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Optimized noise-assisted simulation of the Lindblad equation with time-dependent
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Noise in quantum devices is generally considered detrimental to computational accuracy. However, the recent
proposal of noise-assisted simulation has demonstrated that noise can be an asset in digital quantum simulations
of open systems on noisy intermediate-scale quantum (NISQ) devices. In this context, we introduce an optimized
decoherence rate control scheme that can significantly reduce computational requirements by multiple orders
of magnitude, in comparison to the original noise-assisted simulation. We further extend this approach to
encompass Lindblad equations with time-dependent coefficients, using only quantum error characterization
and mitigation techniques. This extension allows for the perturbative simulation of non-Markovian dynamics
on NISQ devices, eliminating the need for ancilla qubits or midcircuit measurements. Our contributions are
validated through numerical experiments on an emulated IBM Quantum device. Overall, our paper offers
valuable optimizations that bring current quantum processors closer to effectively simulating realistic open
systems.
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I. INTRODUCTION

Open quantum systems are omnipresent in the realm of
quantum mechanics, as the ideal isolation of a quantum
system from its environment is practically unattainable. Con-
sequently, elucidating the dynamical behavior and inherent
properties of these systems is paramount for both a profound
understanding of natural quantum phenomena beyond the
realm of highly controlled system-environment interactions
[1–3] and the advancement of efficient quantum technolo-
gies [4–6]. Conventional simulation methodologies for these
complex systems often encounter computational bottlenecks
when deployed on classical computers due to the exponential
surge in required computational resources. Likewise, quantum
computers, especially in their current noisy intermediate-scale
quantum (NISQ) phase, grapple with challenges rooted in the
absence of fault tolerance.

The task of simulating open quantum systems is further
complicated by the exceedingly large number of degrees of
freedom of the environment which may not be eliminated
in the presence of memory effects [7–9]. Among the array
of methods aimed at addressing these challenges on clas-
sical [10–17] and quantum platforms—both analog [18–23]
and digital [20,24–35]—the noise-assisted simulation tech-
nique on quantum processors that was introduced in Ref. [24]
emerges as a viable option for NISQ devices. This method
leverages quantum error characterization and mitigation tech-
niques to simulate Lindblad equations with time-independent
coefficients, effectively turning the intrinsic noise of NISQ
devices from a drawback into a computational utility. Other

approaches to use the intrinsic noise of the quantum device
have also recently been put forward [36,37].

In this paper, we explore two improvements designed to
enhance the computational efficiency of the noise-assisted
simulation method. First, we incorporate the principle of
locality constraints in error mitigation [38] to the existing
simulation framework, aimed at reducing the sampling cost by
optimizing error mitigation procedures. The second consists
of a decoherence rate control scheme, designed to dynam-
ically adjust error rates during the simulation, resulting in
lower sampling costs. Notably, our optimizations have the
potential to reduce the computational resources required by
orders of magnitude when compared to the original noise-
assisted simulation approach [24]. Additionally, we extend
the methodology of Ref. [24] to enable the simulation of the
Lindblad equation with time-dependent coefficients, thereby
allowing for the exploration of non-Markovian dynamics.

The paper is organized as follows: Sec. II reviews the
foundational time-evolution simulation and error charac-
terization methods from the original noise-assisted digital
quantum simulation technique [24]. It also explores proba-
bilistic error cancellation [39–48], focusing on its localized
error mitigation variant as proposed in Ref. [38] and its
partial and layer-dependent mitigation form. Section III in-
troduces our decoherence rate control scheme and assesses
its performance relative to the scheme used in the original
noise-assisted simulation [24]. Section IV discusses our ex-
tension of the technique to simulate Lindblad equations with
time-dependent coefficients. Finally, Sec. V offers empiri-
cal validations of our optimized noise-assisted simulation
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technique, featuring case studies that capture non-Markovian
behavior in open quantum systems.

II. ENCODING OF THE TIME EVOLUTION
IN A NOISY QUANTUM CIRCUIT

In quantum computation, the Trotter-Suzuki product for-
mula serves as a standard technique for approximating the
time evolution of closed quantum systems [49–52]. However,
its implementation on real-world quantum processors intro-
duces an inherent level of noise due to gate imperfections.
This noise can be modeled accurately by Lindblad dynamics
[42,53–55], a framework that underpins the noise-assisted
simulation approach discussed in Ref. [24]. In this section,
we review the encoding of time evolution in a noisy quantum
circuit as introduced in Ref. [24]. In particular, we delve into
the specific mechanics of implementing the Trotter-Suzuki
product formula in a quantum processor and elucidate how
this leads to noise dynamics effectively described by the Lind-
blad equation.

A. Trotter-Suzuki product formula

We consider a Hamiltonian decomposed into a sum of
N tensor products of Pauli matrices X̂ , Ŷ , Ẑ acting on the
quantum system encoded in the qubits:

Ĥ =
N∑

j=1

Ĥj, Ĥj = β j P̂j, (1)

where β j ∈ R and P̂j = {X̂ , Ŷ , Ẑ}⊗n j is a Pauli string acting
on n j qubits.

In this paper, we focus on the first-order Trotter-Suzuki
product formula as the method to simulate the time evolu-
tion of a quantum system over time t . Such formula can be
expressed as

e−iĤt ≈
⎡
⎣ N∏

j=1

e−iĤ j�t

⎤
⎦

D

, (2)

where �t is a finite Trotter time step. Higher orders of the
Trotter-Suzuki product formula may also be employed [24].
The total time evolution is then described by D = t/�t Trotter
layers.

On current noisy devices, the implementation of each
quantum gate in the Trotter layers, e.g., e−iĤ j�t in Eq. (2),
is faulty, and thus introduces noise in the system. The time
evolution of a quantum system encoded in the qubits depends
thus on both the Hamiltonian implemented on a quantum
circuit and the parameters that characterize the intrinsic noise
of the quantum device. As shown in previous studies on su-
perconducting qubits [24,42,53], the evolution of the density
matrix ρ̂(t ) of the open system encoded in the qubits can be
accurately described by a Markovian quantum master equa-
tion expressed as

d ρ̂(t )

dt
= L[ρ̂(t )] = −i[Ĥ , ρ̂(t )] + DQC[ρ̂(t )], (3)

where DQC[ρ̂(t )] represents a Lindblad dissipator which de-
scribes the intrinsic noise of the quantum circuit implemented
on the noisy quantum device.

As shown in Ref. [24], DQC[ρ̂(t )] can be characterized
and adjusted to simulate a target Lindblad equation with
time-independent decoherence rates. In order to achieve this,
one must first characterize the noise acting in the quantum
circuit. Through the use of cycle benchmarking [54], a noise
benchmarking technique, the sparse stochastic Pauli noise
acting on the qubits over one Trotter layer can be learned
[42,55,56]. Assuming that the creation of long-ranged spa-
tially correlated noise in one Trotter layer is negligible (as
recently demonstrated in superconducting quantum platforms
[24,42,57]), the noise channel acting over one Trotter layer
can be approximated as follows [42]:

E (ρ̂ ) =
∏

k

[wk Îk ρ̂ Îk + (1 − wk )P̂k ρ̂P̂k], (4)

wk = (1 + e−2εk )/2 (5)

where P̂k is a two-qubit Pauli string acting on nearest-neighbor
qubits in the quantum circuit with an associated error proba-
bility εk , which may be characterized via cycle benchmarking
[54,56]. Here, we assume that only nearest-neighbor in-
teractions between qubits are possible, such as in current
superconducting quantum devices. In order to transform all
noise in one Trotter layer into stochastic Pauli channels such
as the one in Eq. (4), randomized compiling (RC) is applied
to all (non-negligible) noisy operations (see Refs. [24,54,57]
for more details about this error transformation technique).
Following Ref. [24], the implementation of RC is performed
on the noise characterization and quantum simulation circuits,
usually to all two-qubit gates since these are the noisiest
operations in a quantum circuit [42,57]. By applying RC to the
(non-negligible) noisy operations, the transformed noise in the
quantum circuit is approximately given by Eq. (4) and, when
evolving the qubits via the Trotter-Suzuki product formula
with a sufficiently small �t , the following Lindblad dissipator
is simulated in the quantum circuit:

DQC[ρ̂] =
∑

k

γk (P̂k ρ̂P̂k − ρ̂ ), (6)

γk ≈ εk/�t . (7)

Here the decoherence rates, γk , are associated with the two-
qubit Pauli strings, P̂k , and are defined as functions of the
characterized error probabilities, εk , and the chosen Trotter
time step, �t .

As demonstrated in Ref. [24], the decoherence rates γk can
be selectively increased or decreased, the former by reducing
�t and the latter by implementing a quantum error mitigation
technique, the probabilistic error cancellation [39–48] that de-
creases the error probability (εk) of a stochastic Pauli channel
k. These two protocol steps allow the decoherence rates γk to
be controlled according to Eq. (7).

B. Probabilistic error cancellation

.In this section, we start by describing the conventional
probabilistic error cancellation (PEC) technique [39–48],
used to fully mitigate the noise in a quantum circuit. Then,
we briefly introduce partial error mitigation (see Ref. [24]
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FIG. 1. Circuit-blind and circuit-aware mitigation protocols.
Blue (orange) blocks denote noisy two-qubit and one-qubit gates
(sampled Pauli strings used for noise mitigation). (a) PEC applied to
each Trotter layer and blind to the structure of the quantum circuit.
(b) Circuit-aware PEC enables one to take advantage of the locality
of the circuit, thus a light-cone mitigation is sufficient to obtain
accurate local-measurement outcomes.

for more details) and we discuss circuit-aware error mit-
igation [38]. We find that the latter requires substantially
less measurements for local observables than the traditional
circuit-blind mitigation protocol as illustrated in Fig. 1. Lastly,
we discuss the layer-dependent error mitigation with PEC,
which allows for the control of time-dependent noise in the
context of its application to Trotter-type circuits.

1. Full error mitigation

PEC starts by identifying the noise channel, E , acting on an
ideal, noiseless circuit C(ρ̂) = Ûk (�t )ρ̂Û †

k (�t ), for instance,
a Trotter layer describing the Hamiltonian dynamics of a
quantum system over a Trotter time step �t . As discussed in
Sec. II, one can characterize the noise of a quantum circuit by
two-qubit stochastic Pauli noise channels E [see Eq. (4)]. To
fully mitigate the characterized noise, the conventional PEC
has considered the inverted noise channel, E−1, applied to
the noisy quantum circuit, namely implemented after U (ρ̂) =
EC(ρ̂). This is illustrated in Fig. 1(a). An inverted stochastic
Pauli channel, E−1, can be exactly formulated as [42]

E−1(ρ̂ ) = Cmit

∏
k

[wk Îk ρ̂ Îk − (1 − wk )P̂k ρ̂P̂k], (8)

Cmit = exp

{
2

∑
k

εk

}
. (9)

Since E−1 is not a complete-positive (CP) map, one cannot
implement it directly in the quantum circuit. The application
of the non-CP map E−1 is done in a probabilistic fashion
[40], where one of the Pauli operators P̂k is randomly sampled

based on the probabilities wk and applied in a Trotter layer.
On a quantum circuit with D = t/�t Trotter layers, the prob-
abilistic non-CP map is applied D times with Pauli operators
P̂k independently sampled for each Trotter layer. For a circuit
with n qubits, the inverted noise channel, E−1, is applied to
each pair of nearest-neighbor qubits. We note however that
multiple cancellations of single-qubit Pauli noise channels can
occur on adjacent qubits, thus the probabilities wk must be
changed accordingly [24].

In PEC, the outcome of an observable Ô measured in
a noise-mitigated quantum circuit is multiplied by the mit-
igation cost Cmit and other prefactors, namely, 〈Ô〉mit ≈
〈Ô〉∏D

d=1

∏
m C(m)

mit , where m describes different subgroups
(nearest-neighbor pairs) of qubits under the action of the
two-qubit Pauli noise channels. For a noise-mitigated den-
sity matrix ρ̂mit (t ), the (not normalized) expectation value

Tr[Ôρ̂mit (t )] of the observable Ô is obtained as 〈Ô〉 by classi-
cally averaging the outcomes of the PEC scheme (multiplied
by a phase factor ±1 [40]), requiring multiple copies of
quantum circuits. The total mitigation cost of the quantum
simulation is then defined as

Ctot =
D∏

d=1

∏
m

C(m)
mit , (10)

and it normalizes the observable measurement 〈Ô〉 to its
average value. As shown in previous works [24,40,43], the
mitigation cost can be analytically estimated as

Ctot ∼ eλ(n−1)Dε, (11)

where λ is a parameter to be fitted by experiments (typi-
cally λ < 1 [24]) and ε = ∑15

1 εk is the averaged total error
probability over all pairs of nearest-neighbor qubits. Since
the variance of a measured observable with PEC scales as
∝ C2

tot [40], the implementation of full error mitigation on a
quantum circuit with a large circuit volume V = nD is practi-
cally unfeasible due to the exponentially increasing number of
quantum circuits [see Eq. (11)] that are needed to be executed
on the quantum processor to accurately estimate an observ-
able, i.e., with low statistical error.

2. Partial error mitigation

On the other hand, partial probabilistic error cancellation
may be implemented to leverage the noise of the quantum
circuits in view of simulating open systems in a quantum pro-
cessor [24]. That is, the noise is only partially and selectively
mitigated, such that the probabilities wk in Eq. (5) and the
mitigation cost Cmit in Eq. (9) are renormalized, i.e., the total
error probability εk is replaced by the (generally smaller) par-
tially mitigated error probability ε′

k = rkεk, with rk ∈ [0, 1]
denoting a mitigation factor associated to a stochastic Pauli
channel k. This adjustment allows probabilistic error cancel-
lation to be used for quantum simulations of open systems
with a reduced total mitigation cost, where ε in Eq. (11) is
replaced by the averaged total mitigated error probability εr =∑15

k=1 ε′
k = ∑15

k=1 rkεk . Since rk ∈ [0, 1], the total mitigation
cost in Eq. (11) may be exponentially reduced, hence allowing
open system simulations with a higher circuit volume to be
executed on a noisy quantum processor [24].
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3. Local error mitigation

Recently, it has been proposed [38] that a reduction of the
total mitigation cost is possible when a k-local observable
is desired to be measured on a quantum circuit. Such mod-
els enable a “light-cone” error mitigation over the quantum
circuit as shown in Fig. 1(b), hence reducing the number of
stochastic Pauli noise channels that are required to be miti-
gated relatively to a mitigation protocol blind to the structure
of the quantum circuit [Fig. 1(a)]. For instance, the scal-
ing of the total mitigation cost of a light-cone partial error
mitigation for an observable acting on k = 1 or 2 nearest-
neighbor qubits can be derived directly from the structure
of the one-dimensional quantum circuit shown in Fig. 1. A
straightforward estimate of the total mitigation cost for the
circuit in Fig. 1 can be given as follows:

C(loc)
tot =

D∏
d=1

C(loc)
iter (d ), (12)

C(loc)
iter (d ) ∼

{
exp{λ(1 + 2k + 2d )εr}, 2(1 + k + d ) < n

exp{λ(n − 1)εr}, 2(1 + k + d ) � n,

(13)

where C(loc)
iter (d ) is the iteration mitigation cost, i.e., the mitiga-

tion cost for the dth Trotter layer in the circuit. A circuit-aware
mitigation yields a total mitigation cost [Eq. (13)] that is
independent of the number n of qubits for small D, in con-
trast to Eq. (11). To better illustrate the advantages of this
optimization, consider a quantum circuit with n = 25 qubits,
k = 1-qubit observable, λ = 0.5, a total average two-qubit
mitigated error of εr = 0.06, and a total of D = 15 Trotter
layers. In this case, the number of circuits required to simulate
the open system with a circuit-aware mitigation [Fig. 1(b)]
is three orders of magnitude lower than with a circuit-blind
mitigation [which is defined by the second case of Eq. (13)
and shown in Fig. 1(a)]. Therefore, a circuit-aware mitigation
can potentially save orders of magnitude of computational re-
sources for large-scale quantum simulations of open systems
in NISQ devices relatively to the traditional circuit-blind error
mitigation strategy for local observables.

4. Layer-dependent error mitigation

Partial PEC can also be applied as layer-dependent error
mitigation. That is, for each Trotter layer, one may choose
different mitigation factors. Consider, for simplicity, a target
time-dependent stochastic Lindblad dissipator that one desires
to simulate, expressed in terms of Pauli strings:

D(target)
QC (t )[ρ̂] =

∑
k

�k (t )(P̂k ρ̂P̂k − ρ̂ ), (14)

�k (t ) = εk (t )/�t (15)

where �k (t ) and εk (t ) are defined as functions of time for each
Pauli string k. Such time-dependent error probabilities may
be attained in a noise-assisted digital quantum simulation by
assigning to each Trotter layer, i.e., to each interval of time
[t, t + �t], a discrete target decoherence rate �k (t = D�t ).
We assume here smooth target decoherence rates �k (t ), such
that the latter can be accurately discretized. Hence, partial
PEC can be used with different sampling probabilities for each

Trotter layer. In the context of a Trotter-type time-evolution
circuit, this means that the mitigation factor may be chosen to
be time dependent, i.e., different for each Trotter layer. More
specifically, for each time t = D�t , the target decoherence
rates are defined as follows:

�k[t = D�t] = εk[D�t]

�t
= εk (1 − rk[D�t])

�t
. (16)

Therefore, time-dependent decoherence rates in the quantum
circuit may be adjusted via layer-dependent partial PEC.

III. CONTROL OF DECOHERENCE RATES
IN THE QUANTUM CIRCUIT

As previously mentioned, the quantum error mitigation
technique probabilistic error cancellation can be used to adjust
the error probabilities εk of a quantum circuit in view of sim-
ulating a time-independent Lindblad equation in a quantum
processor. Assuming, for simplicity, time-independent deco-
herence rates, the equation reads

Dtarget[ρ̂] =
∑

k

�k (P̂k ρ̂P̂k − ρ̂), (17)

where �k are the target decoherence rates associated with
each two-qubit Pauli string P̂k . In order to tune the circuit
decoherence rates (γk) to the desired ones (�k), a decoherence
rate control scheme must be employed. Herein, we discuss
two schemes, which we denote as scheme I and scheme II. We
find that the former, proposed in Ref. [24], is not as resource
efficient as the latter in realistic simulations on NISQ devices
(see Sec. III A). Therefore, we propose a decoherence rate
control scheme (II), which reduces computational resources
by multiple orders of magnitude relatively to scheme I (see
Sec. III B). Additionally, we find that scheme II is particularly
suited for large-scale realistic simulations of open systems on
noisy quantum devices.

A. Scheme I

The tuning of the initial decoherence rates, γk , to reach
�k on the noise-assisted quantum simulation may be accom-
plished in a two-step procedure following Ref. [24]. It consists
of (1) reduction of the Trotter time step �t to �tmax so that
larger decoherence rates �̃k = εk/�tmax > γk may be reached
as per Eq. (7) and (2) selective mitigation of the error prob-
abilities εk to (1 − rk )εk in order to adjust the decoherence
rates �̃k to the target ones �k . Using this protocol, the noise-
assisted simulation implemented in the quantum processor is
described by the Lindblad dissipator in Eq. (17) with decoher-
ence rates

�k = (1 − rk )εk/�tmax, (18)

where rk ∈ [0, 1] are mitigation factors that determine the
amount of mitigated error ε′

k = rkεk controlled by partial PEC
(step 2). �tmax is the adjusted Trotter time step (step 1) defined
as

�tmax = εkmax/�kmax , (19)

where �kmax is the target decoherence rate associated to
the stochastic noise channel kmax = argmaxk (��k ) with the
largest positive difference ��k = �k − γk > 0, and εmax is
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FIG. 2. Our proposed method to control the decoherence rates.
γk (�k) are the initial (target) decoherence rates. In this single-step
scheme, some Pauli noise channels k have their decoherence rates
increased (noise amplification) by taking the mitigation factor rk <

0, whereas others have it decreased (i.e., mitigated) by choosing
rk′ 
=k > 0.

the characterized error probability of the associated stochas-
tic noise channel kmax. As shown in Ref. [24], this protocol
enables one to simulate open systems potentially with expo-
nentially lower computational resources than the techniques
that require full error mitigation in a noisy quantum device.
Even though this protocol can accelerate the deployment of
quantum computing to real-world open system problems (see
Ref. [24]), we find that this decoherence rate control scheme is
not the most efficient to be implemented on current quantum
devices. To illustrate this, consider some decoherence rates
which are larger than the initial ones, i.e., �k � γk , whereas
others are not, i.e., �k′ 
=k � γk′ . Using Eqs. (18) and (19) the
mitigation factor for each stochastic Pauli channel k is

rk = 1 − �kεkmax

�kmaxεk
. (20)

Simply put, for fixed error probabilities εk , the larger the target
decoherence rate �kmax is relatively to all others (�k 
=kmax ), the
larger the mitigation factor rk of that stochastic channel (k)
is. This means that an increase of the target decoherence rate
�kmax yields an increase of the mitigation factor of all other
channels k 
= kmax. This global influence of the maximum
decoherence rate increase yields an exponentially higher total
mitigation cost as per Eq. (12), hence the simulation requires
a larger number of circuits to be executed. Summarizing, this
decoherence rate control scheme I can be employed when the
target open system model contains decoherence rates �kmax ≈
�k 
=kmax . On the other hand, if a broad range of initial or
target decoherence rates is present, e.g., such that �kmax �
�k 
=kmax , the decoherence rate control scheme I, as introduced
in Ref. [24], is not the most appropriate to be employed. In this
case, another decoherence rate control scheme is best suited.

B. Scheme II

Herein, we propose a different procedure to reach the target
decoherence rates �k in a quantum circuit. In Fig. 2, we
illustrate this scheme. It consists of a one-step procedure,
where an arbitrary Trotter time step �t may be chosen (in

contrast to scheme I). The single step consists of a selective
reduction (amplification) of the initial decoherence rates γk

that are higher (lower) than the target decoherence rates �k .
The reduction of noise is performed using partial probabilis-
tic error cancellation and the amplification of noise is done,
for instance, via a quantum trajectory approach [58] or by
increasing the noise of the quantum hardware (e.g., as used in
the quantum error mitigation technique called zero-noise ex-
trapolation [39,59–62]). The enhancement of stochastic Pauli
decoherence rates (and other types of noise) can also be im-
plemented in this scheme using classical noise [58], i.e., by
implementing stochastic Hamiltonians (for more details, we
refer the reader to Ref. [58]). The resulting decoherence rates
in the quantum circuit are then defined as

�k = (1 − rk )εk/�t, (21)

where rk ∈ (−∞,+∞). The aforementioned selective noise
amplification is expressed in Eq. (21) by letting the mitigation
factor rk have negative values for a particular noise channel k
as illustrated in Fig. 2. In this paper, we consider the quan-
tum trajectory approach to amplify the noise (the increase
of quantum hardware noise will be investigated in a future
work); thus, in the context of stochastic Pauli channels, we
implement a noise amplification map in the quantum circuit,
as expressed in Eq. (4), where the probabilities are defined as
wk = w

(amp)
k = (1 + e2rkεk )/2, where rk < 0. In each Trotter

layer, we apply the respective Pauli operators P̂k sampled
over the probability distribution defined by the amplified error
probabilities w

(amp)
k .

Noise reduction, i.e., the partial PEC introduced in
Sec. II B, is performed to the noise channels k which have
positive mitigation factors, whereas noise amplification is ap-
plied via Eq. (4) with probabilities w

(amp)
k′ to those channels

k′ 
= k with negative mitigation factors. The sign and magni-
tude of the mitigation factors are fixed by Eq. (21), i.e., by
the choice of the target decoherence rates, Trotter time step,
and error probabilities of the quantum device. The sampling
procedures required by partial PEC and noise amplification
can be done simultaneously. In this proposed decoherence rate
control scheme, the mitigation factors rk are also not required
to be upper bounded by 1 as in scheme I proposed in Ref. [24],
hence simulations of Lindblad dissipators with negative deco-
herence rates are possible. A paradigmatic example of this is
the simulation of eternal non-Markovianity [63], which was
numerically implemented in Sec. V A.

Finally, we remark that we do not expect an increase of
the number of circuits by amplifying the noise. Since we im-
plement a quantum trajectory approach to increase the noise
in the quantum simulation, the Pauli string sampling can be
done simultaneously with the noise mitigation sampling re-
quired by PEC at the quantum circuit level. We note that the
latter has an exponential cost as a function of the circuit vol-
ume, hence it remains as the main bottleneck of the quantum
simulation.

The absence of the Trotter time-step adjustment (which is
present in scheme I) enables one to potentially obtain rela-
tively reduced mitigation factors in scheme II. This results
in a reduction of computational resources comparatively to
scheme I following Eq. (13). Consider a simulation where,
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FIG. 3. Analyses of the relative performance of schemes I and II. (a) We chose the characterized error probabilities in the circuit to be
uniform, εmean for all stochastic channels. The target error probabilities were sampled from a Gaussian probability distribution with mean εmean

and standard deviation σ ∈ [εmean/100, εmean] (we reset negative sampled error probabilities to zero). (b) Total mitigated error probabilities εr

averaged over 500 different target error probability samples for each σ using schemes I and II. In the former, the Trotter time step is adjusted,
whereas in the latter it is not. (c) We calculated the mitigation cost for one Trotter layer using (the first case of) Eq. (12) for schemes II and
I, C (II)

iter and C (I)
iter , respectively, by considering different numbers of qubits and different εmean. We then plot the ratio RII,I = C (II)

iter /C (I)
iter . For this

calculation, we considered the εr that intersect the gray vertical line in (b), where σ = 0.61. The initial Trotter time step was chosen to be
�t = 1 and λ = 0.5 [see Eq. (11)].

for a given �t , some initial decoherence rates are smaller
(larger) than the target ones, namely, �k < γk (�k > γk). For
those which are smaller, the mitigation factors obtained with
the proposed decoherence rate control scheme II are

rk = 1 − ��k�t

εk
. (22)

In contrast to the definition of the mitigation factor of scheme
I in Eq. (20), each mitigation factor rk is independent of other
decoherence rates �k′ 
=k .

C. Scheme performance analysis

To illustrate some of the advantages of scheme II over
scheme I, we consider a quantum circuit, for simplicity, with
uniform characterized error probabilities εk = εmean and ran-
dom target error probabilities, εk , sampled from a Gaussian
probability distribution, with a mean εmean and a standard
deviation σ . This sampling procedure is summarized in
Fig. 3(a). Quantum circuits implemented in real quantum
hardware typically contain highly nonuniform (i.e., disperse)
error probabilities [24,42,55]. We gradually increase the stan-
dard deviation σ of the Gaussian distribution, such that the
target error probabilities become increasingly more disperse
and compute the averaged total mitigated error probability, εr ,
obtained by each scheme. We note that εr has a large influ-
ence on how many circuits one needs to execute in order to
simulate the target decoherence rates, which in the worst case
is exp{2λ(n − 1)εr} for each Trotter iteration [see Eq. (11)].
In Fig. 3(b), we plot the results obtained. We observe that εr

for scheme II is consistently smaller than the one of scheme I
when the target decoherence rates become more disperse (i.e.,
larger standard deviation σ ). This suggests that scheme II per-
forms better as the desired target decoherence rates and error
probabilities in the quantum circuit become more disperse. To
quantify how better the performance of scheme II is relatively
to scheme I, in Fig. 3(c), we present the calculated average ra-
tio RII,I = C(II)

iter /C(I)
iter for different numbers of qubits and εmean,

where C(I)
iter (C(II)

iter ) is the circuit-blind iteration mitigation cost
for scheme I (II). Note that this ratio reflects the relative per-
formance of each scheme for different numbers of qubits and
target decoherence rates. For target decoherence rates sampled
from a Gaussian distribution with a standard deviation shown
by the gray vertical line in Fig. 3(b), we observe a linear
reduction of the average ratio RII/I shown in Fig. 3(c). We
also observe that the larger the mean error probability εmean

of each stochastic Pauli channel is, the larger is the reduction
of RII,I. For instance, for 40 qubits and εmean = 0.04, the
reduction of C(II)

iter (scheme II) relatively to C(I)
iter (scheme I) is

about 20%. We note that this saving can be dramatic for deep
circuits (D � 1), since the required number of circuits to be
executed with scheme II scales as (RII,IC

(I)
iter )

2D. For instance,
for D = 15 Trotter layers in the previous example, the average
reduction of computational resources, i.e., average number of
circuits to be executed, relatively to scheme I already amounts
to a factor of 103.

With scheme II, one can choose an arbitrary large Trotter
time step that minimizes the number of implemented Trotter
iterations, i.e., minimizes circuit depth, and decreases the mit-
igation factor per Eq. (22) relatively to scheme I. Therefore,
a larger Trotter time step (relatively to �tmax of scheme I) in
scheme II enables a twofold reduction effect of the mitigation
cost following Eq. (12), i.e., by decreasing the number D of
Trotter layers and the averaged total mitigated error proba-
bility εr , at the cost of a larger Trotter decomposition error.
This is illustrated in Fig. 4, where we calculate the average
number of circuits required for circuit-aware and circuit-blind
mitigation with schemes I and II, i.e., (C(II)

tot )2 as a function
of the initial �t for uniform characterized error rates εk =
0.02 and Gaussian distributed target decoherence rates with
mean �

(mean)
k = 0.05 and standard deviation σk = �

(mean)
k /2.

We observe that scheme II requires a smaller number of
circuits than scheme I to be executed as a function of the
initial Trotter time step for initial �t > �tmax ≈ 0.25. For
small �t < �tmax, i.e., when initial decoherence rates are
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FIG. 4. Scaling of the number of circuits required for error miti-
gation using scheme I (II) as solid (dashed) lines with a circuit-blind
(circuit-aware) mitigation protocol in blue (red) as a function of the
initial Trotter time step �t . We considered n = 20 qubits encoded
in the quantum circuit, λ = 0.5, k = 1-qubit observable, total sim-
ulation time t = 10 (arb. units), and the total mitigation cost was
computed by averaging over 500 samples with fixed characterized
error probabilities εk = 0.05. The target decoherence rates were
sampled from a Gaussian distribution with mean �

(mean)
k = 0.05 and

standard deviation σk = 0.025 (negative decoherence rates were reset
to zero). The total mitigation cost is averaged over 500 samples for
each �t .

all above the target ones, both schemes require only error
mitigation (in scheme I, this means only step 2 is required),
therefore both schemes perform equivalently. However, as �t
surpasses �tmax, step 1 of scheme I requires the change of the
initial �t to �tmax, hence all decoherence rates are increased.
Some of these must be mitigated in step 2, namely, with an
increased mitigation factor compared with scheme II, which
does not require change of the initial �t . The break-even
point defined by �tmax becomes smaller as mean target de-
coherence rates increase as can be perceived by Eq. (19), i.e.,
�tmax ∼ (�(mean)

k )−1. Therefore, we expect scheme II to vastly
outperform scheme I for medium and large target decoher-
ence rates �

(mean)
k . These results illustrate the critical influence

of being able to choose an arbitrary �t in the simulation.
They also show that the circuit-aware mitigation protocol can
reduce the computational costs relative to the circuit-blind
protocol using our proposed decoherence rate control scheme
II. Following Eq. (12), we expect that the larger the size
of the system is, the larger will be the gap of the required
number of circuits to be executed in the quantum device
between the circuit-blind and circuit-aware mitigation proto-
cols. These results also suggest that scheme II is, in general,
more suitable to be employed than scheme I. For disperse,
high error rates or large numbers of qubits in the quan-
tum circuit, i.e., the expected regime of large-scale quantum
simulations in current quantum devices, scheme II is better
suited for the task of controlling the decoherence rates than
scheme I.

A recent work [64] points out that the noise-assisted sim-
ulation, as introduced in Ref. [24] and improved upon here,
contains an increased amount of Trotter errors compared
with a closed-system simulation (under mitigated nonuni-
form stochastic Pauli noise) due to the discrete nature of
PEC applied to a digital quantum simulation. We remark

that this additional error scales with O(�t2) and it is mul-
tiplied by the commutator between the unitary part of the
Liouvillian defined by the Hamiltonian Ĥ and the target
Lindblad dissipator Dtarget. We remark that this Trotter er-
ror can be mitigated by using sufficiently small Trotter time
steps, symmetry-protected Trotter formulas [65] or adaptive
schemes for the Trotter time step [66]. Additionally, the
additional Trotter error decreases with smaller error rates
of the quantum gates (through the commutator), hence we
believe this will not be a hurdle to accurately perform
large-scale noise-assisted digital quantum simulations of open
systems.

IV. QUANTUM SIMULATION OF PERTURBATIVE
NON-MARKOVIAN DYNAMICS

In this section, we briefly review the Lindblad equa-
tion with time-dependent coefficients and introduce a protocol
to simulate it via a noise-assisted digital quantum simulation
on a noisy quantum processor. Such equation allows us to
simulate perturbative non-Markovian dynamics on a noisy
quantum processor without the requirement of ancilla qubits
or midcircuit measurements.

A. Lindblad equation with time-dependent coefficients

The ultimate aim of open dynamics is describing the evo-
lution of the reduced density matrix of a system that interacts
with a larger environment. Consider the system S described by
the Hilbert space HS that interacts with an environment with
Hilbert space HE . Solving the system-environment closed
dynamics yields the unitary evolution operator ÛSE(t, 0), and
the reduced density matrix of the system can be obtained by
ρ̂(t ) = TrE [ÛSE(t, 0)ρ̂SE(0)Û †

SE(t, 0)] [67]. This complete op-
eration can be seen as a map 
t : B(HS ) −→ B(HS ), where
B(HS ) is the set of bounded linear operators acting on HS .
Unsurprisingly, solving this equation is difficult in practice, as
it requires full description of the system and environment. In
the same fashion as the Hamiltonian is the generator of closed
dynamics, one can look for the generator of open system
dynamics. The most general linear map for ˙̂ρ that preserves
the trace and Hermiticity of ρ̂SE, and is local in time, is [68]
(h̄ = 1)

L(t )[ρ̂(t )] = −i[Ĥ (t ), ρ̂(t )] (23)

+
∑

k

�k (t )

[
V̂k (t )ρ̂(t )V̂ †

k (t )

− 1

2
{V̂ †

k (t )V̂k (t ), ρ̂(t )}
]
, (24)

with ∂ρ̂(t )/∂t = L(t )[ρ̂(t )], Ĥ (t ) Hermitian, {V̂k (t )} a set
of Hermitian traceless orthogonal operators, and {�k (t )}
scalar functions of time. This is the so-called canoni-
cal Gorini-Kossakowski-Sudarshan-Lindblad equation [69],
which uniquely characterizes the dynamics. In the remainder
of this paper, we will be using the Lindblad equation with
time-dependent coefficients as a natural generalization of the
time-independent equation introduced in Eq. (3). This nat-
ural extension allows for the simulation of non-Markovian
dynamics via the connection between a master equation and
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non-Markovianity based on the CP divisibility of the re-
duced evolution [70,71]. More specifically, a dynamical map

t is said to be CP divisible if it can be written as 
t =

t,0 = 
t,s
s,0 with 
t,s being CP for all times t � s �
0 [70,71]. Markovian dynamics corresponds to CP-divisible
maps, and can be generated from a master equation with
time-dependent positive coefficients. Additionally, maps from
constant positive coefficients also fulfill the semigroup prop-
erty [68,72]. Conversely, if �k (t ) � 0 for some k at some
t , the generated dynamics will be non-Markovian (i.e., not
CP divisible).

B. Time-dependent noise-assisted digital quantum simulation

A noise-assisted digital quantum simulation [24] may also
be generalized to simulate time-dependent coefficients in
Eq. (23). In what follows, we discuss the implementation
of the decoherence rate control scheme II introduced in
Sec. III B to such open system models (with time-independent
Hamiltonians).

1. Stochastic Pauli noise

Using time-dependent error mitigation (see Sec. II B 4) and
the decoherence rate control scheme II (see Sec. III B), the
decoherence rate in the quantum circuit may be adjusted either
by independently mitigating or amplifying the noise in each
Trotter layer.

Interestingly, using this method, the target decoherence
rates can also be taken to be temporarily negative by choosing
rk > 1 [see Eq. (16)]. This allows one to simulate negative
decoherence rates at the cost of a higher sampling cost. That
is, with rk > 1 the total mitigation cost is increased relatively
to a full error-mitigated quantum simulation with rk = 1 as
can be perceived by inspecting Eq. (11).

Open systems with stochastic Pauli noise dissipators ap-
pear in the modeling of some realistic systems, for instance,
on the damping of exciton Rabi rotations by acoustic phonons
in driven quantum dots [73].

2. Amplitude damping

The simulation of time-dependent single-qubit (gener-
alized) amplitude damping can also be performed via a
noise-assisted technique without the requirement of ancilla
qubits or midcircuit measurements [24]. This only requires
the ability to perform high-fidelity reset operations in the
quantum device. Such high-quality operations have been re-
cently achieved, for instance, in superconducting and ion-trap
quantum platforms [74–76].

In view of simulating time-dependent amplitude damping,
we consider the implementation of the following generalized
reset channel to a quantum circuit:

R(t )[ρ̂] = [1 − p(t )]Îρ̂ Î + p(t )V (ρ̂ ), (25)

V (ρ̂ ) = |�〉 〈| ρ̂ |〉 〈�| + |�〉 〈⊥|ρ̂|⊥〉 〈�| , (26)

where |�〉 = V̂ |0〉m, |〉 = Û |0〉m, and |⊥〉 = Û |1〉m with
Û † and V̂ denoting single-qubit gates applied before and after
the reset operation acting on qubit m. The time-dependent
stochastic application of the generalized reset operation to

each Trotter layer with discretized probability p(t = D�t )
leads to a Lindblad dissipator:

DAD(t )[ρ̂] = D|�〉〈|(t )[ρ̂] + D|�〉〈⊥|(t )[ρ̂], (27)

where

D|α〉〈β|(t )[ρ̂] = γ (t )
(|α〉 〈β| ρ̂ |β〉 〈α| − 1

2 {|β〉 〈β| , ρ̂}),
(28)

γ (t ) = p(t )/�t . (29)

Let us choose, for simplicity, Û = V̂ . Then, the generalized
reset channel leads to the time-dependent amplitude damping
and local dephasing in the {|〉 , |⊥〉} basis, expressed as

DAD(t )[ρ̂] = γ (t ) |〉 〈⊥|ρ̂|⊥〉 〈| − γ (t )

2
{|⊥〉〈⊥|, ρ̂}

+ γ (t )

4
(Û ẐmÛ †ρ̂Û ẐmÛ † − ρ̂ ), (30)

where Û ẐmÛ † = |〉 〈| − |⊥〉〈⊥|. Therefore, by taking
Û ẐmÛ † to be a Pauli operator, such as X̂m, one can imple-
ment time-dependent amplitude damping in the eigenbasis of
the Pauli operator of choice, while the additional dephasing
rate γ (t )/4 is controlled by our time-dependent partial noise
mitigation scheme, introduced in Secs. III and IV B. One can
introduce different combinations of nonunital noise channels
with a sequential application of different generalized reset
channels. One may implement, for instance, relaxation noise
[24], also known as generalized amplitude damping [35], to
simulate realistic open systems such as exciton-phonon inter-
actions in quantum dots [77].

V. NUMERICAL IMPLEMENTATION

We implement the decoherence rate control scheme II de-
scribed in the Sec. III B on the emulated IBM Quantum device
ibmq mumbai to simulate several Lindblad models with time-
dependent coefficients. We first characterize the stochastic
Pauli noise in a Trotter layer as described in Sec. II and
then perform the noise-assisted digital quantum simulation as
discussed in Sec. IV B.

A. Eternal non-Markovianity

Here we simulate one qubit with Hamiltonian Ĥ = EX̂
(where E = const), which is acted upon with a Lindblad
dissipator given as follows:

Deternal(t )[ρ̂] = (X̂ ρ̂X̂ − ρ̂ ) + (Ŷ ρ̂Ŷ − ρ̂ )

− tanh (t )(Ẑρ̂Ẑ − ρ̂ ). (31)

This is one of the characteristic cases of non-Markovianity,
so-called eternal non-Markovianity [63], where one of the
decoherence rates is negative for times t > 0. We initialize
the qubit in the state |1〉, apply the Trotter formula to evolve
the system, and finally measure the population terms of the
density matrix as illustrated in Fig. 5(b). Within each Trotter
layer, we apply an even number R of Pauli operators X̂ in
sequence to introduce single-qubit Pauli errors in the circuit
(randomized compiling was applied to the layer of R X̂ gates
in each Trotter layer). Note that the ideal versions of these
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FIG. 5. (a) Two-qubit circuit implemented to simulate the Lindblad equation shown in Eq. (33). Before (after) the Trotter layers we
implement a Bell state initialization (measurement). (b) One-qubit circuit used to simulate eternal non-Markovianity and time-dependent
amplitude damping rates. The X̂ operators are introduced to introduce single-qubit Pauli noise in each Trotter layer, therefore R is always
even. (c) Discrete and continuous version of the time-dependent decoherence rates that were used in the quantum simulation in Sec. V B. The
parameters used in the simulations were θ = 2E�t and R = 30.

gates cancel each other for even R, hence the logical circuit
remains the same. However, the waiting time required to im-
plement all R X̂ gates introduces noise in the quantum circuit
in the form of amplitude and phase damping, where the former
is transformed into stochastic Pauli noise via RC.

The quantum simulation results are shown in Fig. 6(a).
We also solved a Lindblad equation with time-dependent
coefficients in a classical computer using a Trotter formula
approach. We find that the quantum and classical simulation
results are similar. For the sake of comparison, in Fig. 6(b),
we plot the results of the same open system model but with
time-independent noise instead, defined as

Dcomp[ρ̂] = 2[(X̂ ρ̂X̂ − ρ̂) + (Ŷ ρ̂Ŷ − ρ̂ ) + (Ẑρ̂Ẑ − ρ̂)].

(32)

The larger decoherence rates in Eq. (32) relatively to Eq. (31)
yield a faster relaxation to the steady state as can be seen in
Fig. 6(b) relatively to Fig. 6(a).

B. Oscillating Pauli decoherence rate

We initialize a two-qubit system in a Bell state |�+〉 =
1√
2
|00〉 + |11〉, evolve the first qubit with the Hamiltonian

Ĥ = EẐ , and measure the populations of the Bell states. On
each Trotter layer, we add two controlled-NOT (CNOT) gates in
order to introduce non-negligible noise to each Trotter layer
(randomized compiling was applied to each pair of CNOT

gates). Note that the logical circuit remains the same because
the CNOT gates cancel each other; however, due to their faulty
implementation, noise is introduced in the circuit. In Fig. 5(a),
we illustrate the quantum circuit implemented on the emulated
quantum device.

For simplicity, we considered the following Lindblad dis-
sipator to be simulated [78]:

Dosc(t )[ρ̂] = �Z (t )
2∑

m=1

(Ẑmρ̂Ẑm − ρ̂)

+ �X,Y

2∑
m=1

(X̂mρ̂X̂m + Ŷmρ̂Ŷm − 2ρ̂), (33)

where we considered time-dependent decoherence rates �Z (t )
for the single-qubit dephasing term Ẑ acting on each qubit
and time-independent decoherence rates �X,Y = 0.2 associ-
ated to single-qubit Pauli interactions X̂ and Ŷ acting on each
qubit. The time-dependent coefficients �Z (t ) follow a Jaynes-

FIG. 6. Results of the digital quantum simulations performed with controlled noise (dots) and classically solved Lindblad equa-
tions (crosses). (a) Eternal non-Markovianity results. (b) Same open system as in (a) but with time-independent Lindblad dissipators as shown
in Eq. (32). (c) Lindblad dissipator with oscillating decoherence rate as per Eq. (33). We executed 180(C (loc)

tot )2 [see Eq. (11)] circuits for each
data point with E = π (arb. units).
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FIG. 7. Results of the digital quantum simulations performed with controlled noise (dots) and classically solved Lindblad equa-
tions (crosses). (a) Time-dependent amplitude damping [�AD = 1 + tanh(t )] and time-independent dephasing (�Z = 1) Lindblad dissipators.
(b) Time-independent dephasing Lindblad dissipator with �AD = 0 and �Z = 1. We executed 180(C (loc)

tot )2 [see Eq. (11)] circuits for each data
point with E = 2.1π (arb. units).

Cummings model for a system of two qubits where each
one interacts with a detuned optical cavity characterized by
a Lorentzian spectral function [78]. Additionally, we added,
for the sake of demonstration, Lindblad dissipators with time-
independent coefficients as shown in the last line of Eq. (33).
All other remaining two-qubit dissipative Pauli interactions in
the quantum circuit have been fully mitigated. We discretized
�Z (t ) as shown in Fig. 5(c). We remark that, as discussed in
Sec. III, noise can be independently controlled for each qubit
or pair of qubits, hence the amount of mitigated noise can vary
among the qubits. This has been demonstrated in Ref. [24]
for the case of time-independent noise and its extension to
time-dependent decoherence rates follows from the imple-
mentation of layer-dependent noise mitigation introduced in
Sec. II B 4 and the decoherence rate discretization outlined in
Sec. IV B.

In Fig. 6(c), we show the results of measuring the pop-
ulation terms of the density matrix in the Bell basis for
the quantum and classical simulations. We observe that the
quantum simulation results follow closely the classically
solved ones.

C. Time-dependent amplitude damping rate

We implement the same one-qubit circuit used in Sec. V A
and illustrated in Fig. 5(b). We renormalize the Hamiltonian
to Ĥ = EX̂ , and implement the following phenomenological
Lindblad dissipator:

D(num)
AD (t )[ρ̂] = �AD(t )

(|0〉 〈1|ρ̂|1〉 〈0| − 1
2 {|0〉〈1|, ρ̂})

+ �Z (Ẑρ̂Ẑ − ρ̂ ), (34)

where �Z = 1 denotes a time-independent decoherence rate
and �AD(t ) = 1 + tanh(t ). We control the dephasing noise
arising from Ẑ and fully mitigate the remaining Pauli dis-
sipative interactions, namely X̂ and Ŷ . In order to simulate
time-dependent amplitude damping, we chose Û = V̂ = Î in
Eq. (30) and we controlled via our decoherence rate control
scheme II the extra Ẑ Pauli string that arises from apply-
ing the generalized reset channel, as represented by the last
term in Eq. (30). We considered the application of the reset

operation to last about 250 ns, similar to two-qubit gates,
and a failure reset channel Eer = per Îρ̂ Î + (1 − per )R(t )[ρ̂],
per ≈ 10−3 being the reset failure probability, in accordance
to previous reports [74,75].

In Figs. 7(a) and 7(b), we plot the quantum and classi-
cal simulation outcomes of measuring the population terms
of the density matrix with and without amplitude damping
[�AD(t ) = 0], respectively. As expected, we observe that os-
cillations in the population terms show a smaller amplitude
with the time-dependent amplitude damping dissipator in
Fig. 7(a) than without it as shown in Fig. 7(b). We also remark
that the reset failure probability has an error probability about
one order of magnitude smaller than the ones we are simulat-
ing, hence the simulation’s accuracy is not compromised. This
reset failure probability can also be mitigated by adjusting the
probabilities p(t ) in Eq. (25).

VI. CONCLUSION

In this paper, relevant to the field of noise-assisted
digital quantum simulations [24], we have targeted large-
scale open quantum systems. Our contributions are twofold.
First, we have integrated a circuit-aware mitigation pro-
tocol, as delineated in Ref. [38], into the foundational
noise-assisted quantum simulation algorithm. This integration
results in a dramatic reduction in sampling cost com-
pared to traditional, circuit-blind partial error mitigation
strategies. Second, we introduce a decoherence rate control
scheme that further minimizes sampling requirements, es-
pecially in scenarios involving high error rates and larger
systems—areas that are pertinent for large-scale open system
simulations.

Furthermore, we extend the noise-assisted simulation al-
gorithm to include Lindblad equations with time-dependent
coefficients. By incorporating time-dependent mitigation fac-
tors alongside our proposed decoherence rate control scheme,
we enable the simulation of time-dependent (positive and neg-
ative) decoherence rates, thereby capturing non-Markovian
dynamics. We validate these enhancements through simula-
tions involving one- and two-qubit non-Markovian systems.
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Looking ahead, several intriguing avenues for future re-
search emerge. One immediate goal is the experimental
validation of our optimized noise-assisted simulation algo-
rithm on actual quantum hardware, which together with the
recently proposed tensor-network error mitigation technique
[79], may provide even lower circuit execution overhead.
Constraints like extended device access times have pre-
vented real-device implementation in this paper. Moreover,
the algorithm’s adaptability to different quantum computing
paradigms, such as ion-trap systems with full qubit connec-
tivity, could offer additional opportunities for optimization.
Lastly, extending the algorithm to solve other dynamical equa-
tions like the Redfield or hierarchical equations of motion
could further broaden its applicability.
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