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We consider the problem of determining the state of an unknown quantum sequence without error. The
elements of the given sequence are drawn with equal probability from a known set of linearly independent
pure quantum states with the property that their mutual inner products are all real and equal. This problem
can be posed as an instance of unambiguous state discrimination where the states correspond to that of all
possible sequences having the same length as the given one. We calculate the optimum probability by solving
the optimality conditions of a semidefinite program. The optimum value is achievable by measuring individual
members of the sequence, and no collective measurement is necessary.
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I. INTRODUCTION

One of the remarkable features of quantum theory that
shows a radical departure from classical physics is that distinct
quantum states may not be reliably distinguished from one
another. In particular, if a quantum system is prepared in one
of two nonorthogonal states |ψ1〉 and |ψ2〉, then no quantum
measurement could determine the state of the system with cer-
tainty. In other words, quantum theory allows us to distinguish
only between orthogonal states.

Even though nonorthogonal states cannot be reliably dis-
tinguished, one may still try to glean as much “which state”
information as possible. Consider a quantum system prepared
in one of several nonorthogonal states |ψ1〉, |ψ2〉, . . . , |ψN 〉,
but we do not know which one. The objective is to determine,
as well as possible, the state of the system by performing
a suitable measurement. This problem is known as quantum
state discrimination (see [1–3] for excellent reviews).

Two approaches are usually considered to study a state
discrimination problem. The first is known as minimum-
error discrimination, which aims to design a measurement
that minimizes the average error and applies to any set of
nonorthogonal states. For two states |ψ1〉 and |ψ2〉 with prior
probabilities p1 and p2, the maximum probability of success
is given by 1 − pe, where

pe = 1
2 (1 −

√
1 − 4p1 p2|〈ψ1|ψ2〉|2) (1)

is the minimum probability of error [4].
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The second strategy is called unambiguous discrimination,
which seeks definite knowledge of the state balanced against
a probability of failure. Here a measurement outcome either
correctly identifies the given state or is inconclusive, in which
case, we do not learn anything about the state. Once again, for
the two-state problem, the maximum probability of success is
given by 1 − pI , where

pI = 2
√

p1 p2|〈ψ1|ψ2〉| (2)

is the minimum probability for an inconclusive result [5–8].
Unlike minimum-error discrimination, which applies to any
set of states, unambiguous discrimination is possible if and
only if the given states are linearly independent [9]. Finding
optimal solutions, however, is considerably hard in general
(for different approaches and solutions for specific cases see
[10–20]).

In this paper we consider a variant of the state discrim-
ination problem, namely, sequence discrimination, where,
instead of learning about the state of a single quantum system
as in state discrimination, we wish to do the same about the
state of a sequence of quantum systems. We note that a closely
related problem, viz., quantum state comparison, where the
objective is to determine if the members of a given sequence
are all identical or all different, has been studied before [17].

Sequence discrimination can be described as follows. Sup-
pose that we are given a sequence of pure quantum states,
where each member (of the given sequence) belongs to a
known set of states (this set will sometimes be referred to
as the parent). We do not know the identity of the individual
members but have complete information about the parent set.
The objective is to learn about the given sequence as well
as allowed by quantum theory. As we will explain, for a
given sequence of finite length, this amounts to discriminating
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between all sequences of the same length constructed from
the parent set. Since every sequence, by construction, is in
a product state, sequence discrimination is an instance of
state discrimination where the concerned states are all product
states.

As in a state discrimination problem, one could consider
either the minimum-error or unambiguous discrimination
strategy for sequence discrimination. Here we focus on the
latter as we wish to identify the state of a given sequence
without error. This would be possible, as we know from [9],
if and only if the states corresponding to all sequences of
the same length form a linearly independent set, a condition
fulfilled if and only if the parent set is linearly independent
[17]. Therefore, one could determine the state of any given
sequence with a nonzero probability, provided the parent set is
linearly independent, and assuming this is indeed the case, one
would then like to know the optimum success probability and
the corresponding measurement. The present paper is about
answering these two questions.

To solve this problem with full generality, besides the
requirement that the parent set must consist of linearly inde-
pendent states, one would set the associated prior probabilities
to be different and the mutual inner products to be unequal and
complex. However, in this work we do not attempt to solve the
most general scenario; instead, we assume that the elements of
the parent set are all equally probable and the inner products
are all real and equal and solve the sequence discrimination
problem completely. The optimum success probability is com-
puted by solving the optimality conditions of a semidefinite
program. We find that the optimum value is achievable by
measuring individual members of the sequence and no collec-
tive measurement is necessary, even though the states under
consideration are all product states.

One may have noticed that our problem is motivated by
the working of quantum key distribution protocols, especially
B92 [21] and its generalizations. Recall that in the B92 proto-
col [21], Alice sends a sequence of quantum systems, where
each system is prepared in one of two nonorthogonal pure
states, to Bob, who performs an unambiguous discrimination
measurement on each of them to determine its state. In order
to generate the secret key, the conclusive outcomes are kept
and the inconclusive outcomes are discarded. A generaliza-
tion of this protocol involves Alice sending a sequence of
quantum states, where each state is chosen from a linearly
independent set, so unambiguous discrimination is possible.
Note that the protocol requires Bob to measure the quantum
systems individually as and when he receives them. However,
one could ask whether Bob could do better by performing a
joint measurement on the whole sequence (assuming Bob has
access to quantum memory). Of course, this comes with the
drawback that if the outcome is inconclusive, they will need
to discard the entire sequence, but the possible upshot is that
a joint measurement could increase the probability of identi-
fying the sequence correctly. However, our result shows that
Bob gains no advantage by choosing a collective measurement
over measuring the systems individually.

The paper is organized as follows. Section II discusses
the sequence discrimination problem in detail, presents the
necessary lemmas related to the properties of a collection
of pure states with mutual inner products all being real and

equal, and states the main result as Theorem 1. In Sec. III we
discuss the semidefinite programming (SDP) formulation of
unambiguous state discrimination. Section IV proves the main
result by solving the optimality conditions of the relevant SDP.
This section is divided into four subsections for easy reading
and understanding of the proof. We conclude the paper with
a brief review of the results and a discussion of the open
problems in Sec. V.

II. SEQUENCE DISCRIMINATION: FORMULATION
AND MAIN RESULT

We begin by describing the general formulation. Consider
an unknown sequence of k ∈ N quantum systems, each pre-
pared in a state chosen from a known parent set {pi, |ψi〉 : 2 �
i � N}, where pi is the prior probability associated with |ψi〉.
The objective is to determine the sequence (more precisely,
the state of the sequence) as well as possible. This can be
posed as a state discrimination problem.

Let [n] = {1, 2, . . . , n : n ∈ N} denote the set of natural
numbers from 1 to n and F (k, N ) be the set of all functions
from [k] to [N]. Then the state of a sequence is a product state
of the form

|ψσ 〉 = |ψσ (1)〉 ⊗ · · · ⊗ |ψσ (k)〉, σ ∈ F (k, N ).

To learn about a given sequence of length k, we therefore need
to distinguish between all such possible sequences. These
sequences form the set

{pσ , |ψσ 〉 : σ ∈ F (k, N )}, (3)

where pσ = pσ (1) pσ (2) · · · pσ (k) is the prior probability associ-
ated with the sequence state |ψσ 〉. The cardinality of the above
set is Nk . The sequence discrimination problem is therefore a
state discrimination problem involving states belonging to the
set defined by (3).

Here we consider the problem of unambiguous sequence
discrimination. This requires {|ψσ 〉} to be linearly indepen-
dent, a condition that is satisfied (for any k � 1) if and only if
{|ψi〉} is linearly independent [17]. In other words, any given
sequence of unknown pure states can be correctly determined
with nonzero probability if and only if it is composed of states
drawn from a linearly independent set.

Let us now assume that {|ψi〉} is a set of linearly indepen-
dent states and further assume that they are equally likely,
i.e., pi = 1

N for all i = 1, . . . , N . This implies that the el-
ements of {|ψσ 〉} are also linearly independent and equally
likely with pσ = 1

Nk . Since the elements of {|ψσ 〉} are linearly
independent, they can be unambiguously distinguished. A
lower bound on the optimum success probability can be easily
obtained.

Lemma 1. Let p and pN,k be the respective probabilities for
unambiguous optimal discrimination among the elements of
{|ψi〉} and {|ψσ 〉}. Then

pN,k � pk . (4)

Proof. First note that every member of a given sequence
is an element of {|ψi〉}. Let the optimal measurement that
unambiguously distinguishes between the elements of {|ψi〉}
be M. Then, by performing this measurement on individual
members of the sequence, we can determine the state of each
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of them with probability p. Thus the state of the sequence can
be correctly determined with probability pk (note that for the
lower bound to hold the probability distribution need not be
uniform). �

The lower bound in (4) is obtained by the strategy that
unambiguously determines the state of each member of the
sequence separately. However, such a strategy could well be
suboptimal. The reasoning goes as follows: Since {|ψσ 〉} is a
collection of linearly independent product states, to optimally
distinguish between them, a joint measurement on the whole
system may be necessary and, if so, inequality (4) would be
strict. Indeed, there are instances where joint measurements
are required to optimally distinguish between product states
(see, e.g., [22–24]).

The main contribution of this paper is to show that if the
states |ψi〉, in addition to being linearly independent, have the
property that their mutual inner products are all real and equal,
then equality holds in (4). Therefore, the optimum proba-
bility to unambiguously determine the state of an unknown
sequence, whose elements are drawn with equal probability
from a set of linearly independent states with real and equal
inner products, can be achieved by measuring the members of
the sequence individually.

The following results are proved in [20]. The first gives
us the condition under which a collection of pure states, with
inner products real and equal, can be linearly independent.

Lemma 2 (from [20]). Let SN = {|ψi〉 : 2 � i � N} be a
set of pure states with the property 〈ψi|ψ j〉 = s ∈ R for
i �= j. The states are linearly independent if and only if s ∈
(− 1

N−1 , 1).
The lemma tells us that once we require the inner products

to all be real and equal to, say, s, then the states |ψi〉 cannot
be linearly independent for all permissible values of s; they
are linearly independent provided s ∈ (− 1

N−1 , 1). The proof
follows by requiring the Gram determinant to be greater than
0, which is an equivalent criterion for linear independence.

For a set of linearly independent, equally likely pure states
with real and equal inner products, the following lemma tells
us how well they can be distinguished unambiguously.

Lemma 3 (from [20]). Let SN = {|ψi〉 : 2 � i � N} be a
set of equally likely, linearly independent pure states with
the property 〈ψi|ψ j〉 = s for i �= j, where s ∈ (− 1

N−1 , 1).
Then the optimum probability for unambiguous discrimina-
tion among the states |ψi〉 is

p =
{

1 − s, s ∈ [0, 1)

1 + (N − 1)s, s ∈ ( − 1
N−1 , 0

]
.

The proof can be found in [20] (the result in [20] was more
general and was proved for states having equal inner products,
real or complex). The basic idea is to attach an ancilla with
the given system (in an unknown state), apply a joint unitary
transformation on the whole system, and finally measure the
ancilla in an orthogonal basis. By choosing an appropriate
unitary transformation, the measurement on the ancilla maps
the system of interest onto the unambiguous subspace with a
nonzero probability.

We now state our main result.
Theorem 1. Let SN,k = {|ψσ 〉 ≡ |ψσ (1)〉 ⊗ · · · ⊗ |ψσ (k)〉 :

σ ∈ F (k, N )} be the set of all sequences of k states, where

each member of a sequence is drawn from SN (defined in
Lemma 3) with equal probability (hence, the sequences are all
equiprobable). Then the optimum probability of unambiguous
discrimination between the elements of SN,k is

pN,k =
{

(1 − s)k, s ∈ [0, 1)

[1 + (N − 1)s]k, s ∈ ( − 1
N−1 , 0

]
.

This probability is achievable by measuring the individual
systems forming a sequence.

From Lemma 3 and Theorem 1 we see that pN,k = pk

for all s ∈ (− 1
N−1 , 1). We will prove this theorem by solving

the optimality conditions of a semidefinite program. So we
proceed by formulating the unambiguous state discrimination
problem as an SDP and deriving the dual problem.

III. SDP FORMULATION

Given a set of N linearly independent pure states |χi〉 with
prior probabilities ηi, the problem of unambiguous discrimi-
nation can be cast as an SDP [18,19]. The primal problem is

maximize
p

η · p

subject to � − P 	 0,

p 	 0. (5)

Here η = (η1, . . . , ηN ) and p = (p1, . . . , pN ), where pi is
the SDP variable representing the probability of success-
fully detecting the input |χi〉; � is the Gram matrix whose
elements are �i j = 〈χi|χ j〉 and P = diag(p1, . . . , pN ). The
first constraint says that the matrix � − P should be positive
semidefinite and the second constraint is simply the positive
semidefiniteness of the probabilities pi.

To construct the dual SDP, we first construct the
Lagrangian

L(p, Z, z) = η · p + tr[(� − P)Z] + z · p,

where the dual variable Z is an N × N real symmetric matrix
and z is a real N-tuple. If Z, z 	 0, then L(p, Z, z) � η · p̃
for any feasible solution p̃ of the primal SDP. Therefore, the
inequality must also hold for the optimum p, say, p∗, which
implies that L(p∗, Z, z) � η · p∗. With this in mind, we define
the Lagrange dual function

g(Z, z) = sup
p

L(p, Z, z)

and note that it satisfies g(Z, z) � maxp η · p. The dual SDP
seeks to

minimize
Z,z

g(Z, z)

subject to Z, z 	 0.

Consider a family of N × N matrices {Fi} for i = 1, . . . , N ,
where each Fi has exactly one nonzero element −1 at position
(i, i). Now note that

g(Z, z) = sup
p

L(p, Z, z)

= sup
p

{η · p + tr[(� − P)Z] + z · p}
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= sup
p

(
N∑

i=1

pi[zi + ηi + tr(FiZ )] + tr(�Z )

)

=
{

tr(�Z ) if zi + ηi + tr(FiZ ) = 0 ∀ i
∞ otherwise.

Therefore, the dual problem becomes

minimize
Z,z

tr(�Z )

subject to zi + ηi + tr(FiZ ) = 0,

Z, z 	 0.

In the next section we prove the main result.

IV. PROOF OF THEOREM 1

Proof outline. First note that the primal problem is convex
and there exists a p (equivalently P) that is strictly feasible.
Under these conditions, Slater’s theorem guarantees that the
strong duality holds, and the duality gap is zero. The way
we will proceed is the following. We will present an ansatz
P and obtain a solution for the primal problem, which is not
necessarily optimal. Then we will present candidates for the
dual variables Z and z and show that this makes the dual
value equal to the primal one. Since strong duality holds, this
implies that our ansatz must be the optimal solution for the
primal problem.

A. Technical lemmas

First we will prove a couple of technical lemmas.
Lemma 4. If A is a block matrix with each block being a

diagonal matrix of the same size, then A is similar to a block-
diagonal matrix.

Proof. Let

A =

⎛
⎜⎜⎝

A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...

An1 An2 · · · Ann

⎞
⎟⎟⎠,

where the Ai j’s are diagonal matrices of size m × m. Let αi jk

denote the k-th diagonal entry of Ai j . Then

A =
n∑

i, j=1

m∑
k=1

αi jkE (n)
i j ⊗ E (m)

kk , (6)

where E (t )
μν is a t × t matrix whose (μ, ν)th entry is 1 and

all other entries are 0. Now, if U and V are square matrices,
then U ⊗ V = P−1(V ⊗ U )P for some permutation matrix P
that depends only on the dimensions of U and V [25]. It
then follows that A is similar to

∑n
i, j=1

∑m
k=1 αi jkE (m)

kk ⊗ E (n)
i j ,

which has the block-diagonal form⎛
⎜⎜⎝

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dm

⎞
⎟⎟⎠,

where the (i, j) entry of Dk is αi jk . �
Lemma 5. Let 	 be a real n × n matrix of the form

	 =

⎛
⎜⎜⎝

1 r · · · r
r 1 · · · r
...

...
. . .

...

r r · · · 1

⎞
⎟⎟⎠, r ∈ R. (7)

The distinct (except when r = 0) eigenvalues of 	 are 1 − r
and 1 + (n − 1)r.

Proof. The characteristic polynomial is

det(	 − λI ) = det

⎛
⎜⎜⎝

1 − λ r · · · r
r 1 − λ · · · r
...

...
. . .

...

r r · · · 1 − λ

⎞
⎟⎟⎠ = det

⎛
⎜⎜⎝

h − λ r · · · r
h − λ 1 − λ · · · r

...
...

. . .
...

h − λ r · · · 1 − λ

⎞
⎟⎟⎠,

{
C1 → C1 + · · · + Cn

h = 1 + (n − 1)r

= (h − λ) det

⎛
⎜⎜⎝

1 r · · · r
1 1 − λ · · · r
...

...
. . .

...

1 r · · · 1 − λ

⎞
⎟⎟⎠ = (h − λ) det

⎛
⎜⎜⎝

1 r · · · r
0 1 − r − λ · · · 0
...

...
. . .

...

0 0 · · · 1 − r − λ

⎞
⎟⎟⎠,

{
Ri → Ri − R1

i �= 1

= (h − λ)(1 − r − λ)n−1.

The distinct (except for r = 0) eigenvalues are therefore 1 − r and h = 1 + (n − 1)r. �

B. Eigenvalues of the Gram matrix

First we would like to calculate the eigenvalues of �(N, k),
the Gram matrix of the states of SN,k . We begin by finding the
eigenvalues of �(N, 1), which is a real N × N matrix

�(N, 1) =

⎛
⎜⎜⎝

1 s · · · s
s 1 · · · s
...

...
. . .

...

s s · · · 1

⎞
⎟⎟⎠, s ∈

(
− 1

N − 1
, 1

)
. (8)

The eigenvalues of �(N, 1) are immediately obtained by ap-
plying Lemma 5.

Lemma 6. The distinct (except when s = 0) eigenvalues of
�(N, 1) are 1 − s and 1 + (N − 1)s, where s ∈ (− 1

N−1 , 1).
The proof follows from Lemma 5.
We will use Lemmas 4 and 5 to calculate the eigenvalues

of �(N, k).
Theorem 2. The eigenvalues of �(N, k) are of the form

(1 − s)a[1 + (N − 1)s]b for non-negative integers a and b sat-
isfying a + b = k.
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Proof. We will prove the theorem by induction on k. For
the proof, we will need the following result that shows the
connection between �(N, l + 1) and �(N, l ), where l ∈ N.

Lemma 7. The Gram matrix of the states of SN,l+1 is given
by

�(N, l + 1) =

⎡
⎢⎢⎣

�(N, l ) s�(N, l ) · · · s�(N, l )
s�(N, l ) �(N, l ) · · · s�(N, l )

...
...

. . .
...

s�(N, l ) s�(N, l ) · · · �(N, l )

⎤
⎥⎥⎦.

(9)

Proof. For ease of understanding, denote the elements
of SN,l by |φi〉, where i = 1, . . . , Nl . Then the elements of
SN,l+1 are of the form |φi〉 ⊗ |ψ j〉 for i = 1, . . . , Nl and j =
1, . . . , N . Then it holds that �(N, l + 1) must be of the form
given by (9), where the (x, y)-th entry of the (i, j)-th block is
the inner product between |φx〉 ⊗ |ψi〉 and |φy〉 ⊗ |ψ j〉. �

From Lemma 6 we know the result holds for k = 1. Now
assume the result is true for k = l .

Let G be a matrix such that G�(N, l )G−1 is diagonal of the
form

α =

⎛
⎜⎝α1

. . .

αm

⎞
⎟⎠,

where m = Nl and let

R =

⎛
⎜⎝G

. . .

G

⎞
⎟⎠,

where the number of G matrices along its diagonal is N . Then

R�(N, l + 1)R−1 =

⎡
⎢⎢⎢⎣

G�(N, l )G−1 sG�(N, l )G−1 · · · sG�(N, l )G−1

sG�(N, l )G−1 G�(N, l )G−1 · · · sG�(N, l )G−1

...
...

. . .
...

sG�(N, l )G−1 sG�(N, l )G−1 · · · G�(N, l )G−1

⎤
⎥⎥⎥⎦

=

⎛
⎜⎜⎝

α sα · · · sα
sα α · · · sα
...

...
. . .

...

sα sα · · · α

⎞
⎟⎟⎠,

where we have used α = G�(N, l )G−1.
By Lemma 4, �(n, l + 1) is therefore similar to a block-

diagonal matrix ⎛
⎜⎝D1

. . .

Dm

⎞
⎟⎠,

where

Di =

⎛
⎜⎜⎝

αi sαi · · · sαi

sαi αi · · · sαi
...

...
. . .

...

sαi sαi · · · αi

⎞
⎟⎟⎠ = αi�(N, 1).

Now, by the induction hypothesis,

αi = (1 − s)a[1 + (N − 1)s]b

for non-negative integers a and b satisfying a + b = l . Thus
the eigenvalues of Di are (1 − s)a+1[1 + (N − 1)s]b or (1 −
s)a[1 + (N − 1)s]b+1. Therefore, the result holds for k = l +
1, proving the theorem. �

C. Feasible solution for the primal problem

Having found the eigenvalues of �(N, k), we will now
guess an ansatz for p (equivalently P) and then show that
�(N, k) − P(N, k) is positive semidefinite.

Theorem 3. �(N, k) − P(N, k) is positive semidefinite,
where

P(N, k) =
{

(1 − s)kI, s ∈ [0, 1)
[1 + (N − 1)s]kI, s ∈ (− 1

N−1 , 0]

and I is the Nk × Nk identity matrix.
Proof. First note that �(N, k) and P(N, k) are diagonaliz-

able in the same basis as P(N, k) is a scalar multiple of the
identity. To show that [�(N, k) − P(N, k)] is positive semidef-
inite, we use the fact that when two positive-semidefinite
matrices M1 and M2 are diagonalizable in the same basis,
M1 − M2 is positive semidefinite if the smallest eigenvalue of
M1 is greater than or equal to the largest eigenvalue of M2.

First consider the case s ∈ [0, 1). We see that

(1 − s)a[1 + (N − 1)s]b � (1 − s)a(1 − s)b = (1 − s)k

since [1 + (N − 1)s]b � (1 − s)b as N � 2 and a + b = k.
Now consider s ∈ (− 1

N−1 , 0]. Here we have

(1 − s)a[1 + (N − 1)s]b � [1 + (N − 1)s]a[1 + (N − 1)s]b

= [1 + (N − 1)s]k

since [1 + (N − 1)s]b � 1 and (1 − s)a � 1 for s ∈
(− 1

N−1 , 0]. Therefore, �(N, k) − P(N, k) is positive
semidefinite for s ∈ (− 1

N−1 , 1). �
Theorem 3 shows that the ansatz

P(N, k) =
{

(1 − s)kI, s ∈ [0, 1)

[1 + (N − 1)s]kI, s ∈ ( − 1
N−1 , 0

] (10)
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will work if there exist positive-semidefinite Z and a vector
z 	 0 such that

tr[�(N, k)Z] =
{

(1 − s)k, s ∈ [0, 1)

[1 + (N − 1)s]k, s ∈ ( − 1
N−1 , 0

] (11)

and zi + ηi + tr(FiZ ) = 0 for all i = 1, . . . , Nk .

D. Optimal solution

First we show that one can indeed find a suitable Z
satisfying (11).

Theorem 4. For any choice of N, k ∈ N there exists an
Nk × Nk positive-semidefinite matrix Z (N, k) with diagonal

entries 1/Nk such that

tr[�(N, k)Z (N, k)] =
{

(1 − s)k, s ∈ [0, 1)

[1 + (N − 1)s]k, s ∈ ( − 1
N−1 , 0

]
.

(12)

Proof. To prove the theorem we proceed by induction on k.
First consider the case s ∈ [0, 1). For k = 1 let

Z (N, 1) = 1

N

⎛
⎜⎜⎜⎝

1 − 1
(N−1) · · · − 1

(N−1)

− 1
(N−1) 1 · · · − 1

(N−1)
...

...
. . .

...

− 1
(N−1) − 1

(N−1) · · · 1

⎞
⎟⎟⎟⎠.

Then by Lemma 5 the eigenvalues of Z (N, 1) are 1
N−1 and

0. Hence it is positive semidefinite. With the above choice of
Z (N, 1) we have

tr[�(N, 1)Z (N, 1)] = 1

N
tr

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎝

1 s · · · s
s 1 · · · s
...

... · · · ...

s s · · · 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

1 − 1
(N−1) · · · − 1

(N−1)

− 1
(N−1) 1 · · · − 1

(N−1)
...

...
. . .

...

− 1
(N−1) − 1

(N−1) · · · 1

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦

= 1 − s.

Now assume the result holds for k = l , i.e.,
tr[�(N, l )Z (N, l )] = (1 − s)l and Z (N, l ) is positive
semidefinite. First we will show that the trace equality
holds for k = l + 1 for l � 1. Define

Z (N, l + 1) = 1

N

⎛
⎜⎜⎜⎜⎝

Z (N, l ) − Z (N,l )
(N−1) · · · − Z (N,l )

(N−1)

− Z (N,l )
(N−1) Z (N, l ) · · · − Z (N,l )

(N−1)
...

...
. . .

...

− Z (N,l )
(N−1) − Z (N,l )

(N−1) · · · Z (N, l )

⎞
⎟⎟⎟⎟⎠,

l � 1.

Then

tr[�(N, l + 1)Z (N, l + 1)] = tr[�(N, l )Z (N, l )]

− s tr[�(N, l )Z (N, l )]

= (1 − s)tr[�(N, l )Z (N, l )]

= (1 − s)l+1,

which proves the equality holds for k = l + 1.
What remains to be shown is that Z (N, l + 1) is positive

semidefinite. The eigenvalues of Z (N, l + 1) are obtained
by applying Theorem 2 with s = − 1

N−1 . The eigenvalues
are either 0 or 1

N ( N
N−1 )l+1, where the nonzero eigenvalue

is obtained for a = l + 1 and b = 0. Therefore, Z (N, k) is
positive semidefinite for k = l + 1. Since we have already
shown that Z (N, 1) is positive semidefinite, Z (N, k) is positive
semidefinite, for all k � 1.

Now consider s ∈ (− 1
N−1 , 0]. For k = 1 let

Z (N, 1) = 1

N

⎛
⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎞
⎟⎟⎠.

Once again, by applying Lemma 6 we find that the eigenvalues
of Z (N, 1) are 1 and 0. Hence it is positive semidefinite.

Now with the above choice of Z (N, 1),

tr[�(N, 1)Z (N, 1)]

= 1

N
tr

⎡
⎢⎢⎣

⎛
⎜⎜⎝

1 s · · · s
s 1 · · · s
...

... · · · ...

s s · · · 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 1 · · · 1
1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= 1 + (N − 1)s.

As before, we assume the result holds for k = l , i.e.,
tr[�(N, l )Z (N, l )] = [1 + (N − 1)s]l and Z (N, l ) is positive
semidefinite. We first show that the trace equality holds for
k = l + 1 for l � 1. Define

Z (N, l + 1) = 1

N

⎛
⎜⎜⎝

Z (N, l ) Z (N, l ) · · · Z (N, l )
Z (N, l ) Z (N, l ) · · · Z (N, l )

...
...

. . .
...

Z (N, l ) Z (N, l ) · · · Z (N, l )

⎞
⎟⎟⎠,

l � 1.
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Then

tr[�(N, l + 1)Z (N, l + 1)]

= tr[�(N, l )Z (N, l )] + (N − 1)s tr[�(N, l )Z (N, l )]

= [1 + (N − 1)s]tr[�(N, l )Z (N, l )]

= [1 + (N − 1)s]l+1.

Therefore, the trace equality holds for k = l + 1. What re-
mains to be shown is that Z (N, l + 1) is positive semidefinite.
Now note that Z (N, l + 1) is an Nl+1 × Nl+1 matrix whose
all elements are 1

Nl+1 . Therefore, its eigenvalues are 0 and
1; hence, Z (N, l + 1) is positive semidefinite. Since we have
already shown Z (N, 1) is positive semidefinite, this completes
the proof.

Thus we have proved the existence of positive-semidefinite
Z (N, k) that satisfies the trace equality (12) for all
s ∈ (− 1

N−1 , 1). �
Since ηi = 1/Nk for all i, by choosing z = 0 (null vector),

one has zi + ηi + tr(FiZ ) = 0 for all i. This completes the
proof of our main result, Theorem 1.

Let us briefly go through the key elements of the proof
once again. The proof was based on guessing an appropriate
primal variable p (equivalently P) and showing its optimality.
Since the primal problem is convex with a nonempty feasible
set, strong duality holds. We showed that there exist feasible
dual variables Z and z such that tr(�Z ) = η · p, which is the
dual objective function; hence, our guessed p is the optimal
solution.

V. CONCLUSION

We considered the problem of unambiguously determining
the state |ψσ 〉 of an unknown quantum sequence of length
k � 1, where the elements of the given sequence are drawn
with equal probability from a set of linearly independent
pure states SN = {|ψi〉 : 2 � i � N} with real and equal inner
products. This (and even the most general one without any
assumption about inner product and/or prior probabilities)
can be posed as an unambiguous state discrimination problem,
where the objective is to discriminate between the states of all
such possible sequences.

Let SN,k = {|ψσ 〉} be the set of all possible sequences of
length k. Let p and pN,k be the optimum probabilities for un-
ambiguously discriminating between the elements of SN and
SN,k , respectively. A simple argument shows that pN,k � pk ,
where the lower bound is achievable by measuring individual
members of the sequence. Since any sequence of length k is
a composite quantum system comprising k subsystems, one
might expect the inequality, in general, to be strict, i.e., pN,k >

pk , and to achieve the optimum value, a joint measurement is
required.

Following earlier works on unambiguous state discrimi-
nation [18,19], we formulated the sequence discrimination
problem as an SDP and calculated the optimum probabil-
ity by solving the optimality conditions. In particular, we

showed that pN,k = pk; thus, the optimum value is achieved
by performing measurements on the individual members of
the sequence.

Several problems in this context are still left open. First
is where the inner products of the states |ψi〉 belonging to the
parent set SN are equal but complex. For k = 1, this reduces to
the standard unambiguous state discrimination problem which
has been solved completely [20]. However, we could not solve
the sequence discrimination problem in this scenario using the
same approach.

Second is a more general scenario where SN is simply a set
of linearly independent pure states without any restrictions on
the inner products. In this case, we carried out thousands of
numerical SDP experiments with a limited number of parent
states and very short sequences, namely, N = 3 and k = 2, 3,
and the results (assuming uniform prior probabilities) seemed
to suggest that the optimum value, once again, is achievable
by measuring the individual members without requiring any
joint measurement.

In our scenario, as well as in more general ones (which
we could not solve), repetitions of states are allowed in a
sequence. The third problem considers the situation where it
is not. Restrict k < N and by S′

N,k denote the set of sequences
of length k, where no element is repeated. If we let G (k, N )
be the set of injective functions from [k] to [N], then

S′
N,k = {|ψτ (1)〉 ⊗ · · · ⊗ |ψτ (k)〉 : τ ∈ G (k, N )}.

The cardinality of this set is N Pk = N!

(N − k)!
(note that the

injective functions from [k] to [N] for k � N correspond to
the permutation of k objects chosen from N objects). Now
assume that the inner products of the states |ψi〉 are equal and
positive, say, s > 0. Then S′

N,k ⊂ SN,k , where SN,k is the set of
sequences considered in this paper. Under these restricted con-
ditions, numerical experiments (N = 3, k = 3) still suggest
that the optimal probability for distinguishing between the
elements of S′

N,k unambiguously once again obeys (1 − s)k .
However, for arbitrary values of both N and k, whether one
could benefit from collective measurements in this scenario is
an interesting problem to consider in the future.

To summarize, sequence discrimination considers the
problem of distinguishing between sequences of some fixed
length whose members are drawn from a set of pure states,
the parent set. In an unambiguous sequence discrimination
problem, the parent set must consist of linearly independent
states; otherwise unambiguous discrimination will not be pos-
sible. We showed that if the elements of the parent set have the
property that the inner products are all real and equal, then op-
timal unambiguous sequence discrimination does not require
collective measurements and measuring the individual mem-
bers will suffice. However, whether collective measurements
would be necessary for general scenarios, without assump-
tions about inner products or prior probabilities, remains open,
and so far our numerical attempts have failed to yield a
counterexample.

052222-7



GUPTA, MURSHID, AND BANDYOPADHYAY PHYSICAL REVIEW A 109, 052222 (2024)

[1] A. Chefles, Quantum state discrimination, Contemp. Phys. 41,
401 (2000).

[2] S. M. Barnett and S. Croke, Quantum state discrimination, Adv.
Opt. Photon. 1, 238 (2009).

[3] J. Bae and L.-C. Kwek, Quantum state discrimination and its
applications, J. Phys. A: Math. Theor. 48, 083001 (2015).

[4] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic, New York, 1976).

[5] I. D. Ivanovic, How to differentiate between non-orthogonal
states, Phys. Lett. A 123, 257 (1987).

[6] D. Dieks, Overlap and distinguishability of quantum states,
Phys. Lett. A 126, 303 (1988).

[7] A. Peres, How to differentiate between non-orthogonal states,
Phys. Lett. A 128, 19 (1988).

[8] G. Jaeger and A. Shimony, Optimal distinction between two
non-orthogonal quantum states, Phys. Lett. A 197, 83 (1995).

[9] A. Chefles, Unambiguous discrimination between linearly in-
dependent quantum states, Phys. Lett. A 239, 339 (1998).

[10] A. Peres and D. Terno, Optimal distinction between non-
orthogonal quantum states, J. Phys. A: Math. Gen. 31, 7105
(1998).

[11] A. Chefles and S. M. Barnett, Optimum unambiguous discrim-
ination between linearly independent symmetric states, Phys.
Lett. A 250, 223 (1998).

[12] M. A. Jafarizadeh, M. Rezaei, N. Karimi, and A. R. Amiri,
Optimal unambiguous discrimination of quantum states, Phys.
Rev. A 77, 042314 (2008).

[13] S. Pang and S. Wu, Optimum unambiguous discrimination
of linearly independent pure states, Phys. Rev. A 80, 052320
(2009).

[14] J. A. Bergou, U. Futschik, and E. Feldman, Optimal unambigu-
ous discrimination of pure quantum states, Phys. Rev. Lett. 108,
250502 (2012).

[15] S. Bandyopadhyay, Unambiguous discrimination of linearly
independent pure quantum states: Optimal average probability
of success, Phys. Rev. A 90, 030301(R) (2014).

[16] Y. Sun, M. Hillery, and J. A. Bergou, Optimum unambigu-
ous discrimination between linearly independent nonorthogonal
quantum states and its optical realization, Phys. Rev. A 64,
022311 (2001).

[17] A. Chefles, E. Andersson, and I. Jex, Unambiguous comparison
of the states of multiple quantum systems, J. Phys. A: Math.
Gen. 37, 7315 (2004).

[18] H. Sugimoto, T. Hashimoto, M. Horibe, and A. Hayashi, Com-
plete solution for unambiguous discrimination of three pure
states with real inner products, Phys. Rev. A 82, 032338
(2010).

[19] Y. Eldar, A semidefinite programming approach to optimal un-
ambiguous discrimination of quantum states, IEEE Trans. Inf.
Theory 49, 446 (2003).

[20] L. Roa, C. Hermann-Avigliano, R. Salazar, and A. B. Klimov,
Conclusive discrimination among N equidistant pure states,
Phys. Rev. A 84, 014302 (2011).

[21] C. H. Bennett, Quantum cryptography using any two
nonorthogonal states, Phys. Rev. Lett. 68, 3121 (1992).

[22] A. Peres and W. K. Wootters, Optimal detection of quantum
information, Phys. Rev. Lett. 66, 1119 (1991).

[23] S. Massar and S. Popescu, Optimal extraction of information
from finite quantum ensembles, Phys. Rev. Lett. 74, 1259
(1995).

[24] C. H. Bennett, D. P. DiVincenzo, C. A. Fuchs, T. Mor, E. Rains,
P. W. Shor, J. A. Smolin, and W. K. Wootters, Quantum nonlo-
cality without entanglement, Phys. Rev. A 59, 1070 (1999).

[25] H. V. Henderson and S. R. Searle, The vec-permutation matrix,
the vec operator and Kronecker products: A review, Linear
Multilinear Algebra 9, 271 (1981).

052222-8

https://doi.org/10.1080/00107510010002599
https://doi.org/10.1364/AOP.1.000238
https://doi.org/10.1088/1751-8113/48/8/083001
https://doi.org/10.1016/0375-9601(87)90222-2
https://doi.org/10.1016/0375-9601(88)90840-7
https://doi.org/10.1016/0375-9601(88)91034-1
https://doi.org/10.1016/0375-9601(94)00919-G
https://doi.org/10.1016/S0375-9601(98)00064-4
https://doi.org/10.1088/0305-4470/31/34/013
https://doi.org/10.1016/S0375-9601(98)00827-5
https://doi.org/10.1103/PhysRevA.77.042314
https://doi.org/10.1103/PhysRevA.80.052320
https://doi.org/10.1103/PhysRevLett.108.250502
https://doi.org/10.1103/PhysRevA.90.030301
https://doi.org/10.1103/PhysRevA.64.022311
https://doi.org/10.1088/0305-4470/37/29/009
https://doi.org/10.1103/PhysRevA.82.032338
https://doi.org/10.1109/TIT.2002.807291
https://doi.org/10.1103/PhysRevA.84.014302
https://doi.org/10.1103/PhysRevLett.68.3121
https://doi.org/10.1103/PhysRevLett.66.1119
https://doi.org/10.1103/PhysRevLett.74.1259
https://doi.org/10.1103/PhysRevA.59.1070
https://doi.org/10.1080/03081088108817379

