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Impact of an imperfect sampling device on the security of a continuous-variable source-independent
quantum random-number generator with a phase-randomized local oscillator
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Continuous-variable source-independent quantum random-number generators (CV-SI-QRNGs) generate high-
speed secure random numbers without any assumptions about source. Recently, Smith et al. [Phys. Rev. A 99,
062326 (2019)] proposed a CV-SI-QRNG with phase-randomized local oscillator (LO) protocol, which does
not require additional active optical components, thus reducing the complexity of the CV-SI-QRNG setup and
attracting widespread attention. However, the trusted but imperfect sampling device used in CV-SI-QRNG has
not yet been fully investigated, which will lead to performance degradation and security problems. In this work,
we investigate the influence of imperfect sampling devices on the CV-SI-QRNG with phase-randomized LO,
including the finite-sampling bandwidth, finite-sampling precision, and finite-size effect. Simulation results show
that practical imperfections in the sampling device will affect the estimation of lower bound on the conditional
min-entropy and reduce the extractable randomness. To improve the performance of CV-SI-QRNG and prevent
such information leakages, we also provide some corresponding countermeasures. Our work highlights the
influences of imperfect sampling devices on the performance and security of practical CV-SI-QRNG systems,
which helps to improve their robustness and practicality.
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I. INTRODUCTION

Random numbers are considered an important resource in
various tasks, especially in the field of quantum communi-
cation [1–8]. Quantum random-number generators (QRNGs)
based on the uncertainty principle of quantum mechanics can
generate unpredictable and secure random numbers [9,10],
which have attracted lots of attention and many of them are
proposed based on various sources [11–21]. According to the
randomness reliability levels, QRNGs can be classified into
three categories, i.e., practical QRNGs, device-independent
(DI) QRNGs, and semi-device-independent (SDI) QRNGs.
Practical QRNGs completely trust their well-characterized
devices and typically have a fast generation speed [13,18,19].
DI-QRNGs have no assumptions about the source of random-
ness or the measurement device [22–24], whose security relies
on the violation of a Bell inequality. However, the stringent
device requirements in DI-QRNGs are highly challenging and
limit the randomness generation speed, which can hardly meet
actual demands. SDI-QRNGs achieve a tradeoff between the
randomness generation speed and the randomness reliabil-
ity that exists in practice [25–41], which generated random
numbers with certain assumptions of device implementa-
tions. Several SDI-QRNG protocols have been proposed, such
as measurement-device-independent (MDI) QRNGs [27,28]
and source-independent (SI) QRNGs [29–39]. In particular,
SI-QRNGs can generate secure random numbers with well-
characterized measurements but an untrusted randomness
source, while the randomness source is usually a complicated
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physical system. Therefore, SI-QRNGs have gained public
concern.

SI-QRNGs exploiting discrete-variable methods and
continuous-variable (CV) methods have been proposed and
experimentally demonstrated, respectively. Differing from
discrete-variable SI-QRNGs [35–39], CV-SI-QRNGs have
been demonstrated to achieve faster random number gener-
ation speed up to Gbps [29–34]. To guarantee the security
of the generated random numbers immune to an untrusted
source, CV-SI-QRNGs use optical homodyne detection or
heterodyne detection to measure alternately and randomly two
quadrature observables of an input untrusted quantum state,
where the quadrature is selected by the phase of a continuous-
wave laser, the so-called local oscillator (LO). However, most
homodyne-based and heterodyne-based CV-SI-QRNG pro-
tocols require the addition of a phase modulator to change
the phase of the LO emitted by the continuous-wave laser
[29–32,34], especially the homodyne-based CV-SI-QRNG
protocols require external initial randomness, which increases
the complexity of the CV-SI-QRNG setup and may lead to
new security problems. Fortunately, taking advantage of the
fact that the gain-switched laser emits each pulse with a
random phase, Smith et al. proposed a new CV-SI-QRNG
scheme without a phase modulator, where a gain-switched
laser is used as LO instead of a continuous-wave laser [33],
thus reducing the complexity of the CV-SI-QRNG setup and
attracting a lot of attention.

Although the CV-SI-QRNG protocol removes all source
assumptions, the measurement and sampling devices must
be well characterized. In practice, there are inevitably im-
perfections in measurement and sampling devices that make
it difficult to characterize them accurately. Concentrating on
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CV-SI-QRNGs, the impacts of different imperfect factors on
the security of CV-SI-QRNGs have been studied, such as
LO fluctuation, imperfect beam splitter (BS), imperfect phase
modulator, and finite-size effect [42–44]. Nevertheless, there
is still a lack of study on the effects of imperfect sampling
devices on the practical security of CV-SI-QRNG. In the
CV-SI-QRNG with phase-randomized LO, the output mea-
surements of homodyne detector are sampled by the sampling
device, i.e., analog-to-digital converter (ADC). Ideally, the
sampling bandwidth, sampling range, and sampling resolution
of the ADC are infinite, but the opposite is true in practice. The
finite-sampling bandwidth effect may cause the maximum
sampled value of the output signal to deviate from the peak
value, which would influence the evaluation of lower bound
of the extractable randomness and the performance of CV-
SI-QRNG. In addition, finite-sampling range and sampling
resolution determine that the sampling precision of ADC is
also finite. The finite-sampling precision leads to a partial loss
of information of the output continuous signal, which may
also affect the evaluation of lower bound of the extractable
randomness. To guarantee the security of CV-SI-QRNG, the
precise estimation of parameters associated with the lower
bound of the extractable randomness requires an infinite data
size. However, the data size in practice is finite, which in-
evitably results in statistical fluctuations of the estimated
parameters [45–51], and thus overestimating or underestimat-
ing the lower bound of the extractable randomness. Therefore,
the impact of finite-size effect on the practical security of
CV-SI-QRNG should be studied.

In this paper, we investigate the influences of imperfect
sampling devices and finite-size effect on the practical secu-
rity of the CV-SI-QRNG with phase-randomized LO. More-
over, we also give the corresponding solutions to eliminate
these influences and improve the performance of CV-SI-
QRNG. This paper is organized as follows. In Sec. II, we
describe and model the CV-SI-QRNG with phase-randomized
LO. Then, the impacts of finite-sampling bandwidth effect
on the evaluation of available randomness are investigated in
Sec. III. Considering the finite-sampling precision effect, the
influences of different sampling precisions on the evaluation
of available randomness are studied in Sec. IV. In Sec. V,
we analyze the influences of finite-size effect on the practical
security of CV-SI-QRNG with phase-randomized LO. Finally,
the conclusion is drawn in Sec. VI.

II. CV-SI-QRNG WITH PHASE-RANDOMIZED LO

In the CV-SI-QRNG with phase-randomized LO, the
source is an untrusted party that can be arbitrary and con-
trolled by an adversarial party (Eve), and the user (Alice)
trusts the measurement devices. Unlike other CV-SI-QRNGs
with continuous-wave lasers, the LO is generated by a
gain-switched laser. Due to the phase diffusion process in
gain-switched lasers, the LO is phase randomized, which al-
lows CV-SI-QRNG to randomly measure quadratures of the
input field without requiring a phase modulator and an initial
random number to drive it. By estimating the lower bound
for min-entropy conditioned on the quantum side information,
secure random numbers can be extracted from the original
data using the randomness extraction method.

FIG. 1. (a) A schematic of the phase-randomized CV-SI-QRNG
setup. The LO is pulsed and gain switched. LO: local oscilla-
tor; PG: pattern generator; VOA: variable optical attenuator; PM:
power meter; BS: beam splitter; PD: photodiode; ADC: analog-
to-digital converter. (b) Physical model of the phase-randomized
CV-SI-QRNG.

Figure 1(a) shows the schematic of phase-randomized
CV-SI-QRNG setup. The laser is driven above threshold by
applying an ac voltage from a pattern generator (PG). It op-
erates in gain-switching mode to produce phase-randomized
LO, where the connected VOA can adjust the power level
of LO. Then, the attenuated LO is split by a 99:1 BS.
The 1% output is connected to a power meter to monitor the
LO power. The 99% output is split by a 50:50 BS, and the
other input of the 50% BS is completely open and controlled
by Eve. The signal beam and LO beam are mixed at 50:50
BS, which is detected and amplified by a balanced homo-
dyne detector. An ADC samples the subtracted photocurrent
signal of the homodyne detector. The finite-sampling range
[−N + δADC/2, N − 3δADC/2] and finite-sampling resolution
n lead to the finite-sampling precision δADC = N/2n−1.

As shown in Fig. 1(b), a physical model of the phase-
randomized CV-SI-QRNG is illustrated by describing optical
modes with annihilation and production operators. Notably,
for simplicity, the mentioned LO does not include the part
measured by the power meter but only denotes the part that in-
terferes with the input state in the following analysis. The LO
power incident on PD can be calculated from the power meter
measurements in the real experiment. The signal and LO are
described by the mode operators âs and âl , respectively. In our
physical model, the splitting ratio of the BS may deviate from
the ideal value by �. The interference of the signal beam âs

and LO beam âl can be described as follows:

[
l̂1
l̂2

]
=

⎡
⎣
√

1
2 − �

√
1
2 + �√

1
2 + � −

√
1
2 − �

⎤
⎦[

âs

âl

]
. (1)

The nonideal efficiencies of photodiodes (PDs) with quantum
efficiencies η1 and η2 are modeled by a virtual BS with a
transmission coefficient equal to the quantum efficiency of the
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real PD followed by an ideal PD. As a result, the modes that
are detected by PD1 and PD2 are given by

l̂3 = √
η1

(√
1

2
− �âl +

√
1

2
+ �âs

)
+

√
1 − η1v̂1, (2)
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2
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√
1

2
+ �âl

)
+

√
1 − η2v̂2. (3)

The PD converts the photons into photoelectrons, and the
subtracted photoelectrons number per LO pulse N̂r can be
given by

N̂r = l̂†
3 l̂3 − l̂†

4 l̂4 = (η1 + η2)
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2 âl + â†
l v̂2), (4)

where small terms have been neglected due to the photon flux
per LO pulse in the range of 108 ∼ 109. Treating the strong
LO beam as a classical field, we obtain âl = |β|eiθi , where |β|
represents the amplitude of LO, |β|2 is the photon flux, and θi

is the phase of LO beam. For convenience, we assume the BS
and homodyne detector are in the ideal case with � = 0 and
η1 = η2 = 1, Eq. (4) can be rewritten as

N̂r = l̂†
3 l̂3 − l̂†

4 l̂4 = â†
s âl + â†

l âs

= |β|(â†
s eiθi + âse

−iθi ) = |β|X̂θi , (5)

where X̂θi is the quadrature. The homodyne detector only
needs to acquire the peak point for each detected signal pulse.
After amplification by an amplifier with gain G, the peak value
of the output voltage at the homodyne detector Up is given by

Up = G|β|X̂θi , (6)

and the quadrature of the signal field is linearly proportional
to the peak value of the output voltage. The variance of the
measured quantum noise can be expressed as

σ 2
QS = G2|β|2〈�2X̂θi〉, (7)

where the variance 〈�2X̂θi〉 = 〈�2X̂Q〉 + 〈�2X̂QN 〉 represents
the initial variance of the quadrature of the measured quantum
noise composed of two independent signals of vacuum fluctu-
ation X̂Q and quantum side information X̂QN . When the input
quantum state is a pure vacuum state, with 〈�2X̂Q〉 = 1

2 , the
variance of the measured vacuum fluctuation is

σ 2
Q = 1

2 G2|β|2. (8)

Hence, the variance σ 2
Q has linearity dependence with the

photon number per LO pulse |β|2 with the slope 1/2G2. In
the practical experiment, the power meter monitors the LO
power. The relationship between the optical power PLO of LO

and the photon number Ni is given by

PLO = hv

t0
Ni, (9)

where h is the Planck constant, v is the optical wavelength,
and t0 is the duration of LO pulse. Based on Eqs. (8) and
(9), the variance σ 2

Q is also linear with the optical power PLO.
Due to the imperfections of the practical devices, the classical
noise with variance σ 2

E , such as electronic noise and thermal
noise, will be introduced in the measurement results. The
total variance of measured signal in the input vacuum state
has a linear relationship with the optical power and can be
expressed as

σ 2
t = σ 2

Q + σ 2
E = agPLO + c, (10)

where ag = G2t0/2hv and c = σ 2
E are two constant

parameters.
For the CV-SI-QRNG with phase-randomized LO, the

finite precision of the ADC leads to discretization of the
measurements with the precision of δ. The discretized version
of the positive-operator-valued measure (POVM) element is
given by Q̂ j

δ = ∫
I j
δ

dq|q〉〈q|, where the I j
δ are the half-open

intervals I j
δ = ( j − δ

2 , j + δ
2 ] with the bin index j. Specifi-

cally, Alice performs the coarse-gained quadrature operator
Q̂δ on the input quantum state ρA, storing the discretized
measurement outcomes qj with a certain probability p(q j ) =
Tr[ρAQ̂j

δ] in a classical register Qδ . If the input state is a
trusted vacuum state, ρA = |0〉〈0|, the extractable randomness
per measurement is given by the min-entropy Hmin(Qδ )|0〉. In
the presence of source controlled by an eavesdropper, the in-
put state may be correlated with the state of a malicious party
Eve (E) and is mixed, ρA = TrE[ρAE]. The maximal number
of extractable randomness is given by the conditional min-
entropy Hmin(Qδ|E ). It has been demonstrated that Eve’s best
attack is to input the vacuum state with phase-randomized LO
[33], i.e., Hmin(Qδ|E ) � Hmin(Qδ )|0〉. Assuming the variance
of vacuum state is σ 2

|0〉 = 1
2 , the lower bound of Hmin(Qδ|E )

satisfies with [33]

Hmin(Qδ|E ) � Hmin(Qδ )|0〉 = − log2 erf

(
δ

2

)
, (11)

where δ denotes the measurement precision in vacuum units.
Therefore, to bound of Hmin(Qδ|E ), the precision δ should be
accurately estimated, which can be evaluated from the vari-
ance of measured vacuum fluctuation and sampling precision
of ADC δADC. Exploiting the linear relationship between the
variance of measured vacuum fluctuation and the LO power
on the homodyne detection, the variance σ 2

Q can be calculated
if one knows the LO power PLO. As a result, a calibration
procedure is performed before running the experiment of CV-
SI-QRNG with phase-randomized LO. First, the signal and
LO ports are both blocked, and the variance of classical noise
is recorded. Then, only the signal port is blocked to provide
a reference vacuum state input and the variances of the mea-
sured signal at different LO powers PLO are measured to fit
a calibration line. The intercept of the calibration line corre-
sponds to the contribution of the classical noise to the overall
variance, whereas the gradient ag can be used to estimate the
variance of vacuum fluctuation. In the process of generating
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random numbers, the LO power PLO can be calculated from
power meter measurements and the corresponding variance of
vacuum fluctuation can be obtained with agPLO. In this case,
the corresponding measurement precision in vacuum units is
expressed as [33]

δ = δADC√
2agPLO

. (12)

Therefore, the lower bound of the extractable randomness can
be evaluated with Eqs. (11) and (12). To accurately evaluate
the conditional min-entropy Hmin(Qδ|E ), it is of importance to
obtain the real power of LO and calibrate the real linear rela-
tionship between the variance of measured vacuum fluctuation
and the LO power. However, the imperfect sampling device
may influence the fitted calibration line, resulting in the linear
relationship that deviates from the real value, which affects
the evaluation of the conditional min-entropy Hmin(Qδ|E ). In
the following, we will analyze the impacts of finite-sampling
bandwidth, finite-sampling precision, and finite-size effect on
the performances and security of CV-SI-QRNG with phase-
randomized LO.

III. IMPACTS OF FINITE-SAMPLING BANDWIDTH

In the CV-SI-QRNG system, the analog output of the
homodyne detector is sampled by an ADC with sampling
frequency fsamp. Theoretically, it is usually assumed that
the sampling device ADC is perfect with infinite-sampling
bandwidth, i.e., the ADC can accurately sample the peak
value of the output pulse. However, the sampling band-
width of commercial ADC is finite, which may affect
the acquisition of peak values and the performance of
CV-SI-QRNG.

Generally, to ensure the peak values of all pulses are ac-
curately sampled, the ADC usually oversample the electric
pulses of homodyne detector [52–54], that is to say, ADC
samples a large number of data points in each pulse period, as
shown in Fig. 2. The time interval between sampling points
is ts = 1/ fsamp. The clock of the pattern generator used to
drive the laser is accurately synchronized with the sampling
clock of the ADC for high relative stability. Once the maximal
sampled point is determined, the resulting oversampled data
are subsampled according to the determined point, taking
one point for every laser pulse. For a practical homodyne
detector, it is necessary to sample each pulse and integrate
them together if the pulse duration of the incident light is
longer than the response time of detection device, where the
quadrature value of input optical field is proportional to the
area under each output electric pulse [52]. In order to reduce
the system complexity and challenges for data processing,
one may assume that the pulse duration of the optical pulse
is much smaller than the response time of detection device.
Notably, to guarantee the preferable detection response, the
bandwidth of the available homodyne detector is much higher
than the laser repetition rate in the practical QRNG systems
[33]. In this case, the homodyne detector can be assumed to
operate in the linear region, and the quadrature value of the
input optical field is linearly proportional to the peak value of
the homodyne detector [53].

FIG. 2. The sampling process of the output signal pulse from the
homodyne detector in time domain. Red circles denote the sampled
points. ts: sampling period; t0: pulse period: w0: pulse width; Up: peak
value; Um: maximal measured value.

Without loss of the generality, the shape of output pulse
signal of homodyne detector is assumed to be Gaussian with
the following shape function [55,56]:

r(t ) = Upe− (t−μ)2

2σ2 , (13)

where Up is the peak value, μ and σ 2 denote the mean value
and variance of the Gaussian pulse, respectively. For sim-
plicity, we choose the mean value μ = w0/2 and variance
σ 2 = (w0/8)2, where w0 is the pulse width. The relationship
between the pulse width w0 and pulse period t0 = 1/ frep can
be given by Rduty = w0/t0, where Rduty denotes the duty cycle
of pulse and frep is the repetition rate of laser pulse. In the
following analysis, the value of Rduty is assumed to be 50%.
However, for an ADC with finite-sampling bandwidth, the
maximal measured value will inevitably deviate from the peak
value, as shown in Fig. 2. Moreover, the clock jitter also
prevents accurate sampling to the maximum value. In this
case, the difference between the maximal measured value Um

and peak value Up can be expressed as

�U = Up − Um = Up(1 − e
− (�t )2

w2
0/32 ), (14)

with �t ∈ [−ts/2, ts/2]. Based on Eq. (14), the sampling error
reaches the maximal value when �t = −ts/2(ts/2) and can be
denoted as

�U = Up(1 − e
− 32 f 2

rep

f 2
samp ). (15)

In order to highlight the effect of finite-sampling bandwidth,
the difference between Um and Up is taken to the maximum
value at each sampling bandwidth in the following analysis.
Thus, the ratio between the measured value Um and peak value
Up can be given by

k = Um

Up
∈

[
exp

(
−32 f 2

rep

f 2
samp

)
, 1

]
. (16)
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FIG. 3. The ration k between the measured value Um and peak
value Up as a function of the sampling bandwidth fsamp at different
repetition rates frep.

The value of k depends on both the sampling bandwidth fsamp

and the repetition rate frep. The larger the ratio of sampling
bandwidth to repetition rate, the closer the value of k is to
1, i.e., the smaller the sampling error. Figure 3 shows the
effect of sampling bandwidth on the value of k at different
repetition rates. At a fixed repetition rate frep, k increases
with the sampling bandwidth fsamp. Compared to different
repetition rates, the high-speed CV-SI-QRNG system is more
sensitive to the finite-sampling bandwidth.

In the phase-randomized CV-SI-QRNG system, it is es-
sential to perform a calibration procedure to obtain the linear
relationship between the LO power and variance of measured
vacuum fluctuation. Actually, the measurement results of ho-
modyne detector can be divided into two parts, the maximal
measured value and the classical noise. The maximal mea-
sured value Um could be deemed as Um = kUp, while the
classical noise would not be changed. Based on Eqs. (6), (8),
and (16), the total variance of measured signal in the input
vacuum state can be given by

σ 2
t = k2σ 2

Q + σ 2
E = 1

2 k2G2|β|2 + σ 2
E , (17)

and the lower bound of Hmin(Qδ|E ) can be rewritten as

Hmin(Qδ|E ) = − log2 erf

⎛
⎜⎝ δADC

2Gβ exp
( − 32f2

rep

f2
samp

)
⎞
⎟⎠. (18)

As shown in Eq. (17), the total variance σ 2
t is affected

by the value of k associated with the sampling bandwidth.
Because the measured value Um deviates from the peak value
Up, the real linear relationship will be changed compared to
the ideal case, and thus the gradient of the calibration line
will be affected. According to Eqs. (11) and (12), the lower
bound of Hmin(Qδ|E ) is determined by the measurement pre-
cision in vacuum units, which is related to the gradient of the
calibration line. Hence, the calculated extractable randomness
Hmin(Qδ|E ) changes with the value of gradient.

FIG. 4. Calibration linear relationship between the variance of
the homodyne detection measurements and the LO power under
different sampling bandwidths. The system repetition rate is set as
frep = 50 MHz.

In addition, the sampling clock of the sampling device
is one of the important factors to determine the accuracy
of the pulse peak value. However, the imperfect sampling
clock with clock jitter would cause the maximum measured
value to deviate from the peak value, similar to the finite-
sampling bandwidth effect. Due to the presence of clock jitter
�t j , the sampling time of the peak value will deviate from
�t j , so that the actual maximum measured value becomes
Um = r(t ± �t j ). In this case, the sampling error can be
expressed as

�U = Up − Um = Up(1 − e
− (�t j )2

w2
0/32 ). (19)

Therefore, the sampling error due to the finite-sampling band-
width effect can also be seen as an effect of clock jitter. The
analytical methods and theoretical models for the impact of
finite-sampling bandwidth on the calculated condition min-
entropy are also applicable to clock jitter.

To demonstrate the influence of the finite-sampling
bandwidth effect on the CV-SI-QRNG, we perform some
numerical simulations. Without loss of generality, the cen-
ter wavelength of LO is assumed to be 1550 nm, and
the other parameters used for simulations are set as h =
6.626 × 10−34, v = 193.5 THz, G = √

2 × 10−7 V/A, σ 2
E =

0.5, N = 10, and n = 8. Figure 4 shows the calibration
linear relationship between the variance of the homodyne
detection measurements and the LO power under differ-
ent sampling bandwidths, in which the LO is pulsed at
50 MHz with a duty cycle of 50%. We find that the
gradient of calibration line is strongly affected by the finite-
sampling bandwidth effect and decreases with the sampling
bandwidth.

Then we further simulate the influence of finite-sampling
bandwidth on the calculated extractable randomness. Fig-
ure 5(a) shows the simulation results for the calculated
extractable randomness Hmin(Qδ|E ) as a function of sampling
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FIG. 5. The extractable randomness of CV-SI-QRNG with finite-
sampling bandwidth effects. The photon number |β|2 is set as 5 ×
108. (a) Simulation results for the calculated extractable randomness
Hmin(Qδ|E ) as a function of sampling bandwidth fsamp. The system
repetition rate is set as frep = 50 MHz. (b) Simulation results for the
secure generation rate R(Qδ|E ) as a function of system repetition rate
frep at different sampling bandwidths.

bandwidth fsamp. The red dotted line represents the results
Hmin(Qδ|E ) under finite-sampling bandwidth effect, while the
black solid line is the ideal result under infinite-sampling
bandwidth. As shown in Fig. 5(a), the calculated Hmin(Qδ|E )
increases with the sampling bandwidth. Compared with the
ideal case, the calculated Hmin(Qδ|E ) considering the finite-
sampling bandwidth has a very slight deviation even with a
sampling bandwidth of ADC up to 1000 GHz. In the practi-
cal experiment, although the finite-sampling bandwidth effect
does not cause the calculated Hmin(Qδ|E ) to be overesti-
mated affecting the security of generated random numbers, it
would reduce the amount of extractable randomness from the
raw data, which degrades the performance of CV-SI-QRNG.
Furthermore, based on Eq. (11), the secure generation rate

R(Qδ|E ) can be given by

R(Qδ|E ) = Hmin(Qδ|E ) frep. (20)

The relationships between the secure generation rate R(Qδ|E )
and system repetition rate frep under different sampling band-
widths are shown in Fig. 5(b). The secure generation rate
of CV-SI-QRNG at different sampling bandwidths reaches
a maximal value at a certain repetition rate. The generation
rate does not always increase with the repetition rate. In other
words, when the sampling bandwidth is finite, increasing the
repetition rate is not always beneficial to improving the perfor-
mance of CV-SI-QRNG. Therefore, due to the finite-sampling
bandwidth effect, the repetition rate of laser should be selected
to a suitable value for high-speed CV-SI-QRNG system.

We have demonstrated that the finite-sampling bandwidth
influences the fitted calibration line and the evaluation of
extractable randomness. To eliminate the finite-sampling
bandwidth effect and improve the performance of CV-SI-
QRNG, some countermeasures can be taken with reference to
the countermeasures in continuous-variable quantum key dis-
tribution [55,57,58]. In the phase-randomized CV-SI-QRNG,
the variance of measured vacuum fluctuation can be estimated
from the LO power measured by a power meter. Although the
shift of the pulse signal does not change the measured LO
power, it still affects the measurement results of the variance,
which results in a mismatch between the measured variance
and the corresponding LO power. One method is to replace
the power meter with a positive intrinsic-negative (PIN) de-
tector and connect another ADC that is identical to the ADC
at the end of the homodyne detector. The same electronic
circuits trigger these two ADCs. In this case, the measured
LO power and variance of measured signal are also matched,
even if the shift of the pulse signal in the time domain causes
a deviation in the measured values of the two ADCs. An-
other approach is to find out the peak value of the output
voltage from homodyne detector using postprocessing meth-
ods, such as the peak-valley seeking combined with Gaussian
postselection method [58], and the dynamic delay adjusting
module combined with a statistical power feedback-control
algorithm [57].

IV. IMPACTS OF FINITE-SAMPLING PRECISION

In the practical phase-randomized CV-SI-QRNG, the
homodyne measurement is coarse grained with imperfect
characteristics, which may influence the calculation of mea-
sured signal variance, compromising the security of extracted
random numbers. The output pulse signal of homodyne
detector is sampled by an ADC, which must be imper-
fect with finite-sampling range [−N + δADC, N − 3δADC/2]
and sampling resolution n, leading to finite-sampling preci-
sion δADC = N/2n−1. Without considering the finite-sampling
bandwidth effect, we assume that the peak value of output
pulse can be perfectly measured. The peak value is a con-
tinuous variable, denoted as a, following probability density
distribution p(a). Then, the ADC digitizes the continuous data
a into ai over 2n bins following probability distribution p(ai ).
Thereby, the interval between every adjacent digitized results
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ai is δADC and the digitized results ai can be expressed as

ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−N, a < −N + δADC
2 , i = imin

−N + (2n−1 + i)δADC, −N + (2n+2i−1)δADC
2 � a

−N + (2n+2i+1)δADC
2 ,

imin < i < imax

N − δADC, a � N − 3δADC
2 , i = imax

(21)

where i ∈ {−2n−1, . . . , 2n−1 − 1}. The same digitized result
ai represents many continuous outputs a, as long as a is in
the corresponding digitized interval. Consequently, during the
sampling process of the ADC, partial information about the
continuous variable a is lost. Based on the digitized results ai,
one may not get the proportional quadrature of the input state
correctly.

To estimate the lower bound of extractable randomness,
the calibration linear relationship between the variance of the
homodyne detection measurement and the LO power should
be obtained in the CV-SI-QRNG, where the input signal is in
vacuum state. In the ideal digitization with infinite-sampling
precision, the total variance σ 2

t of the homodyne detection
measurement can be perfectly calculated, and the ideal total
variance is equal to the result calculated in Eq. (10). However,
the ADC has finite-sampling precision. Each output a of the
homodyne detection is upper and lower bounded by its dig-
itization interval, i.e., ai − δADC/2 � a � ai + δADC/2. The
total variance σ 2

t calculated from the discrete results ai may
be overestimated or underestimated, which leaves a security
loophole. For a relatively large sampling range, the probability
that a is outside the sampling range is negligible. Considering
finite-sampling precision effect, the total variance σ 2

t has an

upper and lower bound. The upper bound σ 2
t and lower σ 2

t

bound can be expressed as

σ 2
t = pdis

(
aimin

)
(amin − ā)2 + pdis

(
aimin

)
(amax − ā)2

+
0∑

i=imin+1

pdis(ai )

(
ai − ā − 1

2
δADC

)2

+
i=imax+1∑

i=1

pdis(ai )

(
ai − ā + 1

2
δADC

)2

, (22)

σ 2
t = pdis

(
aimin

)
(amin − ā)2 + pdis

(
aimin

)
(amax − ā)2

+
0∑

i=imin+1

pdis(ai )

(
ai − ā + 1

2
δADC

)2

+
i=imax+1∑

i=1

pdis(ai )

(
ai − ā − 1

2
δADC

)2

, (23)

where pdis(ai ) denotes the probability of ai and can be cal-
culated based on the Gaussian distribution, ā is the mean
value of measurement result, amin and amax are the minimal
and maximum values of the sampling range, respectively. As
shown in Eqs. (22) and (23), the upper bound σ 2

t is estimated
from the boundary of the discrete interval farther from 0 point,
while the lower bound σ 2

t is estimated from the boundary of
the discrete interval closer from 0 point.

The finite-sampling precision of the ADC influences the
estimation of total variance σ 2

t , which further affects the

FIG. 6. Calibration linear relationship between the variance of
the homodyne detection measurements and the LO power taking
into the finite-sampling precision effect. The black solid line rep-
resents the expected ideal value of total variance σ 2

t . The red (upper)
dotted line and blue (bottom) dotted line represent the upper and
lower bounds of total variance σ 2

t , respectively. Parameters are set
as h = 6.626 × 10−34, v = 193.5 THz, G = √

2 × 10−7 V/A, σ 2
E =

0.5, frep = 50 MHz, N = 10, and n = 8.

calibration line used to estimate the variance of measured
vacuum fluctuation. Figure 6 shows the influence of finite-
sampling precision on the calibration linear relationship
between the variance of the homodyne detection measure-
ments and the LO power. The black solid line represents the
expected ideal value of total variance, and the red (upper)
dotted line and blue (bottom) dotted line represent the up-
per and lower bounds of total variance based on digitized
measurement results, respectively. It is clear that the differ-
ence between the upper and lower bounds of measured total
variance and the ideal measured total variance increases with
LO power. The gradient ag of the calibration line would be
overestimated or underestimated. According to Eqs. (11) and
(12), we obtain that an overestimation of the gradient ag would
cause the calculated extractable randomness Hmin(Qδ|E ) to
be overestimated, whereas an underestimation of the gradi-
ent ag would cause the calculated extractable randomness
Hmin(Qδ|E ) to be underestimated.

The sampling range and sampling resolution determine
the sampling precision of the ADC. If the sampling res-
olution is fixed, the sampling precision increases with the
sampling resolution. To further investigate the impacts of
sampling precision on phase-randomized CV-SI-QRNG sys-
tem, we simulate the influence of sampling resolution n
on the total variance σ 2

t and calculated extractable random-
ness Hmin(Qδ|E ). As shown in Fig. 7(a), the upper and
lower bounds of the total variance σ 2

t are closer to the ex-
pected ideal value as the increase of sampling resolution n.
It means that the influence of finite-sampling precision on
the estimated variance σ 2

t based on digitized measurement
results becomes smaller with higher sampling precision. Fig-
ure 7(b) is the simulation result for the calculated extractable
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FIG. 7. Parameters are set as h = 6.626 × 10−34,
v = 193.5 THz, G = √

2 × 10−7 V/A, σ 2
E = 0.5, frep = 50 MHz,

|β|2 = 5 × 108, and N = 10. (a) Simulation results for the variance
σ 2

t of the homodyne detection measurements based on digitized
measurement results as a function of sampling resolution n.
The black solid line represents the expected ideal value of total
variance σ 2

t . The red (upper) dotted line and blue (bottom) dotted
line represent the upper and lower bounds of total variance σ 2

t ,
respectively. (b) Simulation results for the calculated extractable
randomness Hmin(Qδ|E ) as a function of sampling resolution n. The
black solid line represents the ideal value of Hmin(Qδ|E ). The red
(upper) dotted line and blue (bottom) dotted line represent the upper
and lower bounds of Hmin(Qδ|E ), respectively.

randomness Hmin(Qδ|E ) as a function of sampling resolution
n. As the sampling precision becomes higher, the impact of
finite-sampling precision on calculated Hmin(Qδ|E ) becomes
smaller. At relatively small n, i.e., relatively low sampling
precision, the value of Hmin(Qδ|E ) would be overestimated
or underestimated. Therefore, in a real experiment system,
finite-sampling precision of the ADC not only may cause
the evaluated extractable randomness to be underestimated,

reducing the performance of CV-SI-QRNG, but also compro-
mise the evaluated extractable randomness, threatening the
security of CV-SI-QRNG. To prevent security loopholes asso-
ciated with finite-sampling precision, the sampling resolution
n should use a relatively large value to provide high sampling
precision. In addition, the security of practical CV-SI-QRNG
could be guaranteed by exploiting the lower bound of total
variance to estimate the extractable randomness, but it would
reduce the random-number generation rate.

V. IMPACTS OF FINITE-SIZE EFFECT

In fact, the CV-SI-QRNG system can run for only finite
time during the calibration process. However, the precise pa-
rameters’ estimation of measured variance of the homodyne
detection requires infinite-size data, which is used to calculate
the extractable randomness. Finite data size will lead to statis-
tical fluctuations of the estimated parameters [45–51], which
may cause the calculated extractable randomness to be overes-
timated or underestimated, leaving security loopholes. Thus,
it is important to estimate the parameters in the finite-size
regime for the final random-number security. Here, we only
consider the influences of finite-size effect on the estimation
of total variance σ 2

t as well as the calculated Hmin(Qδ|E ).
With the input vacuum state, the total variance σ 2

t of the
homodyne detection measurements consists of vacuum fluctu-
ation σ 2

Q and electronic noise σ 2
E . In practice, the total variance

σ 2
t is calculated from the sampled measurement results ai of

homodyne detection, where the maximum-likelihood estima-
tor σ̂ 2

t is known for the normal linear model [45]

σ̂ 2
t = 1

m

m∑
i=1

(ai − ā)2, (24)

where m is the data length used to estimate the total variance
and ā is the mean value assumed to be 0. Moreover, σ̂ 2

t is
independent estimator with the following distribution:

mσ̂ 2
t

σ 2
t

∼ χ2(m − 1), (25)

where σ̂ 2
t denotes the experimental value and σ 2

t denotes the
expected ideal value. The χ2 distribution converges to a nor-
mal distribution in the limit large of m. Hence, the confidence
intervals of σ̂ 2

t with confidence probability εPE,

σ 2
t ∈ [

σ̂ 2
t − �σ 2

t , σ̂ 2
t + �σ 2

t

]
, (26)

where

�σ 2
t = zεPE/2

σ̂ 2
t

√
2√

m
. (27)

εPE represents the probability that the estimated parameter
outside the confidence interval zεPE/2 is a coefficient such that
1 − erf (zεPE/2/

√
2) = εPE/2 and erf (x) is the error function

defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt . (28)

In order to ensure the security of CV-SI-QRNG, one should
consider the most pessimistic case that the lower bound of
extractable randomness may be underestimated. Therefore,
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FIG. 8. Calibration linear relationship between the variance of
the homodyne detection measurements and the LO power consid-
ering finite-size effect, which from bottom to top line correspond
to m = 103, 104, 105 and ideal value. Parameters are set as h =
6.626 × 10−34, v = 193.5 THz, G = √

2 × 10−7 V/A, σ 2
E = 0.5,

frep = 50 MHz, N = 10, n = 8, and εPE = 10−10.

we need to make sure the true value of σ 2
t is underestimated

and can be calculated with

σ 2
tmin ≈ σ̂ 2

t − �σ 2
t = σ̂ 2

t − zεPE/2
σ̂ 2

t

√
2√

m
. (29)

To demonstrate the influence of finite-size effect on the
security of CV-SI-QRNG, we present and discuss the results
of some numerical simulations. The infinite-size condition
corresponds to the data length m → ∞. Figure 8 shows
the impacts of different data sizes on the calibration lin-
ear relationship between the variance of the homodyne
detection measurements and the LO power considering
finite-size effect. We can find that the data length signifi-
cantly impacts the estimated total variance. The calibration
line is closer to the ideal one with a longer data length.
Besides, as LO power increases, the difference between
ideal total variance and total variance with finite-size effect
increases.

Deviations from the calibration line ultimately affect the
evaluation of extractable randomness. In Fig. 9, we investigate
the impacts of finite-size effect on the calculated Hmin(Qδ|E ).
The relationship between extractable randomness Hmin(Qδ|E )
and data length m is shown in Fig. 9(a). The red dotted line
is the extractable randomness with finite-size effect, and the
blue solid line is the ideal extractable randomness in infinite-
size case. The gap between the ideal extractable randomness
Hmin(Qδ|E ) and the Hmin(Qδ|E ) calculated by considering the
finite-size effect decreases with the increase of data length
m. Moreover, the finite-size effect remarkably influences the
extractable randomness when data length reduces under 104.
Nevertheless, when data length is larger than 106, the finite-
size line is very close to the ideal line, which reveals the
finite-size effect has a negligible impact on extractable ran-
domness in this case. Therefore, the length of data used to

FIG. 9. The impacts of finite-size effect on the calculated ex-
tractable randomness Hmin(Qδ|E ). Parameters are set as h = 6.626 ×
10−34, v = 193.5 THz, G = √

2 × 10−7 V/A, σ 2
E = 0.5, frep =

50 MHz, |β|2 = 5 × 108, N = 10, and n = 8. (a) Simulation results
for calculated extractable randomness Hmin(Qδ|E ) as a function of
data length m with confidence probability εPE = 10−10. (b) Simula-
tion results for the calculated extractable randomness Hmin(Qδ|E ) as
a function of confidence probability εPE with data length m = 104.

estimate the total variance should be chosen as an appropri-
ate value to reduce the influence of finite-size effect, obtain
enough extractable randomness, and use fewer computing
resources. Additionally, the parameter of confidence proba-
bility εPE has an impact on the calculated Hmin(Qδ|E ), as
shown in Fig. 9(b). The curve of Hmin(Qδ|E ) considering
finite-size effect becomes more smoother as confidence prob-
ability εPE increases. When εPE = 1, the finite-size effect on
Hmin(Qδ|E ) disappears since the estimation for confidence in-
terval of variance converges toward its ideal value. In practice,
confidence probability can be regarded as a security parame-
ter to satisfy the security requirements of the CV-SI-QRNG
systems.
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VI. CONCLUSION

In conclusion, we have pointed out and evaluated the influ-
ence of imperfect sampling devices on the phase-randomized
CV-SI-QRNG system, including the finite- sampling band-
width, finite-sampling precision, and finite-size effect. More-
over, we also provide methods to improve the performance
and security of CV-SI-QRNG in practical applications. It is
of great importance to accurately estimate the calibration
linear relationship between the variance of the homodyne
detection measurements and the LO power for the calculation
of extractable randomness. When disturbances occur on the
pulse positions or the synchronizing system, the ADC can-
not sample the peak value of the output signal due to the
finite-sampling bandwidth effect. This leads to the estimated
gradient of calibration line deviating from the ideal value,
which reduces the extractable randomness and performance
of CV-SI-QRNG system. Furthermore, the random-number
generation rate will achieve a maximal value but not always
increase with the system repetition rate. To solve the impacts
of finite-sampling bandwidth effect, one can refer to methods
in continuous-variable quantum key distribution that use a
double-sampling system or the postprocessing algorithm for
finding peak values.

By analyzing the finite-sampling precision effect, we find
that the gradient of the calibration line will be overesti-
mated or underestimated. The overestimated gradient leads to
an overestimation of the calculated extractable randomness,
which compromises the security of CV-SI-QRNG system,
whereas the underestimated gradient leads to an underes-
timation of the calculated extractable randomness, which
reduces the performance of CV-SI-QRNG. To prevent security
loopholes associated with finite-sampling precision, the

sampling resolution n should use a relatively large value to
provide high sampling precision, or the lower bound of total
variance should be used to calculate the lower bound of ex-
tractable randomness.

Finally, we demonstrate the influences of finite-size ef-
fect on the CV-SI-QRNG. Simulation results show that the
finite-size effect leads to statistical fluctuations of estimated
total variance of homodyne detection measurements and in-
fluences the evaluation of extractable randomness. With the
increased data length and confidence probability, the cal-
culated extractable randomness is closer to the ideal value.
Therefore, we should consider the finite-size effect in prac-
tical CV-SI-QRNG systems, especially for small data length
and confidence probability. In addition, choosing an appro-
priate value of data length helps to reduce the influence of
finite-size effect. Compared to previous works [29–32], our
work investigates the effects of practical imperfections on the
calculated extractable randomness, which has not been con-
sidered before, and further improves the practical security and
robustness of SI-QRNG. Our work highlights the influences of
imperfect sampling devices on the performance and security
of phase-randomized CV-SI-QRNG system and provides cor-
responding countermeasures to prevent information leakages
and improve its performance.
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