalue ¢~ and the eigenstate of OF
with eigenvalue ¢'X ; therefore, applying the conditional shift §
given in Eq. (2) to |K) merely induces extra phases in the coin
space, and the evolution U of the particles in the joint Hilbert
space of the position and coin can be factorized as

0= / dK|K) (K| ® Uk, (10)

where Ux = (e % | 1) (1] + X | 1) ({ )C is the conditional
evolution in the coin space with a given momentum K. If we
choose the coin-flip operator to be the Hadamard operator

- 1
H=E(IT)<TI+IT>(¢I+I¢>(TI—

then U can be written as

) D, adn

A oK oK
Ug=—7=UN T+ AD+—=U) (1=

7 7 1) (D

(12)

Further diagonalization of the evolution Uy gives the eigen-
states as

e K 1
—tK
ld2(K)) = m Wli)
with A; (j = 1, 2) as the corresponding eigenvalues,
(K) = (_1)1%,/3 + cos(2K) — isir;(;), (14)

where N(K) = (1 + cos?> K) + cos Kv/1 + cos’ K.
Finally, we arrive at the diagonalized representation of the
momentum-dependent unitary evolution Uk in Eq. (10),

Uk = 2ldi(K)) (di (K)| + A lda(K)) (da (K. (15)

B. Average position variance of the multiparticle walk

As calculating the exact position variance between par-
ticles is generally complex, we will focus on the case for
a sufficiently large number of time steps in this paper. We
outline the method to compute the asymptotic variance below,
and leave the details of derivation to Appendix 3.

For a general n-particle quantum walk with initial state
given in Eq. (4), the average position variance of the particles
after ¢ steps of evolution is (o|(U,) DU [), and it can be
broken down into the summation of the terms in the following
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form:

<X;S/1| e <x;15;l|(0,1[)tb0yi |X1S1) e |xnsn>

n
n—1 F TN 2277t
= — D WSIOYE0 sy [T b,

i y=1,y#i

=~ D WSO 50" s ) s 1O 5D i)
J#k
n

X 1_[ (Sx’ys’y,xysy . (16)

y=Ly#jk

8x s x,s, 18 1 when X, =Xy, s, = s, and O otherwise, imply-
ing the summands in the second line can contribute to the
position variance only when the states of the particles other
than the ith particle in the bra (x{s}|--- (x,s/| and the ket
|x181) - - - |x,8,) match. And a similar constraint applies to the
summands in the third and fourth lines. For the matrix ele-
ment (x/s/[(UTY%2U"|x;s,), by the completeness of the basis
{IK) ® |d)} and noting that Egs. (10) and (15) give the spectral
decomposition of the evolution operator, we can obtain

WSO 220 x;s1)

= dK'dK S (xis)|K'd')
[ awaxy

d,d

x (K'd'|(UTY 20" |Kd)(Kd|x;s:)

=/” /”dK’dKZ

d,d
x (XK"Y (s;|d") (K |x:) (ds:) (@' |(O ) |d')
x (K'|%7|K)(d'|d)(d|Uk|d). (17)

Representing £2 in the momentum space produces the periodic
extension of the derivative of the Dirac delta function with
period 27,

(K'|SF1K) = > (K'|57]x) (x]K)

X=—00

=— Y 89K - K+27D), (18)

l=—00

where [ € Z. So, the matrix elements of (U7)220" can be
simplified to

(SO Y2207 |xis:)
1 T T s .
=_E/ / dK/dKZezKAie—le;(s;|d/)(d|si>
P S d.d

x (d'|(0)1d")$P (K — K)(d'|d)(d|0k|d)

_ 1 2 ’ / / /
= _E[I Lo (x; — xi, 85, 80) + tla1 (x;, X, 85, 87)
+ Inc(x), xi, 8}, 8i) + Lno(x}, X3, 85, 8i3 )] (19)

Similarly,
(x5O 2,0 1x;s))
i
= _E[IIB(X; - -xja S;’v sj) + IB1 (-x‘/]a -xj7 s‘/]'a Sj)

+ Ipo(X}, X, 8, 81501 (20)

In the above equations, Ia2, Ia1, Iac, Ip, and Ip, are coef-
ficients for different powers of ¢ and can be calculated using
the residue theorem. The integrals in the term ¢ of the position
variance are

(1-V2)f(0), x=0,5=s
Ln(x, s',s) =1 f(x), x#0,5 =5 (21)
0, s #s,
(=1D)%ilya(x, 5, 5), s'=s

i 22
@+ fa— (-1 x D] 5 #s O

where f(x) = /27 (v/2 — )"l cos(rx/2). When s is 1, it
denotes the number 1, and | denotes O; i.e., when s =,
(—1)° = 1. The detailed expressions of integrals I41, I, Iac,
Ij,, and I, are given in Appendix 3.

Iy, and Ip, are integrals involving rapidly time-varying
phases when ¢ is large, which can be calculated by the sta-
tionary phase approximation [80]. The matrix elements (19)
and (20) are the functions of the states |x;s;) and |x]s}) as well
as the number of time steps, ¢, with the highest order of  being
2. After a long time evolution, the #2 term becomes dominant,
so the other lower-order terms can be dropped. By plugging
Egs. (19) and (20) into Eq. (16) and summing up all the terms
in the form of Eq. (16), it yields the average position variance
for a given initial state in Eq. (4).

Ig(x, s, s) ==

IV. BOUNDS OF POSITION VARIANCE

Now we consider the case in which the particles are ini-
tially uncorrelated in the spatial lattice but entangled in the
coin space. We are concerned with how the position variance
between the particles is dependent on the initial coin state, and
we obtain the upper and lower bounds of the position variance
when the number of time steps is large.

To simplify the representation of the coin state, we denote
the basis states of the coin space, |1) and ||) as |1) and
|0) and the coin state of the ith particle as |s;). The com-
bination of the coin states of all particles can be treated as
a binary number and can be simply denoted by its numeri-
cal value, ie., [s;52---8,) = [2" ' x 51 +2" 2 X 55+ -+ -+
28,_1 + s,) = |&€), where & is the numerical value of the bi-
nary number s;s; - - -s,. We assume the spatial state of the
particles to be a product state, and the initial state can be
written as

21

(W) = ) ea) - ) @ ) acl§). (23)
£=0

For simplicity, we assume the particles to be located in the
same arbitrary position for the rest of this paper.

The position variance (W|(UTYDU!|W) after ¢ steps of
evolution is generally complicated, but can be expanded to
a power series of . For a large ¢, the > term dominates
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FIG. 1. Distribution of the eigenvalues of matrix M in Eq. (25).
The eigenvalues are the extremized coefficients of the leading time-
quadratic term in the position variance, for different numbers of
particles. The numbers next to the points denote the degrees of
degeneracy of the eigenvalues.

the variance, so we will mainly consider the coefficient of
t? denoted as ¢, in the following. It can be verified that c;
has a quadratic form of ag, ay, ..., ax—; and their complex
conjugates, which can be rearranged in the following matrix
form:

o =lay,aj, ..., a5 _|WMlag,ar,...,an_11", (24
where M collects all the coefficients of aa; in ¢;. And it turns
out that ¢; is independent of the initial positions of particles
in the state |W) in Eq. (23). The matrix M is obtained in
Appendix 4, and the elements of M are obtained as

M =(n— 1)1 —1/v/2)
+ %[n — QW) —n)*1(1 — 1/v/2),

2
M=~ (1 = 1/v2 [Bagp.1(n = 1
= 2min{W (j), W(k)}) — Su(jn).2]s (25)

where i, j,k € {0, 1,2,...,2" — 1}, j # k, W(i) is the Ham-
ming weight of the binary representation of integer i, d(j, k)
is the Hamming distance between integers j and %, i.e., the
number of bit positions where k differs from j, and § is the
Kronecker delta function.

The maximum and minimum values of ¢, are exactly the
maximum and minimum eigenvalues of the matrix M since
the complex vector [ag, ay, ..., ax_1] is normalized, and the
normalized eigenvectors of the matrix M are the extremal
points for the coefficient ¢, [Eq. (24)] and equivalently for
the quadratic term of ¢ in the position variance of |V). By
numerical computation, the relation of the number of particles
to the eigenvalues of M and their degeneracies is illustrated in
Fig. 1. And it is proven in Appendix 5 that the eigenvalues

are

1 \?[8W (k)(n — W(k))
e (1 ﬁ) [ - + (n 1)\/5}, (26)
where k=0,2,...,2" —2. It can be inferred that 0 <
Wk)<n—1,W(k) € Z, and there are C,:fo) different values
of k’s that correspond to the same value of W (k). Note that for
different values of k’s, e.g., k and k’, n; and n take the same
value when W (k) = n — W (k’), which should be taken into
account in counting the degeneracies of the eigenvalues. The
degeneracy of n; is

count(ny)
2, k=0
2CVO L VO g £0,nis odd
2@ P+ ®), k#£0,W(k) # 2 niseven

2c® W (k) = 5, nis even.

n—1 >
27)
The calculation of the degeneracy of eigenvalues is also given
in Appendix 5.

The eigenvectors for 1; turn out to be the kth and (k + 1)th
columns of matrix P, and P is a 2" x 2" matrix consisting of
2 x 2 submatrices

G,k
Py = (— 1) ZdG0) — (_1)etih) [(]) ﬂ , (28)

where i, k € {0,2,...,2" — 2} are the row and column loca-
tions of the upper left corner element of the submatrix Py
in the matrix P. ¢(i, k) denotes the number of bits on which
the binary form of i and k have a common 1. The matrix P
diagonalizes the matrix M by P~!MP. For instance, when
n=2,

Poo Po2

(29)
Then P'MP = diag(r/o, No, N2, N2) = dlag(«/ii -2, % _

2,4 — % 4— %).

By assigning the elements of column vectors in P after
normalization to the corresponding coefficients ag, we obtain
optimized coin states Z?:OI agl&).

The eigenvalues of the matrix M give the range of ¢,
Nmin < €2 < NMmax- According to Eq. (26), the largest eigen-
value for a given number of particles n is

(1= 25)°10n = V2 + 2n),
(30)

neven
Nmax (n) =

while the smallest eigenvalue is

2
nmin(n) = (1 - %) \/E(n - 1. 31D
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The eigenvalues nmax (1) and nmin(n) are positive, so both the
upper bound and lower bound of the position variance grow
quadratically with the number of time steps, . The eigen-
vectors for nmin(n) are the columns k = 0 and k = 1 of the
matrix P. And when 7 is odd, the eigenvectors for nn,x (1) are
the columns k and k + 1 where k satisfies W (k) = [n/2] or
W (k) = |n/2]; when n is even, the eigenvectors for ny.x (1)
are the columns k and k + 1 where k satisfies W (k) = n/2.

The above solution to the eigenvalue problem of the matrix
M in the quadratic form of ¢, provides the optimized initial
coin states and the extremal values for the leading term of ¢
in the position variance of the n-particle state. For simplicity,
we refer to these optimized coin states as eigenstates, and
sometimes we refer to an eigenstate as the initial particle state
combining both the optimized coin state and the positional
state as is shown in Eq. (23).

V. SYMMETRY AND ENTANGLEMENT OF OPTIMIZED
COIN STATES

Next, we proceed to study the relation between the ex-
tremal values of the coefficient ¢, for the quadratic term of
t in the particle position variance and the symmetry of the
initial coin states of the n particles. As we will see later,
each eigenstate is invariant after arbitrary permutation among
a subset of the particles. We define this invariance of the
eigenstates as partial exchange symmetry.

A. Partial exchange symmetry of optimized coin states

In Eq. (23), the positional state is an arbitrary product state
to make the results general, but it has been shown above that
the initial positions of the particles do not affect the leading
term c,t” in the variance of the particle positions. For con-
venience, we assume all of the particles to be located at the
original point initially, so that the symmetry of the particles
is only determined by the joint coin state. If we visualize the
partial exchange symmetry of an eigenstate by assigning the
particles to the vertices of an undirected graph and connecting
a pair of particles with an edge if the state is unchanged after
swapping those two particles, it turns out that the graph may
be composed of two disconnected but complete subgraphs.
This is illustrated in Fig. 2, and proven in Appendix 6.

It is shown that the number of possible ways p; to exchange
two particles that preserve an eigenstate is related to the eigen-
value 1 by ni = (1 — 1/5/2[8(C2 — pi)/n+ (n — 1)V/2],
so one can deduce that the larger the p; is, the smaller the
eigenvalue n; will be, and thus a greater degree of partial ex-
change symmetry of the eigenstate results in a smaller relative
spreading distance of the quantum walk, which is essentially
induced by a greater extent of constructive interference be-
tween the walking routes of the particles and more particles
oriented in the same direction and thus closer to each other.

It can be proven that (see Appendix 6) if one denotes 74 and
n, as the numbers of “ones” and “zeros” in the binary form
of k (k is even), respectively, then p; = w + M,
ny +ny, = n, and the two disconnected subgraphs have n; and
n, vertices, respectively. When k = 0, all the n particles are
assigned to the same subgraph (actually the whole graph is
connected in this case), which corresponds to the largest py

2
1 3
1 3 e |1 4 @
4 3
5 4 > > : s
k=(00000), | k=(00010), | k=(00100), | k=(00110),
3 3 2 4 2 1 3
2
5 1 5 4 1 5 3 5 2 4
k=(01000), | k=(01010), | k=(01100), | k=(01110),
3 3 1 4 1 2 3
<]> A A A
1
5 2 5 4 2 5 3 e 1 4
k=(10000), | k=(10010), | k=(10100), | k=(10110),
4 1 3 2 4 2 2
o 1 3
5
3 59, - 1 4 5 1 3 4
k=(11000), | k=(11010), | k=(11100), | k=(11110),

FIG. 2. Vertex partitions for eigenstates of n = 5 particles. The
numbers near the vertices label different particles, and the subset that
the ith particle belongs to depends on the ith bit of k. From left to
right and then top to bottom, each cell of the table represents com-
plete graph(s) corresponding to a different even number k ranging
from 0 to 2" — 2, respectively, where k is the column subscript of the
corresponding eigenvector in the matrix P. When £ is odd, the vertex
partition is the same as that of k — 1. Different background colors of
the cells are assigned to the graphs with different structures, which
also indicate different eigenvalues.

and the smallest ;. The particles are closest to each other in
this case and the eigenstate possesses the greatest exchange
symmetry. When the particles are distributed as uniformly as
possible between the two subgraphs, we obtain the smallest
pr and the particles turn out to be the most distant. Note
there is no antisymmetric eigenstate here when n > 2 since
the coin space of each particle is only two dimensional, in
contrast to the case of two particles where both symmetric
and antisymmetric coin states can exist but lead to drastically
different position distributions [77].

It is worth noting that the framework of multiparticle quan-
tum walks starts with distinguishable particles in this paper,
but the above optimization results can actually also apply
to indistinguishable or partially indistinguishable particles.
While the nature of indistinguishable particles is intrinsically
different from that of distinguishable particles, the states of
fully or partially indistinguishable particles can be equiva-
lently represented by fully or partially symmetric states of dis-
tinguishable particles. So in mathematics, the quantum walk
of multiple indistinguishable particles can also be included
in the current framework with proper symmetric multiparti-
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cle states. The above optimization of multiparticle position
variance further implies that the states of distinguishable
particles possess full or partial symmetry when the position
variance is extremized, so the optimized states of distinguish-
able particles coincide with the states of fully or partially
indistinguishable particles and the optimization results can
thus be applicable to indistinguishable particles as well.

It should be clarified that the bipartite structures of the
graphs in Fig. 2 do not mean that the two parts of the graph
are not correlated. For the eigenstate associated with the kth
eigenvector, if k # 0, the entanglement between the two dis-
connected parts of the graph can be quantified by the von
Neumann entropy

S(py) =~ vilogw, (32)
i=1,2

in which v =[1+ 3 —=2v2"2]"" and v, =[1+ G+
24/2y"217! for an even k, and v; = [1 + (3 — 2+/2)"]"! and
v=[14+0GB+ 2«/5)”]’1 for an odd k (Appendix 7). py de-
notes the reduced density matrix of the particles associated
with 4. Interestingly, the results of v; and v, rely on the parity
of k only, independent of the specific value of k when k is
restricted to be odd or even (k # 0). As S(py) is nonzero, the
two disconnected parts of the graphs are generally entangled
for the variance of the particle positions to reach extremal
values.

B. Dynamics of optimized coin states

Before concluding this paper, we try to dig a bit deeper into
the dynamics of the particles in the two subgraphs. The initial
positions of all particles are assumed to be zero.

For the case of n = 7, the average of £7 and two-particle
position correlations of the eigenstate given by the column
k = (1001010), of the matrix P after an evolution of t = 30
steps are shown in Fig. 3. They are essentially the components
of the position variance operator in Eq. (8). It can be seen
that the particles in the same subgraph possess the same
average value of 27 and the same particle position correlation
due to the partial exchange symmetry and the evolution
does not break this symmetry. The position correlations of
two particles are positive if the particles are from the same
subgraph and negative if from different subgraphs, because
the particles from the two subgraphs are initially placed at
the original point but oriented in different directions by their
coins. The two-particle position correlations always remain
the same if either particle is replaced by another particle in
the same subgraph, since picking different particles from
the same subgraph does not make any difference due to the
partial exchange symmetry.

A more insightful observation of the position distribution
of the particles is presented in Fig. 4. Particles in the same
subgraph are more likely to be close to each other. But
particles from different subgraphs, such as particles 1 and 2,
are more distant. As is shown in Fig. 4(a), particle 1 is more
likely to be found in negative positions while particle 2 is more
likely to be found in positive positions, because we can see
from the reduced density matrices of the initial coin state that
the coins are on average oriented in the opposite directions. As
a comparison, Fig. 4(b) illustrates the position distributions of

FIG. 3. Two-particle position correlations of the evolved eigen-
state with k = (1001010),,n = 7,¢t = 30. i and j label the ith and jth
particles, respectively. The diagonal bars correspond to the average
of %2, while the off-diagonal bars represent two-particle position
correlations. There are three types of two-particle combinations:
both particles from the same subgraph (there are two disconnected
subgraphs and thus two different situations) or one particle from
each subgraph. Therefore, the three-dimensional bar graph is divided
into four regions by two vertical planes. The evolution does not
break the exchange symmetry of particles in the subgraphs; thus the
correlations between two arbitrary particles from the same subgraph
remain the same.

the particles in the evolved eigenstate with k = (0110100),
after + = 30 steps of evolution. The Hamming weights of
(1001010), and (0110100), are identical, and (0110100),
can be perceived as relabeling particles 1, 4, and 6 as particles
2, 3, and 5 and particles 2, 3, and 5 as particles 1, 4, and 6 in
(1001010),. Referring to the expression of Py [Eq. (28)], the
two eigenstates are essentially the same after the relabeling
and therefore have the same position variance, particularly
the same second-order term of 7.

The bipartite entanglement between part of the coins and
all the other degrees of freedom of the seven particles in the
initial state k = (1001010); is small, compared with that of
the evolved state, as shown in Fig. 5. We use the von Neu-
mann entropy as the entanglement measure. The entanglement
increases rapidly at the beginning and then starts to oscillate.

VI. CONCLUSIONS

In this paper, we studied the discrete-time multiparticle
quantum walk in a one-dimensional lattice, focusing on the
position distribution of the particles. We are interested in how
fast the relative distance between the particles can increase
with time which is a manifestation of the nonclassicality of
the quantum walk over its classical counterpart. We used the
variance of the position distribution of the particles to quantify
the average relative distance between the particles after the
evolution of quantum walk, and obtained an asymptotic result
of the position variance for a sufficiently large number of time
steps.

To explore the limit of spatial propagation of the parti-
cles in a quantum walk, we analytically optimized the coin
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FIG. 4. (a) Two-particle position distributions of particles 1 and 2, 1 and 4, and 3 and 5, in the eigenstate with k = (1001010),, evolved for
t = 10, 20, and 30 steps, respectively. For particles 1 and 2, as they belong to different subgraphs, they are more likely to be found in different
positions, particularly particle 1 in negative positions and particle 2 in positive positions, since the coins are on average oriented in the opposite
directions as can be seen from the initial reduced density matrix of the coins. For two particles in the same subgraph, i.e., 1 and 4, and 3 and
5, on account of the exchange symmetry among particles within the same subgraph, they are close to each other. (b) Two-particle position
distributions in the eigenstate associated with k = (0110100), after # = 30 steps of evolution.

state and derived the upper and lower bounds of the position
variance for multiple particles that are initially uncorrelated
in the position space but allowed to be entangled in the coin
space, and both bounds turn out to scale quadratically with
the number of time steps, which is much faster than the linear
time scaling in the classical case.

0 and )0
> (146)
o, 2 — Pc
S Pt
(&

b=!
O 45
a
a
=

1
)
5
Z,
g 05
@)
>

0 L 1 1 1 1

0 10 20 30 40 50

evolution time ¢

FIG. 5. Bipartite entanglement between the coins denoted in the
legend and all the other degrees of freedom of the seven particles
over t = 50 steps of evolution. For instance, the red line plots the von
Neumann entropy for the reduced density matrix p{!*® of the coins
of particles 1, 4, and 6. The blue line and the yellow line likewise.

Interesting symmetry in the optimized multiparticle coin
states is revealed for the dominant term of position variance:
the optimized coin states that extremize the dominant term
of position variance possess partial exchange symmetry with
respect to two disjoint subsets of the particles; i.e., the opti-
mized coin states are invariant under arbitrary permutation of
the particles in either subset. The two subsets of particles in
the optimized coin states are correlated, and we studied the
entanglement between the two subsets quantified by the von
Neumann entropy. We also investigated the position correla-
tions and position distributions of the optimized coin states
to reveal more dynamical properties of the quantum walk
induced by the partial exchange symmetry.
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APPENDIX: DETAILS OF THE DERIVATION

In this Appendix, we give more details about the deriva-
tion of results in the main text. Section 1 calculates the
position variance of multiwalker classical random walks.

052402-8



OPTIMIZATION FOR THE PROPAGATION OF A ...

PHYSICAL REVIEW A 109, 052402 (2024)

Section 2 illustrates the preliminaries of discrete-time mul-
tiparticle quantum walks and the process of diagonalizing the
evolution operator. Section 3 derives the position variance of
the walkers as a function of the evolution time ¢ and initial
state. We consider a situation where the particles can be en-
tangled in the coin space, and express the coefficient ¢, of ¢
into matrix multiplication in Sec. 4. Section 5 provides an ap-
proach to derive the eigenvalues and eigenvectors of matrix M.
We analyze and prove the partial exchange symmetry of the
particles of the eigenstates corresponding to the eigenvectors
in Sec. 6, and then in Sec. 7 we calculate the bipartite en-
tanglement between the two subsets of particles in which the
particles within the same subset possess exchange symmetry.

1. Position variance of multiwalker classical random walk

Considering a classical random walk with n independent
walkers, we define the position variance of the particles as

2

_ -1
D:Z xi—;ij _n Z ——ijxk

i=1 j=1 Jj#k

(AL)

X; = Xj0 +x;1 + - - - + x; is the final position of the ith parti-
cle. x; € {—1, 1} is the displacement of the ith particle at step
t (¢ > 0), and the probability of x;; to be —1 or 1 is equal. x;o
is the initial position of the ith particle. Therefore, X;; = 0 and
x2 =1

n—1

D=

1
4 x; 2 __ Y X
lt) nz-xj-xk
J#k

Z (xlO + Xxi1 + X2 + -

~1
S (S ) - L

i y=0y'=0 j;ﬁk

1
nn Z|:’°+2XIOZXW+Z Z Xiy Xiy

i y=ly'=Ly'#y

t
y=1

1
- - E Xj0Xk0
n

J#k

1
i20 - ijoxko + (n—1).
J#k

(A2)

D grows linearly as the function of z.
As for the position variance operator for quantum states,
the simplification of Eq. (7) to Eq. (8) is carried out as follows:

- 2

i i J J
ZZX ——ZX X

= Z X% (A3)
J#J
2. Diagonalization of the evolution operator
The n-particle evolution operator is
0, = 0%, (Ad)

andU = § - (I ® C), where C is the coin operator that flips the

coin and § is the shift operator that changes the position of the

particle according to its coin state. The coin of a particle is also

referred to as “spin” wherever no ambiguity occurs. § takes

the following form: § =Y |x + 1)(x| ® | 1) (1 |+ X, |x —
D@ 14) (LI

We perform a discrete-time Fourier transform

K) = e |x), (AS)

1
V2 XX:
where |K) preserves the orthonormality (K'|K) = §(K' — K),

to diagonalize the positional part of the evolution operator in
the momentum space that

1K) ® (™™ [1) (14X [1) (LDCls). (A6)

The calculation of the evolution can be converted into ap-
plying the operator Uy = (¢=¥ | 1) (1| 4+ X | 1) ({|)C in the
coin space. As a specific case, we choose the Hadamard oper-
ator H as the coin operator:

UIK) ® |s) =

.1 1
H=— — ,
ﬁ(ITHTIJrIT)(iIJrIi)(TI) ﬁli)(il

(A7)
Then Uk can be written as
. oK oK
Uy = — — — .
(3 ﬁ(IT)(TI+|T><¢I)+ﬁ(li)(ﬂ 1) D
(A8)

By diagonalizing it in the coin space further on, denoting
|d;(K)) as the eigenvectors of the new vector space, the di-
agonal representation of operator Ux is shown in Eq. (A9),
where |d;) and |d,) are the two eigenvectors:

N e K (=1 4 662K + oHK — 2K 4 |
Ug = ( )|d1><d1|
2V2
—IK /1 + 6e2iK + oK _ 21]( +1
( ) |d2)(da]

24/2

= hildi){di| + A21d2) (da]. (A9)

The actual values of A; and X, vary if we choose
different branches of the square-root function. Here we
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define

V1 + 62K 4 4K = /2 cos(K)\/cos(2K) + 3
+ iv/2 sin(K)y/cos(2K) + 3, (A10)

then
1 sin(K
M(K) = =3 v/3 + cos2K) - lsf}(z ).
A(K) = 37 cos2K) — LK) (A11)
2 - ﬁ )
)= he ). aD)
VT AN T V2N —K) 4
—iK 1
|d>) = 2N(n—K)|T)+«/T(K)|“’ (A13)
where N(K) = (1 4+ cos’K) + cosKv/1 4+ cos’ K =

[v1+4cos?K + cosK]v/1 + cos® K. Finally, we arrive at

the diagonalized representation of the evolution operator,

0=f dK|K) (K| ® (i |y (K)) (dy (K|

-7

+ A2ld2(K)) (d2(K)I). (Al4)

J

(Yol ()Y DU o) =

X8 X), S X181 X Sn

1 r 7y A 7T v TN S T
—r-lZ<xjsj|(UT)’ij’|xjsj)(xksk|(U Y0 ws) [ 8

J#k

. [ ,
5x 5 xps, 18 1 1fx =x, and s,

the posmon Vanance only when the states of the particles other than the ith partlcle in the bra (x RS
- |x,s,) match. A similar constraint applies to the summands (x;s;|(U DEY g xjs j)(xkskl(U T)’ka "I xgsi). For the

ket |x1s1) - -

n—1
Z Z axi S S:]axlsl‘“xnxn n

3. Calculation of position variance

As is mentioned in the article, the initial state of an n-
particle quantum walk can be written as

[¥o) = Z x| 51Xy 8p |x181) [x282) -

X181°*XnSn

(A15)

< |%0S0),

where x; and s; are the position and spin of the ith particle.
And the position variance operator is defined as

2
A 1
D:Z )?l‘—;z}%j Znn ZA-z——ZX]x],
i j J#J
(A16)

consisting of single-particle operators and two-particle opera-
tors. Similar to evolving operators in the Heisenberg picture,
the evolved position variance operator can be decomposed
into the summation of single-particle operators and two-
particle operators:

@, DU, ;)% 0;

- - Z(UT)“ Ul o O R0, (A17)

/#k

The subscripts i, j, k represent which particle the operators
apply on. The position variance after ¢ steps of evolution is
given by

n
~ JOT
Z<xl/'sl/'|(UT)txi Ullxisi> 1_[ 5x’ys’y,xysy

i y=Ly#i

n
x;s;,xyxy:| . (AlS)
y=Ly#jk

=s,, and is O otherwise, implying the summands (x/s’|(U T)’A20’|x, ;) can contribute to

-{x)s'| and the

single-particle term, the matrix elements can be further derived through the following procedure,

WSO R0 i) = / / dK dKZ ()| K'd' Y (K'd'|(OTY 220" |Kd) (Kd|x;s;)

d,d

/ / dK'dK Y (1K) (sild") (K i) ds:) d |0 ) 1d') (K127 1K ) d'|d) (d | O |d)

d,d

1 (" (7 e )
=—5- / f dK'dK § e (sl d ) (d)siy(d (U 1d')8 P (K" — K)(d'|d) (d| Uk |d)
T JnJ-xn 4

1
=5 dKZa2 [e"KX=KD (1 d"y (d |s:) 05, (K A (K (d (K d (K)o =k (A19)
We used
(K/|)2l.2|K) = Z (K| |x (x|K) = Z 2 —z(K -Kx _ Z 5(2)(K/—K+2nl), (A20)
r=To X==—00 I=—00
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| € Z, where we utilized the relation
1 o0 o0
L m —i(K'—K)x __ ;=\m (m) g’ _
= x"e =@)" Y 8"(K' —K +2xl), (A21)

X=—00 |=—00

which is the periodic extension of the derivative of the Dirac delta function with period 2. We can omit the summation on the
right-hand side because the integration region is 27, so there is one term remaining. Then we can use (K’ |fci2 IK) = =8P (K’ — K)
in the integral.

The order of 7 is relative to the order of derivatives. If we expand the derivatives,

(SO 70 xsq)

1 " iK'x! ;1 7\ ) * INIP 2 —iKx; t
=~ /. dK%a?[eK HsHld YAk (K'Y (d (KA (K))lk=xe” 55 (dsi) ha(K)
1 4 — —_
=—5- | & > {oR [ sild") d (KD KN IAG (K'Y + 20k [ (sjld’) (d' (K")|d (K)) g [, (K'Y ]
- d,d’
+ K (sl|d ) (d (K" (K)) 9 [15 (K'Y 1} kr—x e ™ (ds;) 2 (K )
1 i 2 iK'x!, / / / * I\t iK'x! / / * INE
=—5- dK > " {0g [ (s]|d (K WA (K )d (KOG (K') + 20k [ (s}1d (K')) (d (K")|d (K)) 10k (A5 (K'Y ]
A

+ &5 (sl d (K (KA (K)) 3 [15 (K'Y 1 k=g e 5 (d (K) sy ha (K )

1 i 2 iK'x! ;) 1y 3/ / / / * INE iK'x! ) 11 g/ / / / * INt
-5 dK Y " {og L™ (s)ld' (K))(d' (K')|d (K)) 1A (K'Y + 20k [ (sjld’ (K ")) (d'(K")|d (K )9k [A5, (K')']
- d#d’
+ &5 (sild (K (d' (KD (K)) 3 [15 (K'Y 1}k =x e (d (K)|s:) a (K )
1 4 — .
=57 9 > {0R [ sild (KM (K)d (K =k e 5 (d (K)s;)

d

+ 20k [ (sH|d (K ) (d (K d (K ) 1 k=gt A5 (K) ™ 3 [R5 (K)e ™ 5 (d (K)|s;)

+ KE A (K))e(t — DALK) ™ d(K)si) @ [A5(KOD? + XS0 (sl|d (K))d (K)si)ta (K) ™ ag (A5 (K1}
1

- § 2 1 iK'xt o 3 k! 737 -
] dK;, {0 [e™ i (sild" (K"))(d' (K")|d (K )]| k=

+ 20k [ (s|d' (K" {d' (K (K )1 k=t Al (K) ™ 9 [35 (K]
+ e (s1d" (KO (d (KON (KOMi (= 1A% (K) 2@k [A5 (K1Y A+ 145 (K) ™ 02105 (K)TY e ™85 (d (K si) A5 (K ) 2. (K )

= —%[ﬁlAz(x; — Xi, Siy 81) + tLar (x5, x4, 85, 80) + Lac (X7, X, 85, 80) 4 Lao (X5, i, 85, 8550)]. (A22)
Denote
Lo(x] = xi, s}, 50) = / dK e " (1d (K)) (d (K)lsi) 25 (K ) (0 [ (KDY, (A23)
. -
L (¥, xi, 87, 80) = / dK Y {20 [ (sild (K (d (K" |d (K)) =k 25 (K )™ 9 [R5 (K ) le ™ (d (K| si)
- d (A24)
+ KT (s d (KW (K si) (=45 (K) 2@k AL (KD + A5(K) a5 (K)T,
Lac(x}, xi, 57, 51) = / dK > o [ (s)|d (K)) (d (KA (K )|k =ke™ " (d (K)si). (A25)
.

ya
Luo(xj, X1, 8, 8i31) = / dK Y {0z [ (s]1d" (K)d'(K")|d (K]l =k
-7 d#d’

+ 20k [ (s |d (K (d' (K" (K)) |kt A5 (K) ™ 9 [AS (KT e ™ 5 (d (K)s:) (W5 (K)Aa(K))' . (A26)
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And for the other term,
(O 20" |xisi)

//dl(d[(z s)IK'd"y(K'd |(O7Y %0 |[Kd)(Kd|x:s;)
-7 -7

//deKZxIK M sild') (K |xi)(d|si) (d'|(Ug)' |d')(K'1%:|K)(d'|d) (d| U |d)
T d,d'

//deKZe"” ~R(sild')y (d]si)(d' (O 1d")8 V(K" — K)(d'|d)(d| U |d)

o -7 dd

=—2l dKZa [ TR (1) d|si) 1 (K da (K (d' (K" ]d (KO =k (A27)
J

Similarly,

X0 20" asi) = — i "k Z{BK [ (s}ld’ (K"))(d' (K")|d (K )N (K'Y

-7

+ K (sl |d" (K" )) (d' (K d (K )3 [35 (K Y W=k e K (d (K)|si)Aa (K )
S / K ;{a,«[e“’)‘f<s;|d(1<’>><d<1<’>|d(1<>>]A:;<K’>'

+ ¢®N (s d (K)) (d (K (K )) ok [M5 (K'Y T k=i e 55 (d (K )[5i) a (K )
i i iK'x! ;) 1y g/ 7 i / * t
-5 _ﬂdK%{ak/[e Hsild (KN (d (KD (K )]k =k Al (K)

+ (st |d (K))(d (K (K))dx [A5 (K'Y 1 ko=k Ye ™ K5 (d (K)|si) ha (K )'
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i

- = dKZaK [ (s}ld" (K")) {d' (K")|d (K[ =ke™ ™ (d(K)\s:) (0 (K )ra (K))

2 !
=— %[IIB(X; — X;, Sty 8i) 4 g, (X1, xi, 85, 80) + Ipo(X], Xi, 8T, 81311, (A28)
T
Ig(x] — x;, 5}, 57) = / dK Z RO (st d (K)) (d (K| si) A (K)o 1 (KO, (A29)
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The above expressions can apply to any coin operator of SU(2) with A;(K) and |d(K)) computed from the conditional unitary
operator Ux with the new coin operator. If we use the Hadamard coin,

(«/5—2)71, X —x=0,8=s
Lo —x,5',5) =1 V21 (/2 — W cos (@), X —x#0,5 =5
0, s’ #s
(A32)
(1-=+2)f(0), ¥ —x=0,5=s
=1 f(x' —x), X —x#0,5 =5
0, s #s,
where f(x) = v/27(v/2 — 1) cos(rrx/2).
16x'[I,(Ax — 2) + I,(Ax 4+ 2)] + 28x'L,(Ax) )
S =5 =
+2x' [ (Ax + 4) + L,(Ax — )] + 8[L,(Ax + 2) — I,(Ax — 2)], t
, , —{16xX'[I,(Ax — 2) + L,(Ax + 2)] + 28x'I,(Ax)
IA](X,X,S,S): S’ZSZ\L
+2x'[I,(Ax +4) + L,(Ax — 4)] + 8[L,(Ax +2) — I,(Ax — 2)]},
(4x" — HL(Ax +2) + (28x — 8)L,(Ax) + (28x" — 20),(Ax — 2) + 4x'[,(Ax — 4), s =1, 5=
(4x" + DI,(Ax — 2) + (28x" + 8)[,(Ax) + (28x" + 20)[,(Ax + 2) + 4x'[,(Ax + 4), s ={,s=1,
(A33)
XL —x—4) —4(1 + x' = 3xX)L,(x' —x —2) + (16 — 24x" + 38x),(x' — x) )
S =5 =
+4(1 — X + 3L —x +2) + X, (x — x+4), t
Iic(', x, 8", 8) = {x2L(x —x —4) +4(1 + x' 4+ 3, (x' —x —2) + (16 + 24x" + 38x)[,(x' — x) (A34)
+4(—1 4+ X + 3L — x4 2) + 2 L(x —x+4), T
41 + XN —x = 2) + 24X, (x" — x) +4(x" — DL, (X' —x + 2), s # s,
where Ax = x' — x, I,(x) = — & (v/2 = DM(3v/2 + 2[x]) cos(Z).
IA()(-x/5 x’ S/v s;t)
(_1)%\/56—%in(3z+x’+x)((_1 + (1 + l-)x/)(ein(t+x) + eiﬂ(3t+x’)) + ((1 + l-)x/ _ l-)(ein(ZH-x) + eiﬂx/))’ § =g =T
4—ﬁ¢§fW@HHwLHLHyNWW”+W@Wb+m+ﬂf+mwmm+aﬂn §=s=]
= (_1)%\/%6_%1':[(314—,(’4—/!)(((1 + l-)x/ _ i)(ein(ZH—x) + einx’) + (1 _ (1 + l-)x/)(ein(z+x) + ein(SH—x’)))’ s =T7 s :\L

(_l)%\/?reféin(31‘+x’+x)((l 4 (l _ i)x/)(ein(21+x) + eirrx’) 4 l(l + (1 4 l')x/)(eiﬂ(t+x) + ei7‘r(3[+)f’)))7 § = .S :T

1
; (\[) (A39)
—ilp (X' —x,5,5), s =5=%
iln(x' —x,5,8), s =s=]
1 x/_‘x’ S/’S = ir (X' —x _ e
B( ) TQCOS(¥)[(\/§_])‘X x|_(\/§_])|)c X 2\]7 s = s =]
% cos (n(x’z—x))[(ﬁ _ ])\x’—xl _ (ﬁ _ ])Ix’—x+2\]7 s Z»Lz s :T
(=Dl (X' —x, 5, 5), s =s
= / ! , , (A36)
s —x)+ f(' —x = (1) x2)], s #s.
In the above equation, when s is 4, it acts as number 1, and | as number 0; i.e., when s =1, (—1)* = —1, and when s =,
-1y =1.
. i (\/57 1 )‘x, - cos ”(x;_"”
217Tx8xr_x,0 — \/E ( ), S/ =S :T
/ / _ . in(«/ifl)wﬂ‘ cos (&= ,
I, (¢ 2.5 ) = dies o 4 el e SR (A37)
i (v2-1)" " cos (252 Y ks,

\/E )
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%l\/g(l 4 einr)ef%in(3t+x/+x)(_ein(t+x’) + ein(2[+x’) + ein(t+x) + einx’)’ § =5 :T

/ / —%l\/g(l 4 eirrt)e—%iﬂ(3t+x'+x)(_eirr(t+x’) 4 ein(2t+x/) 4 ein(t+x) 4 eirrx/), § =g :i« 1
Ipo(x', x, 57, 831) = +o .
\

_%\/g(_l + eiﬂt)e—%in(31+x'+x)(eiﬂ(t+x’) + eirr(2t+x’) _ eiﬂ(H—x) 4 einx’), s ZT’ § = t

_% ;r_,(_l + eint)e—%in(3t+x’+x)(ein(t+x’) + ein(ZH—x’) — ot t+x) + einx’)7 s =~L’ s ZT
(A38)

14, and I, are integrals with rapidly varying phase when ¢ is large, and they approach zero when ¢ — co. But note that in the
expression of (D), there are terms of I, multiplied by 7, and this results in the terms of order /7. The asymptotic formula can be
calculated by stationary phase approximation. Let €2 denote the set of critical points of a real function f(x) in the region (a, b)
and ¢ > 0, and assume g(x) is compactly supported or has exponential decay. Then,

1

oo . oo [ 2 : l
/ g(x)e”f(x)dx — Z g(xO)eztf(xo)+51gn(f (x0))F (—7[ +o(t™7). (A39)

1
a X0EQ t|f ()C())|

To illustrate how we calculate the integrals like l42, a1, lac, Ip, and I, using the residue theorem, we give an example of
calculating the integral

Lo( —x.5.5) = f K™= N |d (K)) (d (K)ls) A5 (K) 2 (g [ (KD (A40)
- :
When s’ = s,
g 2eiK(x’7x) COSZ(K) ik Z(x’fxfl)(Z + Z71)2 . 4Z(x’7x+1)
L' —x, s, =/ - dK”:e?g j dz% 1P D O P
(X' —x, 5, s) - |: cos2K) 13 - i EEE=Iwy z Iz\:ll z 621l Z
(Ad1)

The roots of the equation z* + 622 4+ 1 =0 are —i(v/2 — 1), i(v2 — 1), —i(+/2 + 1), i(~/2 + 1), among which —i(v/2 — 1),
i(ﬁ — 1) are inside the unit circle on the complex plane and —i(\/E + 1), i(ﬁ + 1) are outside. They are the first-order poles
of the integrand. In addition, z* =" may produce a residue when x’ — x — 1 = —1. Then

—27i{Res[ f(—iv/3 + 2+4/2)] + Res[£(iv3 + 2v/2)1}, X —x<0
Lin(x' —x, 5, 5) =1 +27i{Res[ f(—iv3 — 2+/2)] + Res[f(iv/3 — 24/2)]} — 27iRes[f(c0)], x —x=0
+27i{Res[f(—iv/3 — 2+/2)] + Res[£(iv/3 — 2/2)1}, ¥ —x>0,

V27 (3 + 24/2)% 0/2 o (@), X —x<0

=1 (V2 -2, X —x=0
V27 (3 = 24/2)% 012 o (%), X=x>0
(V2 = 2)r, X —x=0
= ) , (A42)
V273 = 24/2)W 3112 o (w) x —x#0.
The notation Res[ f(a)] represents the residue of function f(z) at point a. When s’ # s,
Lo(x' —x,s',5)=0. (A43)
To sum up,
2 -2, X —x=0,5=s
Lo —x,5',5) =121 (/2 — 1) cos (@) X —x#0,5 =s (A44)
0, s #s.

4. Optimization problem of coefficient

The coefficient ¢, of #? in the expression of the position variance after ¢ steps of evolution (¥ |(U Y DU’| W) can be calculated
from the combination of inner products of {(x;s}] - - ()c,,s;,|(l7nT ) lA)U; |x181) -« - |xXa8,) [see Eq. (A45)]. For simplicity, we regard 4
as number 1 and | as number 0 and denote the spin of the ith particle as |s;). Then the vector |s;) takes on the value of [1) or |0},
and the combination of the spin notations of these particles can be treated as a binary number whose numerical value is &, that
is, [s152 - 8) = 2"V x 51 4272 X 55 4 -+ -+ 25,_1 + 5,) = |€). We can rewrite the basis state vectors as |x1)[x2) - - - [x,)|€).
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The position variance is given by

2"—1 2"—1
(W|OHDU' W) = | (xi](xa] - - <xn|2ag/ EON DU i) xa) -+ 1) Zaas : (A45)
in which the coefficient of 2 is

ao

* £ * * a
= ata:Mye = laj.af, ... a5 M| | (A46)

&8 ’

Ayn_|

The matrix elements of M are given by

/1Y -
MS’E =- ZIA2(O Sl, si) l_[ 8x 8,5, 8y _<Z) Z I(0, s;w sj)IB(O, S;(, Sk) l_[ 8x’ys’y,xysy- (A47)
y=1,y#i ok j#k y=Ly#jk
In I (0, s, 5;), if 87 # s, 142(0, s}, 5;) = 0. Thus the first part in Mz is zero if & # &. If £’ = £, it takes on the value of
(n—1)(1 — 2)

For the second part in Mg ¢, integrals Ig(0, 1, 1), Ig(0, 1, ), and I3(0, |, 1) are all i(2 — V2)m, while (0, 1) =—i@2 —

V2 2)7. The values of I3(0, s’ 555 8; )0, s,’(, sk ) corresponding to different combinations of s}, s,’c, s, and sy are listed in Table I:

(55 St Sjs Sk) Value

Gt B b e D b e Dt 4o D (1 b1 ), s
R S WU VNS A TR Y S5 W AR SS WA I B 2 =2
CIR S SIS WA RS WUSE SIS W AR S AR 2~ V2)n?

When &' = &, i.e., the left state vector is the same as the right state vector, we denote the number of particles that are spinning
up as n4, and those spinning down as n|. Then ny +n, = n, and

Mss—(n—1)<1__> Z( 1)‘]%(1_%)
:(n—1)<1—%)+i[ (C,i+c2)+nw](l_%2)z

1 1 1\?
:(n—l)(l—ﬁ)—;[(n¢—n¢)2—n]<l—ﬁ> . (A48)

When d(¢',£) > 2, Mgz = 0, and when d (&, &) = 1, there is a mismatch in one of the spins pairs. We denote the number of
spinning up pairs in the matched n — 1 pairs as n’T and those spinning down as n’l; the matrix elements are

2 1\?
=2 (1= 1) v
&6 = 0 I NG
When d(§', &) = 2,
Mo — 2 (1 ! )2 (A50)
&E — n «/E .
If we rewrite the subscripts of matrix M as i, j, k, then
My =( 1)(1 : >+ Lin— w )2](1 1 )2 (AS1)
i =n — = —\n— l)—n i ,
v2) n V2
2 1\? . . ,
Mjy=—\1——) [Sagip.1(n—1=2min{W(j), W(Kk)}) — Sa(j.n).2], (J # k), (A52)
n V2
where i, j,k=0,1,2,...,2" — 1 and W (i) represents the Hamming weight of integer i/, i.e., the number of 1’s in the n-bit

binary form of integer i. Here d(j, k) represents the Hamming distance between integers j and k, which is the number of bit
positions where the corresponding two bits in the binary form of i and j are different. § is the Kronecker delta.

The maximum and minimum values of ¢, as a function of the initial coin state are the maximum and minimum eigenvalues
of M, respectively.
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5. Solving eigenvalues and eigenvectors
Given the number of particles, n, the matrix elements of M are

3 1 1 . 5 1\?
M; =(n — 1)(1 - E) + ;[n - @2W (@) —n) ](1 — E)

2 1\? . . .
M, =—(1 - ﬁ) [Bacjp),1(n — 1 =2min{W (j), W (k)}) — Sa¢jn).2]1, (J # k), (A53)
where i, j, k € {0, 1,...,2" — 1}. We define

B, = <1 ! )2”M nn—1), (A54)
n — \/z 2 n \/2 E)
the matrix elements of which are
bi =n(n — 1)+ i[n— QW (i) — n)*]
bjx = 8aji1(n — 1 =2min{W(j), W(k)}) — du(jn).2, (J # k). (ASS5)

When n > 2, we define the 2 x 2 matrix P;; = (—1)°-)Z40) where

2101 AS6
_[1 2]’ (A30)

i,je{0,1,...,2" — 1} are even; c(i, j) represents the number of bit positions where the corresponding two bits in the binary
form of i and j are all ones.

Theorem 1. Denote i, j to be the row and column locations of the upper-left corner element of the submatrix P;; in the 2" x 2"
matrix P. The submatrices P;; make up the matrix P,, such that P, 1B, P, is diagonal matrix (ul>), where k is an even number
and I, is a 2 x 2 identity matrix.

Proof. Whenn = 2,

S OO
~ O O

P 'B,P, = (A57)

(e
SO OO
(e
~ O OO

We prove the theorem by mathematical induction. Assume that it holds true for #. Then for n + 1, let B, = (B;;) be the 2 x 2
submatrix partition and similarly B, = (B; j), P, = (P;), Piy1 = (Pi/j), where 7, j are even numbers. It can be proved that Vi,

k <271 2Ji, 2]k, Iu’ such that

> BPy=uP,. (AS8)
0<j<2n+]
2j

We first prove it for the case of i < 2", k < 2". Let j < 2",

, 8ai.j).1 8agi, j+1),1 o,
Bij — BU + |: J J = Blj + Sd(i,j),IIZ(l 7é ])v (A59)
Bag,j+1)1 Sdgr1, 1)1
+2W (i 1
By=Bi+|" @ NE (A60)
1 n+ 2+ 2W ()
—8d(i, j+2),2 =84, j+21+1),2 .,
B ji» = [ o SAR = —8q¢i,jy,1l2(i # ), (A61)
—=8ait1,j+2m.2  —Od(i+1,j+21+1),2
. [n—2w) —1
Bi,i+2" - |: —1 n—2— 2W(i):|' (A62)

Hence,

L n+2W (i) 1
Z Bj,Pj, = Z(Bij + daqi 1 DPjk + [B"" + ( 1 n+2+ ZW("))}PM

0 j<2m! j<2"
21j 20j#i
n—2W( —1
+ 3 =8ai 1 2Pl + ( e zw(i)>za~k. (A63)
j<2"
i
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Utilizing the induction hypothesis, i.e. 3 such that ) j<2 BijPjx = Py, we obtain
2j

. 1+ 2W (i) 1 n—2W () —1
Z Bl]Plk_Z&z(, P —Z)+ |:( 1 n+2+2W(i)> + ( . n—2—2W(i))Z:|Ek+MBk'

0 j<2m! J<42"'
2|j 2|j#i

(A64)

Here weconsider ) . j<on P P_ =rl+yZ, wherer =2 x #{j|(i, Ky j) = (0, D} =2 x #{j|(G, k)yi,jy = (1,0)},y =
20j,d (i, j)=1
#{jlG, k), jy = (0 or 1 O)} —#{jlG, k)sq, ) = (0 or 1, D} #{j|(i, k)s, j) = (0, 1)} represents the number of j’s for 0 <
2" 2|j,d(i, j) = 1 such that the binary form of i is 0 and k is 1 on the bit where the binary form of i differs from j. The notatlon
¥ (i, j) denotes the bit position where i is different from j. One can deduce that r = 2(W (k) — W(@)), y =n — 2W (k) — 1.

Taking ' = u + 4W (k), it can be verified that Eq. (A64) can be turned into

- 2W (i 1 —2W (i -1
> BP, =<r1+yZ)(1—Z)P,-k+[(”+1 ® n+2+2w(i))+<” 2o n_z_zw(i)>2}a-k+m

0<j <2+
2j

=[(r] +yZ)I — Z) + (n 4+ 2W (i) — DI + (n — 2W (i) — 1)Z + ulPy = ' Py = 1P} (A65)

Note that P;; commutes with Z.
When i < 2", k > 2", we denote k' = k — 2", 30 0 < k' < 2". Similarly,

/ p/ n—+ 2W(l) 1
Z Bz]ij Z(BzJ+5d(z j)lI)Z |:Bii+ < 1 n—+2+2W (@) ZPy
0<j<2n+] ]<2n
21j 20j#i
n—2W( —1
+ D dacpa P = ( Y 2W(i))Pik" (A66)
j<2n
ﬁljaﬁi

Hence, taking u' = 4n — 4W (k") + u, we obtain

2W (i 1 —2W (i —1
Z Btj Jjk —(VI+}’Z)(Z+I)sz/ [<n+1 (l) n+2+2W(i)>Z_ <”l -1 (l) n—2— ZW( )>] lk,+/’LZPlk/

0 j<2"+!
21j

=[4(n — W(K)) + ulPj = 1'P;. (A67)
Wheni > 2"k <2", weletj <2"andi =i— 2",

By =B = (01202 ) s e

By = <n 2w @) o :12W(i/)>’ (A69)

= (00 M ) =), o

B;’+2",i’+2” = <_4W(_ig o —4 — 4‘;/%1'/) + 2n> + By = By + <3n _—zrl(i/) 3n — 2‘;/1(1'/) — 2)' (A7D)

It can also be deduced that

n—2W(@a) —1
Z Bz+2"j jk = Z( Sar, )Pk + ( —1 n—2—2W(i/))Pi,k

0 j<2m! j<2"
2|j 21 A

3n = 2W (') -1
+ Z (Birj — 8aw, 1) ZPj + |:Bi’i/ + ( . 3 — 2W (i) — 2)i|ZPi’k

j<2"
3)ji

=[4W (k) + 1P/ (A72)
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Wheni > 2"k > 2" weletk' =k —2", i’ =i— 2" Then
n
Y By iPlrsm = Y (=8aw.j)ZP + <
0 j<2"+! j<2"
2|j 20 j#i

3n —
- Z Bij — Saw, jy,1)Pjx — [Bi’i’ + < 1

j<2"
2ljA

[4n — AW (k') + 1P/,

—2W (i) —1

-1 n—2— 2W(i’))ZP"”<’

2W (i) -1 P
3n—2W@)—=2) "%

According to Theorem 1, the eigenvalue corresponding to the column subscript & is

. AW (k),
Fe=Nam—1) — awk —

where k is an even number. As /,L(% =0and u% = 4, for n particles, we have

wie =AW kW 2" — 1 — k).

Each 1y (0 <

k < 2", 2|k) corresponds to two eigenvectors, and the corresponding eigenvalue of M,, is ny = (1 —
(n— 1)\/5]. By the range of k, it can be inferred that 0 < W (k) <

(A73)
|
0<k<2!
n—1 n—1 n (A74)
2Ny, 27 <k <2n,
(A75)

1 \2121
P2 4
n—1, W(k) € Z, and there are C:V_(f) different k’s that

correspond to the same value of W (k). Note that for different k’s, e.g., k and k', n; and ;' are the same when W (k) = n — W (k'),
which should be taken into account in counting the degeneracies of the eigenvalues. We assume that k, k" € {0,2,4, ...,2" — 2}.

When W (k) =
(n — 1)/2, there are k”’s (k' # k) suchthat (n + 1)/2 < W (k') <
satisfying 1 < W (k) <
and for those k’s satisfying W (k) =n/2, asn —W(k) =
result for the degeneracy of n;:

2,
2(CW(1<) o' 1W(k)
count(n) = "
k Z(CW(k)+Cn W(k)),
20D,

6. Proof of partial exchange symmetry

Using the relation Z?> = 2Z + I, it can be proven that

o _ |Fla—1) F(a)
z _[ F(a) F(oH—l)]’ (A77)
where o € 7 and
(14+V2)" — (1 = V2)"
F(a) = . AT78
(@) W) (AT8)
F(a) > Owhena > —1. So,
Pj= (_l)C(l,J)Zd(LJ)
n[FG, j)—1) F(d(@, j))
= (—=1)°@D . (A79
=D [ F(d(@, Jj)) F(d(i,j)+1)} (A7)

To analyze the exchange symmetry, we take a close
look at the binary form of subscripts i and j, that i, j €
{0,2,...,2" —2}. Each column of the matrix P, = (P;;) is
an unnormalized eigenvector of matrix M. Combining the
normalized eigenvectors and the position state, we obtain
the optimized initial states for the quantum walk. Let i/, j’ €
{0,1,...,2" — 1} be the row and column subscripts of the

0, there is no k' satisfying W (k') = n — W (k) = n. When n is odd, for any given k satisfying 1 <

<W(k) <

n— 1and W(k') = n — W (k). When n is even, for any given k
n/2 — 1, there is another set of k”’s (k' # k) such thatn/2 + 1 < W (k') <

n—landW(k&')=n—W(k),

W (k), the degeneracy of n; is ZC:‘L({‘). So we arrive at the following

k=0
k # 0, nis odd

k#O,W(k)?“
W (k) =

. (A76)
n is even

, n is even.

(

matrix element p;; in P,. Then the element in row i =
(i} - - - i) of a normalized eigenvector is the coefficient with
respect to the product basis [i') = [i})]i}) - - - |i}), where |i)
corresponds to the Bth particle. Let P;; be the 2 x 2 submatrix
of P, that the matrix element p;; belongs to, and the row
and column locations of the upper-left element of P;; are
i=2[i'"/2], j =21j'/2]. We will see that each eigenstate is
invariant under the permutation of some of the n particles, and
we define this invariance of the eigenstates as partial exchange
symmetry. When the uth and u'th particles are swapped, the
state vector is changed by exchanging the single-particle states
of the uth and w«'th particles in all the product bases that
compose the whole multiparticle state.

Consider an initial state with the coin state corresponding
to the j’th column of matrix P, as

00---0)® Y ali),

where |i') = [iji,--- i), and al(-,’,) = pij /N 2 iy |>. We
define a map gg,:{0,1,...,2" =1} — {0, 1, L2 —
1} that maps a number to another whose numbers
on bit positions B and y of the binary represen-

Wy = (A80)
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tation are swapped, e.g., gg,(({1---ig---iy - ip)2) =
(iy---iy---ig---iy)2. Since the initial position states of the
particles are all |0), the symmetry of the state |W/") is com-
pletely determined by its multiparticle coin state. Then the
invariance of the state with respect to exchanging the Sth and
yth particles is equivalent to ), af//)li’) => ag;”)|g,3,y(i’)),
ie,al) = ag;.)y(i,) and thus p;j = pg, (), for all i’ We de-
fine another map hg,, : {0, 1,...,2" -1} — {0,2,...,2" —
2}, such that hg , (i") = 2| gp., (i')/2]. Then hg ., (i) is the row
subscript of the upper-left corner of the submatrix that the
matrix element p;; is mapped to by exchanging particles
and y. We will omit the subscripts 8 and y in gg,, and hg ,
for simplicity in the following proof.

Lemma 1. 1f a swap in the binary form of i’ occurs between
two of the first n — 1 bits where the corresponding bits in j are
both 0 or 1, then c(i, j) and d (i, j) are unchanged for all /', i.e.,
c(h(i'), j) = c(, j), d(h("), j) = d(i, )).

Lemma 2. 1f a swap in the binary form of i’ occurs between
two of the first n — 1 bits where the corresponding bits in j are
1 and 0, respectively, there always exists an i such that both
c(i, j) and d(i, j) are changed, i.e., c(h(7'), j) # c(i, j) and
d(h(i'), j) #d(, J).

Lemma 3. When a swap occurs between two of the first
n — 1 particles, the state is unchanged if and only if the parti-
cles corresponding to the bit positions where the bits in j are
both 0 or 1 are swapped, as in the way described in Lemma 1.

Proof. The sufficiency is evident. The following is the
proof of necessity. If one does not perform the swap as de-
scribed in Lemma 1, but performs a swap as described in
Lemma 2 that the two particles to be swapped correspond
to the bit positions where the bits in j are 0 and 1, respec-
tively, there exists an ¢/, such that c(h(7'), j) = c(i, j) =1
and d(h(i"), j) =d(i, j) £ 2, so the element pgy ; in the
submatrix Py ; = (—1)t-Nz43@D that p; . is mapped
to would be different from p; ;. Specifically, if i’ is equal to
j on the two bit positions to be swapped, respectively, then
ch(@), j)=-c(, j)—1 and d(h(i), j) =d(, j)+ 2, and if
i’ is different from j on both of the two bit positions to
be swapped, then c(h(i’), j) = c(i, j) + 1 and d(h(), j) =
d(, j)—2. As d(h(i), j) > 0, all of the elements in matrix
Z4"J) are greater than or equal to zero. So p; j and pyr) j
would be at least different in sign due to the change of c(i, j)
into c(h(i’), j) in these situations, except for those i"’s such
that py ; = 0. But it can be proven that p,() ; must be nonzero
if pry =0. To conclude, if jg # j,, | < B,y <n—1, 37
such that pyy # pg, @), S0 the state is changed. ]

Lemma 4. When swapping the particle corresponding to
the last bit with the one corresponding to one of the first
n — 1 bits, the state is unchanged if and only if the particle
corresponding to the last bit is swapped with the particle
corresponding to the bit position where the corresponding bit
in jis 0.

Proof of sufficiency. If the particle corresponding to the last
bit is swapped with the particle corresponding to one of the
first n — 1 bit positions where the corresponding bit in j is
0, i.e., we swap the Bth and yth particles such that § = n,
1<y <n-—1,j, =0, we will show that the coefficients of
all of the bases remain unchanged after the swap, i.e., af/ )=
("

Aey (@)

As j, =0, c(h(i), j)=c(i, j) holds true for all i’ €
{0,1,...,2" — 1}. For each i’ with i}s =i =0, if i;, is 0,
the swap does not change i’; i.e., the corresponding basis is
unchanged. But if i;/ is 1, d(h(i"), j) =d(, j) — 1, and the
corresponding submatrix where pg), j» locates is

. o
Ph(i/),j — (_1)6(1,1)Zd(t,1)

= (=1)0) [F d@ =2

Fd(, j) - 1)}
FdG, j)—1) ’

F(d(, j))
(A81)

while the original submatrix P;; where the matrix element p; j»
locates is given by

FG, j)—1  FdG ))
Fd(@,j)  FdGpH+1D

We can see that the first row of P;; where p;; locates is
identical to the second row of Py j where pyir y locates, so
if we modify a basis where the last bit is i/, = 0, it is mapped
to another basis in which the coefficient is the same as that in
the original basis, i.e., pi j = pga),j for all i’ with ij, = 0.

For each i’ with i/, = 1, the basis is unchanged if the bit
/

i, which is swapped with 7, is 1. If the bit i, is 0, then
d(h(i), j)=d(, j)+ 1,

Py = (- 1)c<i,j>[ } (A82)

Fd(, j))
Fd@, j)+1) F@@, j)+2)

(A83)

Pan,j = (_l)c(,-,,)[ F(d(. j)+ 1)}

The second row of P;; is the same as the first row of Py j,
hence Pij. = DPgi),j'-

Proof of necessity. If the particle corresponding to the
last bit is swapped with the particle corresponding to one
of the first n — 1 bit positions where the corresponding bit
in j is 1, i.e., swapping the Bth and yth particles such
that B=n, 1 <y <n-—1, j, =1, there always exists i’
such that c(h(i"), j) = c(i, j) — 1 and d(h(7), j) = d(, j) +
1 when i), = 0 and i;, = 1, or reversely c(h(i’), j) = c(i, j) +
land d(h(i"), j) = d(i, j) — 1 when i, = 1 and i;, = 0. So the
corresponding py; and pgy j are at least different in sign
due to the change of c(i, j) into c(h(i’), j) after the swap,
except for those i"’s such that p; ;= 0, similar to the situation
discussed in the proof of Lemma 3. By comparing the first
row of P;; with the second row of P,y ; when i, = 0, i;, =1
and comparing the second row of P;; with the first row of
Pyiy,; when i), = 1,i/, = 0, we can also prove that p;; and
Dg(i,j cannot be simultaneously 0. Thus the state is changed
if the particle corresponding to the last bit position is swapped
with the particle corresponding to the bit position where the
corresponding bit in j is 1. |

Based on Lemmas 1-4, we are led to the following theo-
rem.

Theorem 2. Given an initial state | W), the state is un-
changed if and only if the swap happens among some of
the first n — 1 particles where the corresponding bits in j =
2|j’'/2] are all 1 or 0, or between the last particle and one of
the first n — 1 particles where the corresponding bit in j is O.

So we can group the particles whose corresponding bits
in j are 1 into a set and the other particles into another.
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Then we connect each pair of particles with an undirected
edge if the state is unchanged after they are swapped. Each
of the two subsets (when j # 0) of particles makes up a
complete graph. If we denote ny and n| as the number of
I’s and O’s in the binary form of j, respectively (j is even),
the number of possible ways to exchange two particles pre-
serving an eigenstate is p; = M + M, ny+n, =
n, and the two disconnected complete subgraphs have ny

J

and ny vertices, respectively. We can rewrite this using the
Hamming weight, pj= W(J)(Vg(_/)—l) + (W—W(]))(;—W(./)—]) —
W(j)* =nW(j) +C.som; = (1 = 1/¥27[8(C; = pj)/n +
(n — 1)v/2]. When j = 0, all the bits in j are 0, so there is only
one complete graph and all of the particles are vertices of this
graph. As the evolution operator U, is symmetric with respect
to particles, the symmetry of the state is preserved during the
evolution.

7. Entanglement between complete graphs

Since the particles in each of the two complete graphs possess exchange symmetry, for simplicity, the eigenstates can be
represented by the superpositions of direct products of bosonic Fock states. When k is an even number, the kth eigenstate is

) =C Y
0w <KW (k)
0<wo<n—W (k)
X | Lug On—w ky—wo) @ 11w, Owy—w, )

W(k)—1
:C[u +/2) 5

Zﬁ 0<wy<n—W (k)

(=D"'FW (k) — wy + wo — 1)\/

(1+ ﬁ)wo\/

(n —W(k))! W (k)!
wo!(n — W(k) — wo)!'\ wi!(W(k) — wy)!

(n — W(k))!
wol(n — W (k) — wyp)

\ | lwg On—W(k)—wo)

W (k)!

® Y (—1)"“(1+x/§)_"’l\/mllwlow<k>—wl>

0w <W (k)

(1 - v2)"®!
2V2 2

0wo<n—W (k)

(1 _ﬁ)wo\/

(n — W(k))!
wo!(n — W (k) — wo)

| | 1w00n7W(k)7w0 )

0w W (k)

W (k)!
® Z (=DH" (1 - ﬁ)wl\/mumowm—wl)},

(A84)

where {|1y,0n—w k)=, |10 < wo < n— W(k)} and {|1,, 0w k)—w, ) |0 < wy < W (k)} are two sets of orthonormal vectors. C is the

normalization factor.

We denote
ol w (n — W(k))!
= (1 +\/§) 0 |1 On— - ), (ASS)
|¢A> 0<wo<2n—vv(k) \/wol(n —W (k) — wg)! | MW RTm
_ W (k)!
~1 w »
o= (=" A+ VD)™ [ o Ow - ) (AB6)
i B> Oéwé:W(k) wﬂ(W(k) — wl)! wi VW (k)—w,
0> " (n — W (k))!
Oy = 1- \/E) 0 1,0, o A8
| A> 0<wo§;W(k) \/w()!(n — W(k) — wp)! 0 W (k)—wq
7 - W (k)!
: w w
- D= V2 s T O, (A88)
}f/’s) nggw(k) W (WE) —wp! ™ W (k)—w,
and normalize them using the following equations:
3 L V2PCE, = (G4 2V2) 0, (A89)
0<wo<n—W (k)
S Ay, = 2 o

0w W (k)
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We remove the tilde notations for the normalized vectors, and the eigenstate turns into

W (k)—1
[7¢) = C[% /(4 + zﬁ)an(k)|(p}‘) R+ (4 — 2\/§)W(k)|¢11;>
W(k) 1
U=V ) V@ =272V 0[pR) @ /(4 + 2v2)V 0 } (A91)

The density matrix of part A is

pa = pr =trg(|ne) ()

1 4 /2)2W=1)
= leifealer T — f; (4422 O -2V

(1 — J/2)2Wk)=1)
+lepglcn YT

where (@A173) = Y o<y <nwio(— D™ Crly @ = 0and C* = 2737(V2 = 1212 + v2)" + 42 — V217
Finally, we obtain

pr = pa =|oleh|l1 + 3 = 2v2)" (17 + 12V2)17" + |@2){@3 |11 + B + 2v/2)" /(17 + 123/2)] !

(4 =242y "0 4 2/2)V 0, (A92)

(A93)
=leAdealll + 3 = 2v2Y 217" + [gi)fer|ll + G +2v2y 17"
So the von Neumann entropy is given by

S(py) =—>_ vilogv;, (A94)

i=1,2

in which v; = [1 4+ 3 =2v2)Y" 21", v, = [1 4+ 3 +2v/2)" 27 L.

Similarly, for the (k + 1)th eigenstate (k is even),
w (n — W(k))! W (k)!
sy =C Y (=D ‘F(W(k)—wl-f‘wo)\/ WG ,\/ T ,

() wo!l(n — W(k) — wo)!'{ wi!(W(k) — wp)! (A95)

0<wo<n—W (k)
X L 0w k) =wo) @ 1o, Ow ()=, ) »
where C? = {§((4 — 2v/2)" + 2"(2 + +/2)")}!. The density matrix of part A is

0a = P4 = trg(IMes1) (Mis11)
2W (k)
= [eal{ea |C2%(4 + 22y 0@ — 22V ®

" lﬁ)(@ilﬁﬂ

(4 —2v2)" V04 4 2¢/2)V 0
= |eAle |1 + 3 —2v2)"17" + |@2)e3 |11 + B +2v2)" 7. (A96)

Soin Eq. (A94), v; = [1 + (3 —2v2)" 1" v = [1 4+ 3 +2v2)"]"!
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