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Role of quantum correlations in daemonic expected utility
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Fluctuations can challenge the possibility of improving work extraction from quantum correlations. This
uncertainty in the work extraction process can be addressed by resorting to the expected utility hypothesis,
which can provide an optimal method for work extraction. We study a bipartite quantum system and examine the
role of quantum correlations in a daemonic work extraction performed by certain local operations and classical
communication. Specifically, we demonstrate and explain how, depending on the so-called absolute risk aversion,
a non-neutral risk agent, influenced by fluctuations, views quantum correlations differently from a neutral risk
agent that is affected solely by the average work.
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I. INTRODUCTION

The role of correlations among the parties of a quantum
system in thermodynamics has been recently investigated
focusing on work extraction from finite systems [1–10]. In
particular, the daemonic ergotropy [4], which can be defined
as the maximum average work locally extractable from a
bipartite quantum system by performing certain local oper-
ations and classical communication, gives a gain in work
extraction if there are quantum correlations. Beyond its stan-
dard definition, generalized measurements and multipartite
extensions have been also discussed [5]. Among its different
uses, e.g., in continuously monitored open quantum batteries
[11], daemonic ergotropy also found applications in order to
investigate the role of indefinite causal order structures in
thermodynamics. In particular, when the communication is
not classical and it is achieved with a process matrix [12], the
role of indefinite causal order has been investigated with the
help of daemonic ergotropy [13]. Furthermore, by considering
a quantum switch [14], the activation of states by applying
maps in an indefinite causal order [15,16] and the effects
of non-Markovianity [17] have been also investigated. Here,
we wonder whether and when there are advantages in using
the daemonic ergotropy protocol of Ref. [4] if we take into
account fluctuations by means of a utility function, i.e., by
using the expected utility hypothesis, first formalized by von
Neumann and Morgenstern within the theory of games and
economic behavior 80 years ago [18]. Recently, the expected
utility has been also related to fluctuation theorems [19,20].
In particular, in Ref. [20] we investigated a possible relation
with an entropy coming from a fluctuation theorem, which in
certain cases can be a guideline for making a choice. Con-
cerning the work fluctuations, when the initial state is not
incoherent with respect to the energy basis, there may not
be a probability distribution for the work done, as proven
by a no-go theorem [21] due to the existence of quantum
contextuality [22]. Thus, we can adopt the quasiprobability
distribution of work introduced in Ref. [23], which is selected
if some fundamental conditions are satisfied [24]. In work ex-
traction from thermally isolated quantum systems the optimal

expected utility has been introduced in Ref. [25] in order to
optimize the work extraction by taking into account also the
fluctuations, which can be dominant in finite systems. Here,
we study the gain achieved from quantum correlations when
fluctuations are taken into account. After a brief introduction
to some preliminary notions in Sec. II, we examine the ex-
pected utility for the work extraction protocol in Sec. III. In
particular, we aim to clarify the role of quantum correlations
when the fluctuations are taken into account with a utility
function. Finally, in Sec. IV we summarize and further discuss
the obtained results.

II. PRELIMINARIES

We start our discussion by introducing some prelimi-
nary notions, which are the protocol of work extraction (see
Sec. II A), some rudiments about quantum correlations, i.e.,
the quantum discord and the entanglement (see Sec. II B), the
expected utility hypothesis (see Sec. II C), and the quasiprob-
ability (see Sec. II D).

A. Work extraction

We consider a bipartite system having Hilbert space H =
HS ⊗ HA, where HS is the Hilbert space of a system S,
where we can perform unitary transformations, and HA is the
Hilbert space of a system (a so-called ancilla) A, where we
can perform projective measurements. The two subsystems S
and A are not interacting but they are prepared in a state ρSA

that can show correlations among the parties. A “daemonic”
protocol can be realized through local operations and classical
communication. In this section, we are interested in extracting
the optimal work locally from S by neglecting the fluctuations
and focusing only on the average extracted work, following
Ref. [4]. We consider a Hilbert HS with dimension dS , and the
Hamiltonian of the system S is

HS =
∑

k

εk|εk〉〈εk|, (1)
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with εk < εk+1. The reduced state of the system S is given by

ρS = TrA{ρSA} =
∑

k

rk|rk〉〈rk|, (2)

with rk � rk+1. The system S is thermally isolated, and an
amount of average work is locally extracted by cyclically
changing some Hamiltonian parameters of S, so that at the
end of the cycle the final Hamiltonian is equal to the initial
one and they are both equal to HS in Eq. (1). It results in
a unitary cycle with a local unitary time-evolution operator
US = T e−i

∫ τ

0 HS (t )dt for S, generated by the time-dependent
Hamiltonian HS (t ) such that HS (0) = HS (τ ) = HS , where t =
0 and t = τ are the initial time and the final time, and T is the
time ordering operator. The final reduced state of S is USρSU †

S
and the average work is minus the change of average energy
and reads

W (ρS,US ) = E (ρS ) − E (USρSU †
S ), (3)

where the average energies of the initial and final states are
calculated with respect to the Hamiltonian HS , and we have
defined E (ρS ) = Tr{HSρS}. The optimal work extraction is
achieved by maximizing the average work in Eq. (3) over all
the unitary cycles, i.e.,

E (ρS ) = max
US

W (ρS,US ) � 0. (4)

The optimal value E (ρS ) is called ergotropy [26], and it is
achieved by performing an optimal unitary cycle with the uni-
tary operator US = ∑d

k=1 eiφk |εk〉〈rk| where φk are arbitrary
phases, so that the ergotropy reads

E (ρS ) =
∑
k, j

r j (|〈εk|r j〉|2 − δ j,k )εk . (5)

We note that the ergotropy E (ρS ) is 0 if and only if the initial
state ρS is passive, i.e., commutates with the Hamiltonian,
[ρS, HS] = 0, and the populations with respect to the energy
basis are sorted in decreasing order, rk = 〈εk|ρS|εk〉.

A larger amount of work can be extracted through the
following daemonic protocol, which exploits the information
about the state of S that is obtained by performing projective
measurements on A. These measurements are described by
the set of projectors {�A

a = |a〉〈a|}, with 〈a|a′〉 = δa,a′ , where
a = 1, . . . , dA and dA is the dimension of the Hilbert space
HA. By performing a projective measurement with the projec-
tor �A

a on the state of the ancilla A, the state of the system S
collapses into the state

ρS|a = TrA
{
IS ⊗ �A

a ρSAIS ⊗ �A
a

}
pa

, (6)

with probability pa = Tr{IS ⊗ �A
a ρSA}. Through classical

communication, we can perform unitary cycles conditioned
by the outcomes a of the measurements, extracting the
maximum average work E{�A

a }(ρSA) that is called daemonic
ergotropy [4] and reads

E{�A
a }(ρSA) =

∑
a

paE (ρS|a). (7)

We note that if the information gained from the measurements
on A is not exploited, the cycles are not conditioned by a

and the maximum average work extracted remains equal to
the ergotropy E (ρS ). Thus, the maximum gain obtained by
exploiting the information acquired reads

δE (ρSA) = max
{�A

a }
E{�A

a }(ρSA) − E (ρS ), (8)

and it is related to the presence of quantum correlations [4].

B. Quantum correlations

Quantum correlations will play a crucial role in our discus-
sion. For our purposes, to identify them we define the set of
classical-quantum states

CS =
{

ρSA | ρSA =
∑

k

pkPS
k ⊗ ρA

k

}
(9)

and the set of separable states

S =
{

ρSA | ρSA =
∑

k

pkρ
S
k ⊗ ρA

k

}
, (10)

so that CS ⊆ S , where pk � 0 and sum to 1, PS
k

′s are rank
one projectors, PS

k PS
j = δk, jPS

k ,
∑

k PS
k = IS , and ρS

k and ρA
k

are density matrices. We recall that all the separable states
ρSA ∈ S can be prepared from a product state ρS ⊗ ρA by
performing local operations and classical communication. On
the other hand, states ρSA /∈ S are called entangled (see,
e.g., Ref. [27] for a review). Correlations can be quantified
through distance-based measures (see, e.g., Ref. [28]). For
instance, the entanglement in a state ρSA can be quantified
through the relative entropy of entanglement [29], Ere(ρSA) =
minσSA∈S S(ρSA||σSA), where we have defined the quantum
relative entropy S(ρ||η) = Tr{ρ(log2 ρ − log2 η)}. Although
a state ρSA is separable, it can still show quantum features
(quantum discord), if ρSA /∈ CS . Originally, quantum discord
has been introduced as the difference between the mutual
information and the maximum one-way classical information
[30,31]. A measure based on quantum relative entropy reads
DA|S

re (ρSA) = minχ
c−q
SA ∈CS

S(ρSA||χ c−q
SA ). In particular, given a

classical-quantum state χ
c−q
SA ∈ CS there exists a set {PS

k } such
that the state remains unperturbed if we perform these projec-
tive measurements, i.e.,

∑
k PS

k ⊗ IAχ
c−q
SA PS

k ⊗ IA = χ
c−q
SA .

C. Expected utility hypothesis

Here, we aim to investigate the work extraction performed
by an agent non-neutral to risk, which takes into account
also the fluctuations and not only the average work. For our
purposes, we focus on an agent who must choose between
two procedures that yield two different values of extracted
work represented by the random variables w1 and w2. To give
an example, we consider an agent who must choose between
extracting a certain work wdet = 50 or flipping a coin and
extracting a work whead = 100 if heads or nothing otherwise.
If the agent is risk neutral, he is indifferent to the choice, since
if he flips the coin he will extract the average work wdet. An
agent non-neutral to risk will choose the certain work wdet

or to flip the coin depending on his risk aversion (e.g., an
agent that is averse to risk tends to choose the deterministic
work extraction of the amount wdet, preferring situations with
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small fluctuations). The risk aversion of the agent can be
fully characterized by using a utility function u(w), which
quantifies the satisfaction gained from a choice, so that the
agent will choose the procedure yielding the work w1 instead
of w2 if

〈u(w1)〉 > 〈u(w2)〉. (11)

It is easy to see that the inequality in Eq. (11) remains un-
changed if we perform an affine transformation on the utility
function, i.e., the transformation u(w) �→ au(w) + b, where
a is a positive variable. This means that the utility function
is defined up to affine transformations, since two utility func-
tions related by such transformation gives the same preference
ordering given by Eq. (11). From Eq. (11), any linear util-
ity function u(w) = aw + b, with a > 0, gives the condition
〈w1〉 > 〈w2〉, thus this utility function characterizes an agent
neutral to risk. To characterize the risk aversion we can focus
on a strictly increasing utility function that is concave. In our
example, from Jensen’s inequality, for arbitrary values of wdet

and whead, the agent chooses the certain work wdet instead to
flip the coin if wdet > whead/2. Thus, this suggests that the
risk aversion is related to the concavity of the utility function,
and we recall that, in general, it can be measured with the
Arrow-Pratt coefficient of absolute risk aversion defined as

rA(w) = −u′′(w)

u′(w)
, (12)

which is non-negative for a utility function that is concave and
strictly increasing. We note that, while u′′(w) quantifies the
concavity, dividing by u′(w) guarantees that the measure in
Eq. (12) is invariant under affine transformations. More details
can be found, e.g., in Refs. [32,33].

D. Quasiprobability

In general, we can get an extracted work w with a
quasiprobability distribution p(w), such that

∫
p(w)dw = 1

and p(w) is negative for some w. Of course, in this case results
related to the risk aversion do not apply due to the negativity
of p(w). For instance, given a concave function u(w), we get
the Jensen’s inequality 〈u(w)〉 � u(〈w〉) if p(w) � 0, where
the average is given by 〈u(w)〉 = ∫

u(w)p(w)dw. However,
the inequality can be not satisfied, i.e., we can get 〈u(w)〉 >

u(〈w〉), if p(w) takes also negative values, suggesting that the
implications of negativeness deserve further investigations.
For our purposes, a utility function u(w) defines an ordering
of the quasiprobability distributions; i.e., given two quasiprob-
ability distributions p1(w1) and p2(w2), we define p1(w1) 

p2(w2) if and only if 〈u(w1)〉 > 〈u(w2)〉, i.e., Eq. (11) holds,
where we defined 〈u(wi )〉 = ∫

u(wi)pi(wi )dwi, with i = 1
or 2. Defining an ordering is necessary to perform an opti-
mization similar to that done in Eq. (4). Thus, given a state
ρS , we consider the set A formed by the quasiprobability
distributions of work corresponding to the different realiza-
tions of the time evolution described by the unitary operators
US . Then, from the ordering relation p1(w1) 
 p2(w2), we
can perform an optimization of the work extraction; i.e., we
can find the sup of the set A. In particular, if u(w) = w we
achieve Eq. (4), since 〈w〉 = W (ρS,US ). However, u(w) can
be nonlinear and thus higher moments are involved in the

optimization. In general, for a state ρS and a unitary time-
evolution operator US , there can be different quasiprobability
representations of the work, forming a set C ⊆ A, which de-
pends on ρS and US . In this case the ordering of the processes
can depend on the specific choice of the quasiprobability in
C; i.e., we can have p1(w1) 
 p2(w2) and p′

2(w2) 
 p′
1(w1)

for some pi(wi), p′
i(wi ) ∈ Ci, although all the quasiprobabil-

ity distributions in Ci represent the same process, with i = 1
or 2. Thus, we can optimize the work extraction by fixing
a quasiprobability in C or by defining an ordering relation
C1 
C C2. For instance, we can define C1 
C C2 if and only
if ∀p1(w1) ∈ C1, ∃p2(w2) ∈ C2 such that p1(w1) 
 p2(w2). In
this case, C1 
C C2 and C2 
C C3 imply C1 
C C3, and thus we
get a valid ordering. In particular, this definition of C1 
C C2

is equivalent to minp1(w1 )∈C1〈u(w1)〉 > minp2(w2 )∈C2〈u(w2)〉.
Proof. To show it, we note that if C1 
C C2 we

get 〈u(w1)〉 > minp2(w2 )∈C2〈u(w2)〉 ∀p1(w1) ∈ C1, then
minp1(w1 )∈C1〈u(w1)〉 > minp2(w2 )∈C2〈u(w2)〉. On the other
hand, if minp1(w1 )∈C1〈u(w1)〉 > minp2(w2 )∈C2〈u(w2)〉, ∀p1(w1)
∈ C1, we get 〈u(w1)〉 > minp2(w2 )∈C2〈u(w2)〉, then ∃p∗

2(w2) ∈
C2 giving

∫
u(w2)p∗

2(w2)dw2 = minp2(w2 )∈C2〈u(w2)〉, from
which C1 
C C2. �

Thus, by using this definition, we can optimize the work
extraction by searching the maximum of minp(w)∈C〈u(w)〉
over the unitary operators US .

III. DAEMONIC EXPECTED UTILITY

Given a utility function u(w), we can define the optimal
expected utility of an arbitrary state ρS as [25]

U (ρS ) = max
US

〈u(w)〉, (13)

where the average is calculated as

〈u(w)〉 =
∫

u(w)pq(w, ρS,US )dw (14)

and pq(w, ρS,US ) is the quasiprobability distribution of work
defined as [23,24]

pq(w, ρS,US ) =
∑
k, j,i

Re〈εi|ρS|ε j〉〈ε j |U †
S |εk〉〈εk|US|εi〉

× δ(w − qεi − (1 − q)ε j + εk ). (15)

We note that for a risk-neutral agent, so that u(w) = w, the
optimal expected utility is equal to the ergotropy, U (ρS ) =
E (ρS ). In particular, we focus on the symmetric quasiprobabil-
ity representation with q = 1/2, giving a minimum of U (ρS )
in the function of q (at least in the case of an exponential utility
[25]). We recall that pq(w, ρS,US ) reduces to the quasiprob-
ability distribution of Ref. [34] for q = 0 or 1 and to the
quasiprobability distribution of Ref. [35] for q = 1/2. Thus,
we consider a daemonic protocol for the work extraction, with
certain optimal unitary cycles not necessarily equal to the
daemonic ergotropy ones. We denote with US|a the unitary
operators of the optimal unitary cycles conditioned by the
outcomes a of the measurements, so that the final reduced
state of S is US|aρS|aU †

S|a with probability pa. This daemonic
protocol gives an optimal expected utility which is equal to
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FIG. 1. The system is made of two parties, S and A, represented
by a circle and a square, respectively. The two parties are connected
by a line representing the initial correlations. Local measurements
and unitary operations are performed on the square and the circle,
respectively. An agent must choose between extracting work from S
using the daemonic protocol or conventionally using a local unitary
cycle without performing measurements on A or communicating the
outcomes a.

the “daemonic” expected utility defined as

U{�A
a }(ρSA) =

∑
a

paU (ρS|a), (16)

where explicitly U (ρS|a) = ∫
u(w)pq(w, ρS|a,US|a)dw. We

note that, for any convex combination ρS = ∑
a paρa of den-

sity matrices ρa, we get pq(w, ρS,US ) = ∑
a pa pq(w, ρa,US ),

from which it is easy to see that U (ρS ) � ∑
a paU (ρa). Thus,

by noting that ρS = ∑
a paρS|a, we get U{�A

a }(ρSA) � U (ρS ).
We define the maximum gain

δU (ρSA) = max
{�A

a }
U{�A

a }(ρSA) − U (ρS ) � 0. (17)

Thus, the agent prefers the optimal daemonic protocol instead
of a local unitary cycle in order to extract work from S if the
gain is positive, δU (ρSA) > 0; otherwise the agent is indiffer-
ent to the choice. The situation is schematically represented in
Fig. 1.

A. Constant absolute risk aversion

We start to investigate the case of a constant absolute risk
aversion rA(w) = const. In particular, we focus on the expo-
nential utility

u(w) = 1

r
(1 − e−rw ) (18)

for r �= 0, and u(w) = w for r = 0, which is a strictly
increasing function having absolute risk aversion rA(w) =
r. To perform our calculations for q = 1/2, it is useful
to consider the spectral decompositions e−rHS/2ρSe−rHS/2 =∑

k uk|uk〉〈uk|, with uk � uk+1, and e−rHS/2ρS|ae−rHS/2 =∑
k ua

k |ua
k〉〈ua

k |, with ua
k � ua

k+1 for all a. Thus, for q = 1/2,
for any state ρS , from Eq. (13) we get [25]

U (ρS ) = 1

r

(
1 −

∑
k

ukerεk

)
, (19)

from which the daemonic expected utility trivially reads

U{�A
a }(ρSA) =

∑
a

pa
1

r

(
1 −

∑
k

ua
kerεk

)
. (20)

With the aim to study the states ρSA such that δU (ρSA) = 0
in the case of a constant absolute risk aversion, we introduce
some lemmas. By considering the identity

uk =
∑

a

pa

∑
j

ua
j

∣∣〈uk

∣∣ua
j

〉∣∣2
, (21)

coming from ρS = ∑
a paρS|a, we get the following.

Lemma 1. For a given set {�A
a }, the daemonic gain

U{�A
a }(ρSA) − U (ρS ) can be expressed as

U{�A
a }(ρSA) − U (ρS ) =

∑
a

paẼ (ρ̃S|a) � 0, (22)

where Ẽ (ρ̃S|a) is the ergotropy of the non-normalized state
ρ̃S|a = e−rHS/2ρS|ae−rHS/2 with respect to the Hamiltonian
H̃S = ∑

k yk|uk〉〈uk| with energies yk = erεk

r so that yk < yk+1,
which explicitly reads

Ẽ (ρ̃S|a) =
∑
k, j

ua
j

(∣∣〈uk

∣∣ua
j

〉∣∣2 − δ j,k

)
yk . (23)

Thus, U{�A
a }(ρSA) = U (ρS ) if and only if all the ergotropies

Ẽ (ρ̃S|a) are 0; i.e., for all the outcomes a, ρ̃S|a is passive
with respect to the Hamiltonian H̃S . This means that, for
all the outcomes a, [ρ̃S|a, H̃S] = 0; i.e., all the conditional
non-normalized states ρ̃S|a are diagonal with respect to the
basis {|uk〉}, and 〈uk|ρ̃S|a|uk〉 are in decreasing order, i.e.,
〈uk|ρ̃S|a|uk〉 � 〈uk+1|ρ̃S|a|uk+1〉. Furthermore, we get the fol-
lowing.

Lemma 2. Given a state ρSA, if all the conditional states
ρS|a are diagonal with respect to the same basis {|rk〉} for any
set {�A

a }, then

ρSA =
∑

k

|rk〉〈rk| ⊗ CA
k , (24)

where CA
k are positive semidefinite matrices.

We note that the state in Eq. (24) is a classical-quantum
state, ρSA ∈ CS .

Proof. To prove Eq. (24), we note that an arbitrary state
ρSA can be written as

ρSA =
∑

a,a′,k,k′
Caa′

kk′ |rk〉〈rk′ | ⊗ |a〉〈a′|, (25)

where {|a〉} is a basis of HA. By assumption, we have that
ρS|a = ∑

k ra
k |rk〉〈rk| for all a, and thus Caa

kk′ = para
k δkk′ , where

pa is the probability corresponding to the outcome a. We
expand the sum in Eq. (25) getting

ρSA =
∑
a,k

para
k |rk〉〈rk| ⊗ |a〉〈a| +

∑
a �=a′,k

Caa′
kk |rk〉〈rk| ⊗ |a〉〈a′|

+
∑

a>a′,k �=k′
|rk〉〈rk′ | ⊗ (Caa′

kk′ |a〉〈a′| + Ca′a
kk′ |a′〉〈a|). (26)

Thus, if the last term is 0, we get Eq. (24) with the matrices
CA

k having entries Caa′
kk with respect to the basis {|a〉}. To show

that it is 0, we note that if there exist at least ā and ā′ �= a
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such that Cāā′
kk′ �= 0 and Cāā′

kk′ �= 0 for some k �= k′ and the last
term is nonzero, we can perform measurements with respect
to some basis different from {|a〉}, e.g., containing the states
(|ā〉 ± |ā′〉)/

√
2, getting ρS|ā nondiagonal with respect to the

basis {|rk〉}, which is absurd since ρS|a is diagonal for any set
{�a}, which completes the proof. �

In general, we define a dephasing map � as �(X ) =∑
k �kX�k , where �k = |k〉〈k| such that �k� j = δk, j�k

and
∑

k �k = I . By recalling that A � B means that the
matrix A − B is positive semidefinite, we get the following
lemma.

Lemma 3. Given two matrices A and B, �(A) � �(B) for
any dephasing map � if and only if A � B.

Proof. To prove it, we note that the dephasing map is a
linear map, and thus �(A) � �(B) is equivalent to �(A −
B) � 0. Thus, �(A) � �(B) for any dephasing map � if
and only if the diagonal elements of the matrix A − B are
non-negative with respect to any basis. This is equivalent to
〈ψ |A − B|ψ〉 � 0 for any state |ψ〉; i.e., A − B is positive
semidefinite, A − B � 0, which completes the proof. �

Thus, with the help of these three lemmas, we get the
following theorem.

Theorem 1. We have a zero maximum gain δU (ρSA) = 0 if
and only if ρSA ∈ S and has the form

ρSA =
∑

k

erHS/2|uk〉〈uk|erHS/2 ⊗ CA
k , (27)

where the positive semidefinite matrices CA
k � 0 are such that

CA
k � CA

k+1 for all k = 1, . . . , dS − 1.
Proof. From Lemma 1, we get that δU (ρSA) = 0 if and

only if ρ̃S|a are passive with respect to the Hamiltonian H̃S

for all the outcomes a for any set {�A
a }. Thus, by consider-

ing ρ̃SA = e−rHS/2 ⊗ IAρSAe−rHS/2 ⊗ IA, since ρ̃S|a is diagonal
with respect to the basis {|uk〉} for any set {�A

a }, from Lemma
2 we get ρ̃SA = ∑

k |uk〉〈uk| ⊗ CA
k , from which it results in

Eq. (27). Furthermore, 〈uk|ρ̃S|a|uk〉 are in decreasing order
for any set {�A

a }. By noting that 〈uk|ρ̃S|a|uk〉 = 〈a|CA
k |a〉

where we have considered �A
a = |a〉〈a|, this is equivalent

to �(CA
k ) � �(CA

k+1) for any dephasing map �. Thus, from
Lemma 3 we get CA

k � CA
k+1. �

We note that the set of the states ρSA with zero gain
δU (ρSA) = 0 has measure 0 since these states are obtained
from classical-quantum states χ

c−q
SA by performing the trans-

formation ρSA = erHS/2 ⊗ IAχ
c−q
SA erHS/2 ⊗ IA/Tr{χ c−q

SA erHS ⊗
IA}, which form a set of measure 0 [36]. Thus, almost all
states ρSA give a positive gain δU (ρSA) > 0. Furthermore,
from Theorem 1, we get the following.

Corollary 1. We get r = 0 or [ρS, HS] = 0 if and only if
δU (ρSA) = 0 ⇒ ρSA ∈ CS .

Proof. For r = 0 or if [ρS, HS] = 0, the states erHS/2|uk〉
are mutually orthogonal so that ρSA in Eq. (27) is a classical-
quantum state, ρSA ∈ CS . Vice versa, if ρSA in Eq. (27) is a
classical-quantum state, erHS is diagonal with respect to the
basis {|uk〉}, from which we get r = 0 or [ρS, HS] = 0. �

In particular, for r = 0 we get the ergotropy gain
δU (ρSA) = δE (ρSA) in Eq. (8). This shows how the presence
of initial quantum coherence with respect to the energy basis,
so that [ρS, HS] �= 0, can make δU (ρSA) = 0 for separable
states ρSA /∈ CS with δE (ρSA) > 0. In order to illustrate this

result with a simple example, we consider dS = 2; thus, we
get the state and the Hamiltonian

ρS =
(

p c
c∗ 1 − p

)
, HS =

(
ε1 0
0 ε2

)
, (28)

where |c| � √
p(1 − p) so that ρS � 0. For simplicity we con-

sider p = erε1/Zr and c > 0, where Zr = erε1 + erε2 . In this
case, it is easy to see that ρS can be obtained as ρS = TrA{ρSA},
with

ρSA =
∑
σ=±

erHS/2|σ 〉〈σ |erHS/2 ⊗ CA
σ , (29)

where we have defined |±〉 = (|ε1〉 ± |ε2〉)/
√

2, and the oper-
ators CA

± are diagonal in the same basis {|a〉}, showing diago-
nal elements Caa

± such that C00
+ = C00

− � 0 and C11
+ � C11

− =
0. The equation ρS = TrA{ρSA} is satisfied if C00

+ = 1/Zr −
C11

+ /2 and C11
+ = 2ce−r(ε1+ε2 )/2. By performing measurements

with projectors {�A
a = |a〉〈a|}, we get ρS|0 = erHS /Zr and

ρS|1 = 2erHS/2|+〉〈+|erHS/2/Zr with probabilities p0 = 1 − p1

and p1 = 2c cosh[r(ε2 − ε1)/2]. For an absolute risk aver-
sion rA = r, the optimal expected utility U (ρS ) is given by
Eq. (19). For rA = r, we get u1,2 = 1/Zr ± ce−r(ε1+ε2 )/2, from
which we get U (ρS ) = 2c

r sinh[r(ε2 − ε1)/2]. Furthermore,
we get U (ρS|0) = 0 and U (ρS|1) = 1

r tanh[r(ε2 − ε1)/2], from
which U{�A

a }(ρSA) = ∑
a paU (ρS|a) = U (ρS ), and there is no

gain in perfect agreement with Theorem 1, since the sepa-
rable state in Eq. (29) is of the form of Eq. (27). Let us
focus on a constant rA �= r, where r is the parameter of the
state in Eq. (29). If there is no initial quantum coherence,
then [ρS, HS] = 0 and c = 0, from which p1 = 0. In this
case we get ρS = ρS|0, and thus there is no gain although
rA �= r. In particular, if c = 0, then Eq. (29) gives the product
state ρSA ∝ ρS ⊗ CA

+, since CA
− = CA

+, and thus δU (ρSA) = 0,
because any selective measurement done always gives a con-
ditional state ρS|a = ρS . Since ρSA is a product state, ρSA ∈ CS

and the result is in perfect agreement with Corollary 1. In
general, for rA = r′, we get U (ρS|0) = 4er(ε2+ε1 )/2

r′Zr
sinh[r′(ε2 −

ε1)/2] sinh[(r − r′)(ε2 − ε1)/2] if r′ < r, U (ρS|0) = 0 other-

wise, and U (ρS|1) = erε2 −e(r−r′ )ε2+r′ε1

r′Zr
; thus, by calculating the

eigenvalues uk of e−r′HS/2ρSe−r′HS/2, we get U (ρS ) as Eq. (13),
and it results that U{�A

a }(ρSA) > U (ρS ) for c > 0 and r �=
r′. In detail, the daemonic protocol can be realized with
US|0 = |ε1〉〈ε2| + |ε2〉〈ε1| if r′ < r, US|0 = IS otherwise, and
US|1 is defined such that US|1ρ̃S|1U †

S|1 ∝ |ε1〉〈ε1|. This illus-
trates how, while δU (ρSA) = 0 when rA = r, the presence of
initial quantum coherence (c �= 0) can give a nonzero gain
δU (ρSA) > 0 when rA �= r. Then, for the state in Eq. (29),
we have δU (ρSA) = 0 for an absolute risk aversion rA = r,
but for c > 0 we have δU (ρSA) > 0 for a constant absolute
risk aversion rA �= r; e.g., for rA = 0, δE (ρSA) > 0 if r �= 0.
In particular, δE (ρSA) > 0 for the state in Eq. (29) since
ρSA /∈ CS . In general, for dS = dA = 2, as shown in Ref. [4],
by considering δE = δE (ρSA) in units of ε2 − ε1, we get
DA|S � h(1 − δE/2), where the function h(x) reads h(x) =
−x log2 x − (1 − x) log2(1 − x) if DA|S = DA|S (ρSA) is the
quantum discord defined in Ref. [31]. Thus, the presence of
quantum correlations gives a nonzero lower bound for the
gain, so that δE � 2 − 2h−1(DA|S ). Similarly, for rA = r �= 0,
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for randomly generated states ρSA, we will still get a lower
bound for δU = δU (ρSA), so that δU � 2 − 2h−1

r (DA|S ) for a
certain function hr (x), since the set of the states with DA|S �= 0
and δU = 0 has measure 0.

B. Nonconstant absolute risk aversion

In general, the agent can be characterized with a nonex-
ponential utility function, so that the absolute risk aversion is
not constant. To study the case of an arbitrary utility function
u(w), we focus on dS = 2. We consider the state and the
Hamiltonian in Eq. (28), and the unitary operator

US =
(

α −β∗
β α∗

)
, (30)

with |α|2 + |β|2 = 1. Since the utility is defined up to an
additive constant, without loss of generality we focus on a
function u(w) such that u(0) = 0. For q = 1/2, from Eq. (14)
we get the general expression for the expected utility:

〈u(w)〉 = |β|2X − p|β|2Y − 2Re(cαβ )Z, (31)

where we have defined X = u(ε2 − ε1), Y = 2uo(ε2 − ε1),
and Z = 2uo( ε2−ε1

2 ), where uo(w) = [u(w) − u(−w)]/2 is the
odd part of the utility function u(w). We note that arbitrary X ,
Y , and Z can be obtained from a cubic utility; for instance, for
ε2 − ε1 = 1, we can consider

u(w) = 8Z − Y

6
w + 2X − Y

2
w2 + 2(Y − 2Z )

3
w3. (32)

In detail, Y � X > 0 and Z > 0 if u(w) is a strictly increasing
function. To obtain the optimal expected utility U (ρS ), we
must to maximize Eq. (31) over all the complex α = aeiθ

and β = beiφ such that a2 + b2 = 1. We search the stationary
point of the Lagrangian L = 〈u(w)〉 − λ(a2 + b2), where we
have introduced the Lagrange multiplier λ such that a2 + b2 =
1. For c real, we get

cos(θ + φ) = ±1, (33)

a = ∓cZb

λ
, (34)

b = 1√
1 + c2Z2

λ2

, (35)

λ2 − (X − pY )λ − c2Z2 = 0, (36)

where the sign cos(θ + φ) is chosen such that a � 0, and

U (ρS ) = X − pY + 2c2Z2

λ

1 + c2Z2

λ2

= λ

1 + c2Z2

λ2

. (37)

Thus, we deduce that λ � 0 is the largest solution of Eq. (36),
which explicitly reads

λ = X − pY

2
+

√(
X − pY

2

)2

+ c2Z2, (38)

so that U (ρS ) � 0. We note that the expression in Eq. (37) can
be easily generalized for a complex coherence c by replacing

FIG. 2. The gain δU (ρSA) versus the concurrence C for 104 ran-
dom states ρSA of Eq. (40). We randomly generate X , Y , and Z in the
interval [−1, 1], such that X − pY � 0.

c2 with |c|2. As |c|Z → 0, we get the expansion

U (ρS ) = 1

2
(X − pY + |X − pY |) + |c|4Z4

|X − pY |3 + O(|c|6Z6),

(39)

so that, for an incoherent state, i.e., for c = 0, or for a utility
function such that Z = 0, we get U (ρS ) = 0 if X − pY � 0;
otherwise U (ρS ) = X − pY > 0. We aim to characterize the
states ρSA such that δU (ρSA) = 0. Although for an exponential
utility function they are separable, for an arbitrary utility, in
principle, they cannot be. In particular, we focus on dA = 2
and we start to consider the states

ρSA = p|00〉〈00| + (1 − p)|11〉〈11|

+ C

2
(|00〉〈11| + |11〉〈00|), (40)

where C, such that 0 � C � 2
√

p(1 − p), is the quantum
concurrence [37] and quantifies the entanglement between S
and A; e.g., for C > 0 the state ρSA is entangled. By randomly
generating the states ρSA in Eq. (40) and the values of X , Y ,
and Z such that X − pY � 0, we find that there are entangled
states ρSA showing a practically zero gain δU (ρSA) ≈ 0 (see
Fig. 2). This suggests that there are zero-gain entangled states
depending on the utility function. However, it results that all
these zero-gain states are obtained when X − qY � 0 for any
q ∈ [0, 1], as Z → 0, since in this case U (ρS|a) ∼ Z4 → 0
for any state [see Eq. (39)]. Thus, δU (ρSA) = 0 for all the
states ρSA when Z = 0 if X � 0 and Y � 0 or if X � Y < 0.
In particular, in this case the utility function is not a strictly
increasing function. Thus, for instance, we have zero gain for
X < 0 and Y = Z = 0, i.e., for the quadratic utility u(w) =
−w2, or for Y > 0 and X = Z = 0, i.e., for u(w) = −w −
3w2 + 4w3. Furthermore, we note that δU (ρSA) = 0 for all the
states ρSA when Z = 0 if X > Y � 0 or if X > 0 and Y < 0,
since in this case X − qY > 0 for any q ∈ [0, 1] and by using
Eq. (39) we get U{�A

a }(ρSA) = U (ρS ) = X − pY for any set
{�A

a }. We note that, for utility functions u(w) such that Z = 0,
the optimal expected utility is equal to

U (ρS ) = U (�(ρS )) (41)

for any state ρS and for the dephasing map with energy projec-
tors �(ρS ) = ∑

k |εk〉〈εk|ρS|εk〉〈εk|. Thus, the initial quantum
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TABLE I. The role of quantum correlations can be summarized
as follows.

Risk aversion Utility gain

rA = 0 δU = δE = 0 ⇒ ρSA ∈ CS

rA = const �= 0 δU = 0 ⇒ ρSA ∈ S
rA �= const δU = 0 � ρSA ∈ S

coherence does not give any contribution for these utility
functions, which we call “incoherent” utility functions. In
detail, we define the incoherent utility functions as the util-
ity functions u(w) such that Uc(ρS ) = 0 for all ρS , where
in general the coherent contribution is defined as Uc(ρS ) =
U (ρS ) − U (�(ρS )) [25]. For dS = 2, the incoherent utility
functions are the functions u(w) such that Z = 0. For an
arbitrary incoherent utility function, the gain can be expressed
as

δU (ρSA) = max
{�A

a }

∑
a

paU (�(ρS|a)) − U (�(ρS )) (42)

and, for instance, it is zero for dS = 2 for any state if X � 0
and Y � 0, if X � Y < 0, if X > Y � 0, or if X > 0 and Y <

0. For a Werner state ρSA = 1−z
4 I + z|ψ〉〈ψ |, where |ψ〉 =

(|00〉 + |11〉)/
√

2, which is entangled for z > 1/3, given an
incoherent utility function, from Eq. (42) we get

δU (ρSA) = max
q∈[0,1]

1
4 |X̃ + Ỹq| + 1

4 |X̃ − Ỹq| − 1
2 |X̃ |, (43)

where X̃ = X − Y/2 and Ỹq = (q − 1
2 )zY . If 2X > Y � 0,

from Eq. (43) we get δU (ρSA) = 0 for z � z0 = 2X/Y − 1,
whereas δU (ρSA) > 0 for z > z0. Thus, for z0 > 1/3 there
are Werner states with zero gain (for z � z0) although they
are entangled states, and there are also entangled states with
nonzero gain, e.g., Werner states with z > z0. The results
can be summarized as in Table I. In contrast, in the case
of arbitrary nonincoherent utility functions, if Eq. (42) is
0, the gain is given by the coherent contribution and reads
δU (ρSA) = max{�A

a }
∑

a paUc(ρS|a) − Uc(ρS ). In this case, we
find that the gain δU (ρSA) is positive if ρSA is entangled at least
for dS = 2. Furthermore, we note that the condition �(ρS|a) =
ρS|a for all a and any set {�A

a }, from which ρS = �(ρS ) and
Eq. (42) follows, is not a sufficient condition in order to obtain
δU (ρSA) = 0 for ρSA /∈ S . To prove it, it is enough to note
that, if this condition is satisfied, by using Lemma 2, we get
ρSA ∈ CS having the form ρSA = ∑

k |εk〉〈εk| ⊗ CA
k . Then, in

this case there are no states ρSA /∈ S such that δU (ρSA) = 0,
for any utility function u(w). This suggests that only for in-
coherent utility functions, which we recall to be defined such
that Eq. (41) is satisfied for any ρS , there can be states ρSA /∈ S
such that δU (ρSA) = 0.

C. Generalization to arbitrary q

Although we only focused on q = 1/2, all the results
achieved can be easily generalized to arbitrary values of the
quasiprobability parameter q. For a constant absolute risk
aversion rA = r, as noted in Ref. [25], given a state ρS , the
optimal value in Eq. (19) is obtained only for q = 1/2. Con-
versely, for q �= 1/2 we get a larger optimal value U (ρS ),

which involves a particular affine combination of the permu-
tations of the eigenvalues uk of the operator e−rHS/2ρSe−rHS/2.
To generalize the results to an arbitrary q, it is useful to define
the tilde map ρS �→ ρ̃S such that

ρ̃S = 1
2

(
e−rqHS ρSe−r(1−q)HS + e−r(1−q)HS ρSe−rqHS

)
. (44)

Then, since

〈u(w)〉 = 1

r

(
1 − Tr

{
USρ̃SU †

S erHS
})

, (45)

the optimal expected utility U (ρS ) is still given by Eq. (19)
with new uk and |uk〉 that depend on q, which are eigenvalues
and eigenvectors of ρ̃S , i.e., such that ρ̃S|uk〉 = uk|uk〉 and
uk � uk+1. In particular, from Ref. [25], we deduce that the
new uk (achieved for an arbitrary q) can be expressed as an
affine combination of the permutations of the uk

′s for q = 1/2,
so that the minimum of U (ρS ) over q is obtained at q = 1/2 (at
least in a neighborhood of q = 1/2). Thus, since the tilde map
defined by Eq. (44) is linear, Lemma 1 still holds with this new
ρ̃S|a obtained by applying the tilde map to ρS|a. Only Theorem
1 undergoes a slight change in form due to the inverse of the
tilde map. By solving the operator equation ax + xa = y, with
a � 0 (see, e.g., Ref. [38]), we get the inverse

ρS = 2
∫ ∞

0
e−sA+rqHS ρ̃Se−sA+rqHS ds, (46)

where A = e−r(1−2q)HS . Then, for arbitrary q the zero-gain
state in Eq. (27) reads

ρSA =
∑

k

(
2

∫ ∞

0
e−sA+rqHS |uk〉〈uk|e−sA+rqHS ds

)
⊗ CA

k ,

(47)

and Theorem 1 still holds with this new state. On the other
hand, for a nonconstant absolute risk aversion and an arbitrary
q, Eq. (31) still holds with a new Z that is

Z = uo(q(ε2 − ε1)) + uo((1 − q)(ε2 − ε1)). (48)

Thus, all the results can be easily generalized to arbitrary q. In
particular, for q = 0 or 1, we get Z = Y/2; then for incoherent
utility functions we get Z = 0 and thus Y = 0. In this case, the
utility function is trivial (being nonzero on the support only for
w = ε2 − ε1) and gives U (ρS ) = (X + |X |)/2, which does not
depend on ρS , so that δU (ρSA) = 0 for any state ρSA.

IV. CONCLUSIONS

We considered a bipartite quantum system and took into
account an agent that can extract work locally through a
daemonic protocol introduced in Ref. [4], which is affected
by work fluctuations when the agent is non-neutral to risk.
We introduced the daemonic expected utility so that the agent
can select the optimal work extraction protocol by looking
on the utility gain defined from this quantity. We completely
characterized the role of correlations among the two parties of
the system, showing how quantum correlations can influence
the selection done by the agent depending on the absolute
risk aversion. Furthermore, our results clarify the role of
initial quantum coherence with respect to the energy basis,
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which is tricky. We showed how the presence of an initial
quantum coherence can give zero utility gain although the
states have positive ergotropy gain. Furthermore, in general,
if the contribution of this initial quantum coherence is always
absent due to the particular form of the utility function, then
there are entangled states with zero utility gain. In conclusion,
we believe our results represent a substantial step forward in
understanding work fluctuations, showing how these strongly
alter the optimization of the work extraction daemonic proto-
col (when they are taken into account by a utility function),
resulting in a sensible deviation of a risk non-neutral agent’s
decision-making behavior from a risk neutral one. We there-
fore hope that our studies can find some applications in
the implementation of work extraction protocols, based on

measurement and feedback, which in general can be opti-
mized considering a utility function.
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