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Nonconvergence of the Feynman-Dyson diagrammatic perturbation expansion of propagators
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J. V. Ortiz
Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312, USA

Rodney J. Bartlett
Quantum Theory Project, Departments of Chemistry and Physics, University of Florida, Gainesville, Florida 32611, USA

(Received 1 February 2024; accepted 29 April 2024; published 16 May 2024)

Using a general-order ab initio many-body Green’s function method, we numerically illustrate several
pathological behaviors of the Feynman-Dyson diagrammatic perturbation expansion of one-particle many-body
Green’s functions as electron Feynman propagators. (i) The perturbation expansion of the frequency-dependent
self-energy is not convergent at the exact self-energy in many frequency domains. (ii) An odd-perturbation-order
self-energy has a qualitatively wrong shape and, as a result, many roots of the corresponding Dyson equation are
nonphysical in that the poles may be complex or residues can exceed unity or be negative. (iii) A higher
even-order self-energy consists of vertical lines at many frequencies, predicting numerous phantom poles with
zero residues. (iv) Infinite partial resummations of diagrams by vertex or edge renormalization tend to exacerbate
these pathologies. (v) The nonconvergence is caused by the nonanalyticity of the rational-function form of the
exact Green’s function at many frequencies, where the radius of convergence of its Taylor expansion is zero. This
is consistent with the fact that (vi) Padé approximants (power-series expansions of a rational function) can largely
restore the correct shape and poles of the Green’s function. Nevertheless, not only does the nonconvergence
render higher-order Feynman-Dyson diagrammatic perturbation theory useless for many lower-lying ionization
or higher-lying electron-attachment states but it also calls into question the validity of its combined use with the
Ansätze requiring the knowledge of all poles and residues. Such Ansätze include the Galitskii-Migdal identity,
the self-consistent Green’s function methods, and some models of the algebraic diagrammatic construction.
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I. INTRODUCTION

In an influential paper [1], Dyson argued that the
Feynman-Dyson diagrammatic perturbation theory for quan-
tum electrodynamics is inherently divergent in the presence of
electron-positron pair formations even after mass and charge
are renormalized. In another important paper [2], Kohn and
Luttinger predicted that the finite-temperature diagrammatic
perturbation theory for electrons [3–7] does not necessarily
reduce to the zero-temperature counterpart as the tempera-
ture is lowered to zero. In particular, it was argued [2,8]
that the second-order correction to the grand potential can be
divergent when the zeroth-order wave function is degenerate,
whereas the same correction is finite at zero temperature.
These predictions have been confirmed both analytically and
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numerically [9,10]. Other instances of the breakdown of
diagrammatic perturbation theory have also been reported
[11–19].

In this article, we reveal and analyze several additional
pathological behaviors of the Feynman-Dyson diagrammatic
perturbation expansions of one-particle many-body Green’s
functions (MBGF) or Feynman propagators [20–29]. Our
analysis is based on the ab initio electron propagators for
molecules [30–71] as we can take advantage of several in-
dependent methods that can determine the poles and residues
of their exact (finite-basis-set) Green’s functions [72] as well
as the algorithm that can evaluate perturbation corrections to
their frequency-dependent self-energy and Green’s function
at any arbitrary order and frequency [64]. The conclusions
drawn here, however, should be valid for other systems that
are studied by the same theory, such as anharmonic molecular
vibrations [73], anharmonic lattice vibrations [74], energy
bands in solids [75–81], finite nuclei, and nuclear matter
[82–84].
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Specifically, we show that (i) the perturbation expansion of
the frequency-dependent self-energy is nonconvergent at the
exact self-energy in many domains of frequency. (ii) An odd-
perturbation-order self-energy has a qualitatively wrong shape
except in the central domain that encloses zero frequency and
most principal roots. While the diagonal exact self-energy is
monotonically decreasing within each frequency bracket sep-
arated by its singularities, the diagonal odd-order self-energy
can be convex, concave, or monotonically increasing in each
bracket. As a result, many roots of the corresponding Dyson
equation can be complex and thus nonphysical; when they are
real, the corresponding residue can fall outside of the valid
range of zero to one. (iii) An even-order self-energy may
have a qualitatively correct, monotonically decreasing form
within each bracket demarcated by its singularities. However,
they become more and more vertical with increasing pertur-
bation order, predicting numerous “phantom” poles with zero
residues.

None of these problems is detected in the exact self-energy
or Green’s function, which can be determined (within
a finite basis set) by the full configuration-interaction
(FCI) or, equivalently, by the full equation-of-motion
coupled-cluster (EOM-CC) method [64,72], which may
be viewed as an infinite resummation of the Feynman-
Dyson perturbation corrections [63]. However, (iv) other
infinite partial resummations of propagator diagrams by
vertex or edge renormalization such as the Tamm-Dancoff
approximation [29,33,82,84–87] and self-consistent
second-order Green’s function method [8,18,88–98] are
shown to exhibit the same pathologies with even greater
severity.

We also elucidate (v) the cause of the nonconvergence to
be the fact that the definition of the Green’s function is non-
analytic at many frequencies, where the radius of convergence
of its Taylor expansion is zero. In other words, the breakdown
of the Feynman-Dyson perturbation theory occurs due to a
purely mathematical reason, i.e., that the rational-function
form of the exact Green’s function does not lend itself to a
converging Taylor expansion, even though physical informa-
tion such as the converging perturbation expansions of all state
energies is actually contained in it. Consequently, (vi) the gen-
eral mathematical technique of Padé approximants [34,99–
107], which are power-series expansions of a rational func-
tion, can extract this physical information, systematically and
rapidly restoring the correct shape and poles of the Green’s
function.

Nevertheless, the nonconvergence of the Feynman-Dyson
perturbation theory, despite being the mathematical founda-
tion of quantum field theory [20–24,27], poses difficulties
when applying higher-than-second-order approximations
to the Green’s function methods that are predicated on the
knowledge of all poles and residues. Such methods include the
Galitskii-Migdal identity [108–111], self-consistent Green’s
function methods [8,18,88–98], and some models of the
algebraic diagrammatic construction (ADC) [51,52,112,113].
The Luttinger-Ward functional [8,15,16,19,88,89,114],
which serves as a basis of the self-consistent Green’s
function methods and dynamical mean-field theory
(DMFT) [115], may also be negatively impacted by these
failures.

II. EXACT FEYNMAN PROPAGATOR

A. Formalisms

An electron Feynman propagator is defined in the time (t)
domain as a time-ordered sum of Green’s functions,

Gpq(t ) = iθ (−t )〈�0| p̂† exp{i(Ĥ − E0)t} q̂|�0〉
− iθ (t )〈�0|q̂ exp{−i(Ĥ − E0)t} p̂†|�0〉, (1)

where θ (t ) is the Heaviside step function, �0 and E0 are the
exact wave function and energy for the N-electron ground
state, and p̂† and q̂ are the electron creation and annihilation
operators. It describes the probability of an electron (hole)
traveling from the pth (qth) to qth (pth) spin-orbital in time
t (−t).

A Fourier transform of Eq. (1) yields the electron propaga-
tor in the frequency (ω) domain,

Gpq(ω) =
IP∑
I

〈�0| p̂†|�I〉〈�I |q̂|�0〉
ω − E0 + EI − iη

+
EA∑
A

〈�0|q̂|�A〉〈�A| p̂†|�0〉
ω − EA + E0 + iη

, (2)

where η is a positive infinitesimal, I sums over all N − 1
electron exact states, and A runs over all N + 1 electron exact
states. (Here, η is just mathematical convenience and has
nothing to do with a lifetime of spectral bandwidth, which are
infinite and zero, respectively. Nonetheless, the present for-
mulation can be applied to solids without any modification, in
which a spectral bandwidth emerges naturally and rigorously
as a manifold of closely packed δ-function peaks.)

The first term diverges whenever ω coincides with an ex-
act ionization potential (IP), whereas the second term has a
pole at an exact electron-attachment energy (EA), apart from
their signs. The primary utility of the electron propagator for
molecules and solids is the direct determination of IPs and
EAs (or electron-correlated energy bands) for both principal
(Koopmans) and satellite (shakeup or non-Koopmans) states.
It should be noted, however, the distinction between the prin-
cipal and satellite roots is not definite, and we use these labels
rather loosely in this article.

The exact self-energy �(ω) is defined by the Dyson equa-
tions,

G(ω) = G(0)(ω) + G(0)(ω)�(ω)G(ω) (3)

= G(0)(ω) + G(0)(ω)�(ω)G(0)(ω)

+ G(0)(ω)�(ω)G(0)(ω)�(ω)G(0)(ω) + · · · , (4)

with the zeroth-order Green’s function given by

G(0)
pq (ω) =

occ.∑
i

δpiδqi

ω − εi − iη
+

vir.∑
a

δpaδqa

ω − εa + iη
, (5)

where “occ.” and “vir.” stand for occupied and virtual spin-
orbitals in the N electron ground state of a mean-field theory
such as the Hartree-Fock (HF) theory, and εp denotes the
pth canonical spin-orbital energy. Throughout this article, we
adhere to the convention [116] that i, j, k, and l label occupied
spin-orbitals, a, b, c, and d virtual spin-orbitals, and p and q
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FIG. 1. The Dyson equations [Eqs. (3) and (4)]. A bold line
denotes the exact Green’s function, while a thin line designates a
zeroth-order Green’s function. A marquise labeled � contains a
complex diagram structure of the exact irreducible self-energy.

either. G(ω), G(0)(ω), and �(ω) are m-by-m Hermitian matri-
ces with m being the number of spin-orbitals. A diagrammatic
representation of the Dyson equations is given in Fig. 1.

One can formally solve Eq. (3) for �(ω),

�(ω) = {G(0)(ω)}−1 − {G(ω)}−1 = ω1 − ε − {G(ω)}−1,

(6)

which can be inverted to yield

G(ω) = {ω1 − ε − �(ω)}−1, (7)

where 1 and ε are, respectively, the unit matrix and the diago-
nal matrix of εp, which are of the same rank as G(ω) or �(ω).

One can therefore determine all poles and residues of G(ω)
by solving ∣∣ω1 − ε − �(ω)

∣∣ = 0 (8)

for ω, which are, in turn, roots of the eigenvalue equation,

{ε + �(ωq)}Uq = Uqωq, (9)

where Uq is the qth vector of the unitary matrix that brings
ε + �(ωq) into a diagonal form. The eigenvalue ωq reports
an exact IP or EA with the corresponding Uq defining the
so-called Dyson orbital [117]. This equation, known as the in-
verse Dyson equation, has a striking physical interpretation as
an exact one-electron equation with the nonlocal, frequency-
dependent correlation potential �(ω) [118,119].

The residue F (ωq) for the pole ωq is evaluated as

F (ωq) ≡ Resωq Gqq(ω) =
{

1 − U†
q

(
∂�(ω)

∂ω

)
ωq

Uq

}−1

.

(10)

It quantifies a one-electron weight in the many-electron IP or
EA state and is proportional to the transition probability in
photoelectron spectroscopy [120]. The residues must there-
fore add up to the number of electrons (ne) when summed
over all IP poles (ωq < 0):

IP∑
ωq

F (ωq) = ne. (11)

In addition to IPs and EAs, the exact total energy is
gleaned from G(ω) with the aid of the Galitskii-Migdal iden-
tity [108–111],

E = Enuc. + 1

2

IP∑
ωq

(U†
qHcoreUq + ωq)F (ωq), (12)

where the summation is taken over all IP poles (ωq < 0), Enuc.

is the nuclear repulsion energy, and Hcore is the one-electron

FIG. 2. The third diagonal element of the exact G(ω) as a func-
tion of ω for the BH molecule (1.232 Å in the minimal basis set;
the third spatial orbital in the increasing order of orbital energy
corresponds to the HOMO). The exact IPs and EAs obtained by
FCI are superposed (as open circles), occurring at the poles of the
Green’s function. The HF and FCI energies are −24.752 788Eh and
−24.809 940Eh, respectively.

part of the Hamiltonian matrix [121]. Equation (12) says that
the total energy (minus Enuc.) is the sum of all IP poles (ωq)
times their one-electron weights (residues) corrected for the
double counting of the two-electron interactions.

In the diagonal approximation [64] to the self-energy, the
inverse Dyson equation simplifies to

εq + �qq(ωq) = ωq. (13)

The residue F (ωq) for the pole ωq is then computed as

F (ωq) ≡ Resωq Gqq(ω) =
{

1 − ∂�qq(ω)

∂ω

∣∣∣∣
ωq

}−1

. (14)

The sum rule for the residues then becomes∑
ωq

F (ωq) = 1, (15)

where the summation is taken over all roots of the qth diagonal
inverse Dyson equation.

B. Numerical results

In Fig. 2 is plotted the third diagonal element of the exact
G(ω) matrix as functions of ω for the boron hydride molecule
with the bond length of 1.232 Å in the minimal basis set. The
third element corresponds to the highest-occupied molecular
orbital (HOMO). The other elements of G(ω) are omitted
to avoid clutter. The exact G(ω) was obtained by literally
evaluating Eq. (2) using a determinant-based FCI program
[63,64]. The figure confirms the well-known fact [122] that
the function is divided by singularities into consecutive re-
gions or brackets, within each of which it is a monotonically
decreasing, “shoulder-like” function of ω.

In the same figure are superposed the exact IPs and EAs
(signs reversed; 300 each) obtained by the determinant-based
FCI program [72]. They coincide with the poles of G33(ω)
as they should. There are some IPs and EAs that apparently
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FIG. 3. Eigenvalues of the exact ε + �(ω) as a function of ω

for the BH molecule. The exact IPs and EAs obtained by FCI are
superposed (as open circles), and they coincide with the roots of
the inverse Dyson equation, occurring at the intersections of the
eigenvalues with the diagonal ω line; see Eq. (9).

lack matching poles, but they correspond either to the poles of
other elements of G(ω) or to nearly vertical poles (with nearly
zero residues) that have fallen through the ω mesh used for
plotting Fig. 2. These are merely some minor issues associated
with the algorithms adopted, and there is no pathological
behavior detectable in the exact MBGF, which reproduces the
results of FCI.

Figure 3 plots eigenvalues of the exact ε + �(ω) matrix
as functions of ω. Of the six eigenvalues the lowest one is
not visible in this plot and the second and third highest ones
are degenerate. Each root of the inverse Dyson equation is
expected at an intersection of the eigenvalues of ε + �(ω)
and the diagonal line ω as per Eq. (9). In fact, the IPs
and EAs obtained from FCI are seen to occur precisely at
these intersections. The few IPs and EAs appearing to oc-
cur away from any intersection are likely due to the nearly
vertical poles with nearly zero residues, which are thus un-
detected by an ω mesh. This issue may be a weakness of
the graphical method [122,123] of solving the inverse Dyson
equation if one is concerned with determining all roots, but
it by no means signals any fundamental problem in the
theory.

Figure 4 is a histogram of the poles of the exact G(ω); the
height of each impulse is the corresponding residue [Eq. (10)].
There are numerous poles outside of this graph (see Sec. IV).
Generally, the poles and residues can be determined by the
graphical [122,123] or arrow-matrix diagonalization method
[122]. In this study, we used neither; the poles {ωq} in their
entirety were first obtained by FCI [72] and verified by substi-
tution to the inverse Dyson equation [Eq. (9)]. The residue
at ω = ωq was then computed by evaluating Eq. (10). The
derivative of � with respect to ω can be taken analytically
by

(
∂�(ω)

∂ω

)
ωq

= 1 + {G(ω)}−1

(
∂G(ω)

∂ω

)
ωq

{G(ω)}−1, (16)

FIG. 4. Residues at poles ω of the exact G(ω) for the BH
molecule. The exact IPs and EAs obtained by FCI are superposed
(as open circles).

with

∂Gpq(ω)

∂ω
= −

IP∑
I

〈�0| p̂†|�I〉〈�I |q̂|�0〉
(ω − E0 + EI )2

−
EA∑
A

〈�0|q̂|�A〉〈�A| p̂†|�0〉
(ω − EA + E0)2 . (17)

However, the last expression is ill-conditioned at every pole
ω = ωq. We therefore approximated this derivative as an av-
erage of the derivatives at ω = ωq ± 10−9Eh.

The residues thus obtained correctly fall in the range of
zero to one for the BH molecule. They also satisfy the parti-
cle number sum rule [Eq. (11)] and Galitskii-Migdal identity
[Eq. (12)] with the precision of 10−7Eh and 10−6Eh, respec-
tively, which is a numerical manifestation of the fact that the
exact Green’s function obeys the Baym-Kadanoff conserva-
tion laws [29,88,89,93]. Very many tiny contributions from
satellite roots are crucial for these identities to be accurately
satisfied, and including only principal roots results in severe
errors even in this tiny system.

Overall, the exact finite-basis-set Green’s function and self-
energy are well-behaved, satisfying conservation laws and
yielding results that are in exact numerical agreement with
alternative methods such as FCI or full EOM-CC. Therefore,
the pathological behaviors we are about to discuss are exclu-
sively ascribed to their perturbation expansions.

III. FEYNMAN-DYSON DIAGRAMMATIC
PERTURBATION EXPANSION OF PROPAGATOR

A. Formalisms

In most applications, both the Green’s function and self-
energy are expanded in perturbation series. In this article,
perturbation corrections are denoted by symbols prefixed with
δ with its order given as the parenthesized superscript:

G(ω) = G(0)(ω) + δG(1)(ω) + δG(2)(ω) + · · · , (18)

�(ω) = δ�(1)(ω) + δ�(2)(ω) + δ�(3)(ω) + · · · . (19)
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FIG. 5. The second-order self-energy.

Cumulative approximations to G or � through order n are
denoted by symbols without a δ prefix.

G(n)(ω) ≡ G(0)(ω) +
n∑

i=1

δG(i)(ω), (20)

�(n)(ω) ≡
n∑

i=1

δ�(i)(ω), (21)

In this article, MBGF(n) refers to the nth-order Feynman-
Dyson perturbation approximation to one-particle many-body
Green’s function theory, seeking the poles and residues by
solving the inverse Dyson equation with �(n). On the other
hand, the exact MBGF is synonymous to FCI as demonstrated
in Sec. II. MBGF(n) is diagrammatically linked [64] and thus
size-consistent [124]. Its ab initio computer implementations
(based on Gaussian-type orbitals [121]) can therefore be ap-
plied to both electrons [81] and phonons [74] in solids.

The perturbation corrections are usually stipulated di-
agrammatically [25–29], but they are also defined [64]
algebraically as

δG(n)(ω) = 1

n!

∂nG(ω; λ)

∂λn

∣∣∣∣
λ=0

, (22)

δ�(n)(ω) = 1

n!

∂n�(ω; λ)

∂λn

∣∣∣∣
λ=0

, (23)

where G(ω; λ) and �(ω; λ) are the exact (i.e., FCI) val-
ues of the respective quantities for a perturbation-scaled
Hamiltonian Ĥ = Ĥ (0) + λV̂ (1). The zeroth-order Hamilto-
nian Ĥ (0) corresponds to the G(0) of Eq. (5). Here, we
adopt the HF theory as the zeroth order, which implies
δ�(1)

pq = 0 [64].
These λ derivatives can be taken either numerically or

analytically. From the former, we obtain benchmark data of
the perturbation corrections at several low orders [64]. From
the latter, we derive recursions of δG(n) and δ�(n) in the
style of Rayleigh-Schrödinger perturbation theory, which can
then be implemented into a general-order algorithm [64].
This strategy was used in this study. The recursions also
justify the diagrammatic rules through the linked-diagram and
irreducible-diagram theorems in a time-independent picture
[64].

While the time-independent picture is more mathemati-
cally transparent and systematically extensible to arbitrarily
high orders [64], the time-dependent one may be more ap-
pealing to our intuition and expedient [26,27]. In the latter,
for example, the second-order self-energy is stipulated dia-
grammatically as in Fig. 5. It graphically describes the process
in which (i) a mean-field particle (hole) scatters another par-
ticle out of its mean-field state, thereby creating a hole, at
one time; (ii) all three particles and holes propagate in their
respective mean-field potentials, i.e., driven by the mean-field
propagator G(0); and (iii) the particle-hole pair recombines at
another time. The numerical value of δ�(2), which is related
to the probability of this overall process, is the product of
the probabilities of the constituent scattering and propagation
events summed over all possible times and positions of their
occurrences. Consulting with Table 4.3 of Mattuck [26], we
can then evaluate it as

δ�(2)
pq (ω) = (−1)1i

occ.∑
i

vir.∑
a<b

∫ ∞

−∞

dωa

2π

∫ ∞

−∞

dωi

2π
(−i)〈qi||ab〉(−i)〈ab||pi〉 iG(0)

aa (ωa)iG(0)
ii (ωi )iG

(0)
bb (ω + ωi − ωa)

+ (−1)1i
vir.∑
a

occ.∑
i< j

∫ ∞

−∞

dωi

2π

∫ ∞

−∞

dωa

2π
(−i)〈qa||i j〉(−i)〈i j||pa〉 iG(0)

ii (ωi )iG
(0)
aa (ωa)iG(0)

j j (ω + ωa − ωi ) (24)

= 1

2

occ.∑
i

vir.∑
a,b

〈qi||ab〉〈ab||pi〉
ω + εi − εa − εb

+ 1

2

occ.∑
i, j

vir.∑
a

〈qa||i j〉〈i j||pa〉
ω + εa − εi − ε j

, (25)

where an occupied spin-orbital index and the imaginary unit
both denoted by “i” should be distinguished, and 〈pq||rs〉 is
an antisymmetrized two-electron integral [116,121]. Second-
order many-body Green’s function method [MBGF(2)] solves
the inverse Dyson equation [Eq. (9)] with this �(2). Since the
roots of this equation occur at the intersection of ε + �(2)(ω)
and ω, they can never be divergent even though the method is
perturbative.

The second-order correction to the Green’s function is
then described by the same diagram as the second-order self-
energy, but appended with long dangling edges, as shown in
Fig. 6. It is important to recognize that the roots of the inverse

Dyson equation with �(2) are not the poles of this G(2); rather,
they are the poles of GDyson(2) (using the nomenclature of
Holleboom and Snijders [110]) defined by

GDyson(n)(ω) = {ω1 − ε − �(n)(ω)}−1, (26)

in analogy to Eq. (7) and in accordance with the Dyson
equations [Eqs. (3) and (4)]. Therefore, as shown in Fig. 7,
GDyson(2) is a bold-line Green’s function (just like the one
appearing in Fig. 1), which includes an infinite-order correc-
tion through repeated actions of �(2). In this sense, MBGF(n)
is an infinite-order theory for IPs and EAs even for a finite
perturbation order n.
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FIG. 6. The second-order Green’s function.

Likewise, the third-order self-energy is evaluated from its
diagrams [49] as

δ�(3)
pq (ω)

= 1

4

occ.∑
i

vir.∑
a,b,c,d

〈qi||ab〉〈ab||cd〉〈cd||pi〉
(ω + εi − εa − εb)(ω + εi − εc − εd )

− 1

4

occ.∑
i, j,k,l

vir.∑
a

〈qa||i j〉〈i j||kl〉〈kl||pa〉
(ω + εa − εi − ε j )(ω + εa − εk − εl )

+ (16 terms), (27)

corresponding to the diagrammatic equation in Fig. 8. It may
be noticed that the functional form of δ�(3) with respect to ω

is different from that of δ�(2) [Eq. (25)]; poles in δ�(3) are
second order, while δ�(2) and the exact Green’s function have
only first-order poles. This difference has a grave consequence
on the roots of the inverse Dyson equation, which we now
discuss.

B. Numerical results

In Fig. 9 are plotted diagonal elements of the second- and
third-order self-energies, ε3 + �

(2)
33 and ε3 + �

(3)
33 , for the third

orbital (HOMO) of the BH molecule [64]. Intersections of
these functions with the diagonal ω line (also drawn) are the
roots of the corresponding inverse Dyson equations in the
diagonal approximation. See Eq. (13).

The second-order self-energy has qualitatively the same
functional form as the exact self-energy (Fig. 3) in that they
are both separated by singularities into consecutive ω brack-
ets, within each of which they are monotonically decreasing
and shoulder-like. The singularities of �(2), i.e., the bound-
aries of the brackets, occur at the two-particle-one-hole (2p1h)
(εa + εb − εi) and two-hole-one-particle (2h1p) (εi + ε j − εa)

+= +

+ + . . .+

G
Dyson(2)
ab =

+ +

FIG. 7. The second-order bold-line Green’s function.

FIG. 8. The third-order self-energy. See Appendix 1 of Öhrn and
Born [49] for a complete list.

HF orbital energy differences according to Eq. (25). In each
bracket, a diagonal element of the second-order self-energy
intersects the diagonal ω line exactly once, just as the ex-
act self-energy does [122]. The second-order inverse Dyson
equation has the principal root for the HOMO at around
−0.25Eh in the central bracket enclosing ω = 0, where the
self-energy is relatively flat and whose residue is close to unity
[see Eq. (14)]. The self-energy also intersects the ω line in
each of the other brackets, typically on a near-vertical part of
its shoulder-like curve. This means that these satellite roots
coincide with the 2p1h or 2h1p HF orbital energy differences,
accounting for little to no electron-correlation effects, and
have near zero residues. Nevertheless, MBGF(2) is overall
well-behaved.

The third-order self-energy, in contrast, has a qualitatively
wrong functional form. It is still separated by the same 2p1h
and 2h1p singularities into the identical set of brackets [see
Eq. (27)], but within each bracket, �(3) is either concave or
convex except in the central bracket, where it is correctly
monotonically decreasing. Consequently, in the domain of ω

of Fig. 9, the third-order inverse Dyson equation has only one
real root, i.e., the principal root for the HOMO at around
−0.25Eh. The different functional forms of the self-energy
between the second and third orders can be easily rationalized
by their algebraic definitions, Eqs. (25) and (27). The second-
order self-energy (as well as the exact self-energy) has only
first-order poles, whereas the third-order self-energy features
up to second-order poles.

Figure 10 plots the second- and third-order bold-line
Green’s functions. The GDyson(2) has the same overall ap-
pearance as the exact Green’s function (Fig. 2). It exhibits
a “fat” pole at the principal root for the HOMO and several
“thin” poles at satellite roots. In contrast, GDyson(3) displays

FIG. 9. The third diagonal elements of ε + �(2)(ω) and ε +
�(3)(ω) as functions of ω for the BH molecule.
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FIG. 10. The third diagonal elements of GDyson(2)(ω) and
GDyson(3)(ω) as functions of ω for the BH molecule.

only undulations but no poles at the frequencies where satel-
lite roots are expected. The diagonal element of GDyson(3)

for the HOMO has poles only at the principal roots at
around −0.25Eh and 0.69Eh, which is consistent with Fig. 9.
(Although there is no root at around 0.69Eh in MBGF(3)
according to Fig. 9, this principal EA root has a considerable
mixing with other roots with its residue being only 0.77,
which is why it creates a pole in GDyson(3)

33 .) Hence, the per-
turbative Green’s functions confirm the absence of many real
satellite roots at MBGF(3).

Where have the missing satellite roots of MBGF(3) gone?
We believe that they have gone to the complex space, although
no attempt has been made to determine them numerically.

Figure 11 plots all six diagonal elements of ε + �(3) in a
full domain of ω. For the HF occupied orbitals 1, 2, 3, and
virtual orbital 6 (labeled in the increasing order of energy),
which transform as a1 in the C4v subgroup, there are twelve
(12) 2p1h and 2h1p singularities or thirteen (13) brackets.
Hence, the second- and third-order inverse Dyson equations in
the diagonal approximation are a thirteenth-order polynomial
equation for each of these a1 orbitals. The second-order equa-
tion has one principal root and twelve satellite roots (13 in
total), all of which are real.

On the other hand, as Fig. 11 indicates, the diagonal ele-
ment of the third-order self-energy for orbital 1 intersects the
ω line only nine times, meaning that its diagonal third-order
inverse Dyson equation has at least nine real roots (some
may be degenerate) out of 13 roots in total. The remaining
four (or less in the case of degeneracy) roots must be com-
plex. For orbitals 2, 3, and 6, the number of intersections is
three and hence the third-order equation for each of these
orbitals has three (or more) real and ten (or fewer) complex
roots.

The HF virtual orbitals 4 and 5 transform as e of C4v and
are degenerate. There are nine 2p1h and 2h1p singularities or
ten brackets for these orbitals. The diagonal second- and third-
order inverse Dyson equations are therefore a tenth-order
polynomial equation. The second-order equation has ten real

FIG. 11. All six diagonal elements of ε + �(3)(ω) as functions
of ω for the BH molecule. The fourth and fifth elements are degen-
erate, appearing as one curve. The 2p1h and 2h1p HF orbital energy
differences are superposed.

roots, but as seen in Fig. 11, the third-order self-energy inter-
sects the ω line only three times, implying that the third-order
equation has four or more real roots and six or less complex
roots (since complex roots of a polynomial equation with real
coefficients occur in complex-conjugate pairs, at least one of
the real roots must be degenerate).

From Fig. 11, it can furthermore be observed that real
satellite roots of MBGF(3) tend to appear as nearly degenerate
pairs or doublets (which is distinct from the exact degeneracy
of roots mentioned in the foregoing paragraphs). One of a
doublet corresponds to an intersection of a sharply falling
part of the self-energy with the ω line and thus has a posi-
tive infinitesimal residue, while the other intersection occurs
at an almost vertically rising part of the self-energy, whose
residue is negative and thus nonphysical. These intersections
almost coincide with bare 2p1h or 2h1p HF orbital energy
differences, thus accounting for little to no correlation effects.

These observations can be generalized to all orders. One
can expect an even-order self-energy to have the same quali-
tatively correct functional form as the exact self-energy, while
the third and higher odd-order self-energies to display quali-
tatively wrong functional forms. This is borne out in Fig. 12,
in which the eighth- and ninth-order self-energies are plotted
along with the (n + 1)hnp and (n + 1)pnh HF orbital energy
differences. In Fig. 13, all six diagonal elements of �(8) are
drawn in a full domain of ω.

In Fig. 12, the odd-order �(9) has a concave or convex
shape in each bracket separated by its singularities and, as a
result, intersects the ω line only once in the shown ω domain.
In the same figure, the exact self-energy and exact IPs and
EAs are overlaid, indicating that there should be far more
intersections than just one in this ω domain. The missing
satellite roots of MBGF(9) are believed to be complex.

The eighth-order self-energy is less problematic in this
regard, but it comes with new issues. Its brackets are
separated by the 2p1h, 2h1p, 3p2h, 3h2p, 4p3h, 4h3p, 5p4h,
and 5h4p HF orbital energy differences. The even-order �(8)
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FIG. 12. The third diagonal elements of the exact ε + �(ω) and
ε + �(n)(ω) (n = 8, 9) as functions of ω for the BH molecule. The
exact IPs and EAs obtained by FCI are superposed.

is technically monotonically decreasing within each bracket,
but it decreases so sharply in many brackets that it consists
of near vertical lines, where it intersects the ω line, as seen in
Figs. 12 and 13. Therefore, although MBGF(8) has real roots,
most of them are phantom poles with zero residues, occurring
somewhere near the midpoint of each bracket.

Consequently, the distribution of the roots of the eighth-
order inverse Dyson equation (the intersections of ε + �(8)

with the ω line in Fig. 13) matches more closely the mere
HF orbital energy differences (the green diamond plots in the
same figure) than the exact roots (the red circles). Even though
these MBGF(8) roots are not equal to the HF orbital energy
differences, they are confined within brackets demarcated by
these differences, which form dense manifolds, and tend to
agree with them. These satellite roots therefore include little
to no electron-correlation effects, not to mention that most of
them hardly exist physically because their residues are zero.

FIG. 13. All six diagonal elements of ε + �(8)(ω) as functions of
ω for the BH molecule. The (n + 1)pnh and (n + 1)hnp HF orbital
energy differences (n = 1, 2, 3) as well as the exact IPs and EAs
obtained by FCI are superposed.

FIG. 14. The third diagonal elements of the exact ε + �(ω)
and ε + �(n)(ω) (n = 2, 4, 6, . . . , 16) as functions of ω for the BH
molecule.

These are disheartening results considering that the eighth-
or ninth-order perturbation approximations are usually numer-
ically exact in most other physics cases [105,107].

Our numerical tests for other molecules (not shown) have
indicated that an odd-order self-energy can generally be con-
cave, convex, or even monotonically increasing within a
bracket. Therefore, an odd-order inverse Dyson equation can
have real roots (sometimes more than one in a bracket), but
the corresponding residues may fall outside the valid range of
zero to one.

One might still wonder if selectively raising only the even
perturbation order may avoid these pathologies. Figure 14
shows the evolution of �(2n) as a function of the even per-
turbation order 2n. With increasing order, the self-energy
becomes more and more vertical and less shoulder-like with
the intersections with the ω line moving away from the cor-
rect locations. The corresponding residues will approach zero.
Ironically, it appears as though the perturbative self-energies
converged at the exact one as the perturbation order is low-
ered! This figure is the most compelling piece of evidence
demonstrating the nonconvergence of the Feynman-Dyson
perturbation expansion of the self-energy.

This conclusion does not undermine the utility or rapid
convergence of MBGF(n) for roots falling well within the
central bracket bounded by the highest 2h1p and lowest 2p1h
energies as well as in some other ω domains (see Sec. V A).
This bracket typically encloses most principal IPs and EAs
(but not core IPs) as well as low-energy satellite poles. Fig-
ure 15 is a close-up of the self-energy-versus-ω plot for
MBGF(n) (2 � n � 11) as well as the exact MBGF. It shows
that the intersections of the self-energy and ω line systemati-
cally approach the exact IP for the HOMO.

IV. INFINITE PARTIAL RESUMMATIONS
OF PROPAGATOR DIAGRAMS

A. Vertex renormalization

To avoid the malaise of truncated perturbation approxima-
tions, infinite partial resummations of diagrams have often
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FIG. 15. The third eigenvalues of the exact ε + �(ω) and ε +
�(n)(ω) (n = 2, 3, 4, . . . , 11) as functions of ω for the BH molecule.
The corresponding exact IP obtained from FCI is superposed.

been invoked. One way of doing this is by renormalizing
vertexes.

Here, a “vertex” refers to an instantaneous Coulomb inter-
action denoted by a horizontal (dashed) line in a Hugenholtz-
Shavitt-Bartlett diagram and is equal to an antisymmetrized
two-electron integral containing both the direct and exchange
contributions [116,121]. It should be distinguished from a
space-time point of contact between propagator lines and an
interaction line in a Goldstone diagram, each standing for only
the direct or exchange contribution, often used in the GW
approximations [31,55,58,60,125,126].

In the two-particle-hole Tamm-Dancoff approximation
(TDA) [33,85–87], also known as the Brueckner-Hartree-
Fock method [82,84] or the T approximation [29], the
diagrams of the types in Fig. 16 are summed over up to an
infinite order. In this figure, the first two diagrams in the third
and fourth lines are “ring” diagrams, and the subsequent two
diagrams are “ladder” diagrams. The effect of this infinite
resummation can be folded into the bold-line vertexes as
appearing in the first line of Fig. 16, which must, in turn,
satisfy the diagrammatic equations drawn in Fig. 17. They

+

+ + + +

+ . . .+ + + +

+=

ΣTDA
pq =

FIG. 16. The self-energy in the TDA approximation.

FIG. 17. The diagrammatic equations for the bold-line (renor-
malized) vertexes of TDA.

take the form of the amplitude equations of coupled-cluster
theory [116,127] and are written algebraically as

(ω + εi − εa − εb)U ab
pi (ω)

= 〈ab||pi〉 − P(ab)
∑
c,k

〈ak||ci〉U cb
pk (ω)

+ 1

2

∑
c,d

〈ab||cd〉U cd
pi (ω), (28)

(εi + ε j − ω − εa)V qa
i j (ω)

= 〈qa||i j〉 − P(i j)
∑
c,k

〈ka||ic〉V qc
k j (ω)

+ 1

2

∑
k,l

〈kl||i j〉V qa
kl (ω), (29)

where P(ab) is an antisymmetrizer [116]. Unlike coupled-
cluster theory, where there is only one type of cluster
excitation amplitudes (denoted by T ), there are two (2p1h
and 2h1p) types of modified vertexes whose numerical val-
ues are stored in U and V . They represent electron-electron
repulsion tempered by screening and other higher-order
electron-correlation effects.

Equations (28) and (29) are a system of linear equations,
which can, therefore, be ill-conditioned at some ω. In this
work, they are solved in an iterative algorithm; i.e., starting
with initial guesses of U and V , we substitute them in the
right-hand sides of these equations to update U and V in
the left-hand sides, and repeat this process until convergence.
Therefore, in practice, the highest order of the ring and ladder
diagrams that are actually included in the calculation is capped
by the number of cycles taken in this iterative solution. Upon
convergence, the self-energy is obtained as

�TDA
pq (ω) = 1

2

∑
i,a,b

〈qi||ab〉U ab
pi (ω) − 1

2

∑
i, j,a

〈i j||pa〉V qa
i j (ω).

(30)

See Ref. [71] for a more efficient and stable algorithm, which,
however, is not exempt from the pathological behaviors dis-
cussed below, which are deeply rooted in the formalism.

For a total energy, an infinite partial resummation of
the corresponding ring and ladder diagrams defines an
instance of coupled-cluster theory [116,127] known as lin-
earized coupled-cluster doubles (LCCD) or by other names
[128–134]. This method is ω-independent and is thus free
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FIG. 18. The exact ε3 + �33(ω) and ε3 + �TDA
33 (ω) as functions

of ω for the BH molecule. The self-energy in TDA is determined after
n cycles of the iterative solution of the amplitude equation, summing
over the ring and ladder diagrams through the order n + 1.

from the nonconvergence problems discussed here. It instead
displays other problems concerning accuracy [135].

Figure 18 compares the self-energy of TDA with the exact
self-energy. The former was obtained after either 20 or 21
cycles of the iterative solution of the amplitude equations,
summing over ring and ladder diagrams through the order 21
or 22, respectively. As may be expected from the discussion
on perturbative self-energies, TDA does not improve the over-
all appearance of the self-energy; rather, it degrades it.

For instance, �TDA obtained after 20 cycles has qualita-
tively wrong (concave and convex) functional forms (outside
the central bracket) because computationally it is a high-odd-
order perturbation theory. In contrast, �TDA after 21 cycles
has qualitatively correct functional forms (as it is a high-
even-order perturbation theory), but it consists of numerous
vertical lines. Therefore, TDA predicts vastly different IPs
and EAs depending on the number of cycles taken in the it-
erative solution—an artifact of calculations—and is therefore
methodologically ill-defined insofar as all roots are sought.
Furthermore, both of these conflicting predictions are equally
meaningless. After 20 cycles, there are no real roots outside
the central bracket in this graph; after 21 cycles, most roots are
phantom poles with zero residues. However, this observation
should not be misconstrued to mean that TDA is useless; for
the principal IPs and EAs, TDA is sound and useful.

It is unsurprising for an infinite partial resummation to
inherit the pathologies of higher-order perturbation theory, but
this does not imply that the same pathologies plague all vertex
renormalization techniques. The equation-of-motion (EOM)
formalism of Green’s function theory [37,45–47,83] also in-
volves an infinite partial resummation of diagrams, but it can
be recast into a matrix diagonalization [48] and may thus be
free from the type of the nonconvergence problems discussed
above. The random-phase approximation (RPA) [91], which is
a lowest-order member of the EOM approximation series, as
well as the related GW approximations [31,55,58,60,125,126]
and the frequency-dependent part of the ADC self-energy
[51,52], may also be more robust than TDA, although this
has not been numerically confirmed nor is the convergence

FIG. 19. The self-consistent second-order self-energy.

toward exactness implied. The Parquet method [136] sums
over a related, but distinct class of diagrams and hence the
present conclusion may not apply, either.

The EOM-CC method [72,137–146] has been argued to be
a coupled-cluster Green’s function [147–157] and can also
be viewed as an infinite resummation of the propagator dia-
grams [63]. However, this method does not suffer from the
pathologies discussed above; it instead yields IPs and EAs
for all (principal, satellite, and even core-ionized [158]) states
that are systematically convergent at the exact values with
increasing excitation level. EOM-CC separates the IP and EA
sectors and its roots are obtained as eigenvalues of a non-
Hermitian matrix. Like MBGF(n), the EOM-CC roots are not
guaranteed to be real, but they are almost never complex in
practice.

It may be inferred that the EOM formalisms of Green’s
functions, be they based on perturbation theory or coupled-
cluster theory, are more robust and potentially converging
because their IPs and EAs are obtained directly as eigenval-
ues of some matrix rather than by solving an inverse Dyson
equation. In other words, the EOM formalisms may attain
stability and convergence by divorcing from Green’s function
theory in the Feynman-Dyson style. That the exact MBGF
and MBGF(2), the latter being the only Feynman-Dyson per-
turbation order largely exempt from the pathologies, can also
be recast into a matrix eigenvalue problem [122] is consistent
with this inference.

B. Edge renormalization

Another way of performing a diagram resummation is by
renormalizing edges. By replacing all three edges in each
diagram of δ�(2) by the corresponding bold-line Green’s func-
tions GDyson(2) of Fig. 7, we include an infinite number of
“row-house” diagrams appearing in the second line of Fig. 19.
Furthermore, if the bold-line Green’s function (designated
by Gsc(2)) comes from this very edge-modified self-energy
�sc(2), as in Fig. 20, we account for another infinite set of
“tower” diagrams shown in the third line of Fig. 19. This
self-consistency between the self-energy and Green’s func-
tion was emphasized by Baym and Kadanoff [29,88,89,93]
as an essential ingredient of an approximate MBGF method
that obeys conservation laws. (The first-order self-consistent
MBGF method is identified as the HF theory [91].) In
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chemistry, approximations inspired by this idea are enjoying
a revival for its possible ability to describe strong correlation
more accurately [96,98,110,159].

In the diagonal approximation, a self-consistent second-
order self-energy [90] is thus defined by the same equation as
Eq. (24) but with each G(0) replaced by Gsc(2),

�sc(2)
pq (ω) = (−1)1i

occ.∑
i

vir.∑
a<b

∫ ∞

−∞

dωa

2π

∫ ∞

−∞

dωi

2π
(−i)〈qi||ab〉(−i)〈ab||pi〉 iGsc(2)

aa (ωa)iGsc(2)
ii (ωi )iG

sc(2)
bb (ω + ωi − ωa)

+ (−1)1i
vir.∑
a

occ.∑
i< j

∫ ∞

−∞

dωi

2π

∫ ∞

−∞

dωa

2π
(−i)〈qa||i j〉(−i)〈i j||pa〉 iGsc(2)

ii (ωi )iG
sc(2)
aa (ωa)iGsc(2)

j j (ω + ωa − ωi ) (31)

= 1

2

occ.∑
i

vir.∑
a,b

IP∑
I (i)

EA∑
A(a),B(b)

〈qi||ab〉〈ab||pi〉
ω + ωI (i) − ωA(a) − ωB(b)

F (ωI (i) )F (ωA(a) )F (ωB(b) )

+ 1

2

vir.∑
a

occ.∑
i, j

IP∑
I (i),J ( j)

EA∑
A(a)

〈qa||i j〉〈i j||pa〉
ω + ωA(a) − ωI (i) − ωJ ( j)

F (ωA(a) )F (ωI (i) )F (ωJ ( j) ), (32)

where the occupied spin-orbital index i and the imaginary unit
i are to be distinguished, and ωI (q)(< 0) and ωA(q)(> 0) are an
IP and EA root, respectively, of the inverse Dyson equation in
the diagonal approximation, which satisfy

εq + �sc(2)
qq (ωI (q) ) = ωI (q), (33)

εq + �sc(2)
qq (ωA(q) ) = ωA(q). (34)

This Ansatz may differ somewhat from those of Van Neck
et al. [90] or of Dahlen and van Leeuwen [93] because it in-
volves some additional approximations, but these differences
have no impact on the following analysis. The corresponding
residues are given by

F (ωI (q) ) ≡ ResωI (q) G
sc(2)
qq (ω) =

{
1 − ∂�sc(2)

qq (ω)

∂ω

∣∣∣∣
ωI (q)

}−1

.

(35)

These conditions imply the self-consistency,

Gsc(2)(ω) = {ω1 − ε − �sc(2)(ω)}−1, (36)

in the diagonal approximation, although an explicit evaluation
of Gsc(2) is never needed.

In practice, Eqs. (32)–(35) are solved iteratively. In cycle
zero (n = 0), we use G(0) in the right-hand side of Eq. (32)
and obtain �sc(2)(n = 0) = �(2) in the left-hand side. In cycle
one, therefore, the new Green’s function is GDyson(2). By de-
termining all of its poles and residues and substituting them
back into Eq. (32), we obtain �sc(2)(n = 1). In cycle two,

+= +G
sc(2)
ab =

FIG. 20. The diagrammatic equation for the bold-line (renor-
malized) edge of the self-consistent second-order Green’s function
method.

similarly, we get �sc(2)(n = 2), and so on. In each cycle,
figuratively speaking, a “new floor” is added to each of the
“tower” diagrams (see the third line of Fig. 19). This cal-
culation quickly becomes intractable because the number of
poles increases factorially with iterative cycles. Dahlen and
van Leeuwen [93] and Zgid and coworkers [96,97,160,161]
devised imaginary-time-dependent (or finite-temperature) al-
gorithms for this method, which seem to overcome this
computational intractability.

Figure 21 compares the self-energies of the self-consistent
second-order Green’s function method after zeroth, first, and
second iterative cycles. In each case, the self-energy has the
qualitatively correct functional form, i.e., monotonically de-
creasing in each bracket separated by its singularities. This
is because the self-energy expression [Eq. (32)] is isomor-
phic to the second-order self-energy, which has only the
first-order poles. Furthermore, unlike higher-order perturba-

FIG. 21. The exact ε3 + �33(ω) and ε3 + �
sc(2)
33 (ω) as a function

of ω for the BH molecule. The self-consistent self-energy is deter-
mined after n cycles of the iterative ith (ath) edge replacement by
diagonal bold-line Gsc(2)

ii (Gsc(2)
aa ). �sc(2) (n = 0) corresponds to the

unmodified �(2)(ω).
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FIG. 22. Residues at poles ω of Gsc(2)(ω) after n cycles of the
self-consistent iteration as well as of the exact G(ω) for the BH
molecule. Gsc(2)(ω) at n = 0 corresponds to GDyson(2)(ω).

tive self-energies or TDA, the brackets’ boundaries shift from
one cycle to the next, and hence the satellite roots are no
longer confined by brackets of the mere HF orbital energy
differences.

Nonetheless, this does not mean that these satellite roots
are improved. To the contrary, they seem to deteriorate with
increasing iterative cycles. Figure 21 shows that in the first and
second cycles, new singularities of the self-energy emerge,
e.g., in the domain −3Eh � ω � −2Eh, where there are
no corresponding singularities of the exact self-energy. The
mechanism by which these spurious singularities multiply
rapidly with increasing self-consistent cycles is as follows:
In each cycle, the poles of the Green’s function define new
ω brackets, in each of which there is one root of the in-
verse Dyson equation. These brackets are demarcated by
singularities of the self-energy, Eq. (32), which are the 2p1h
(ωA(a) + ωB(b) − ωI (i)) or 2h1p (ωI (i) + ωJ ( j) − ωA(a)) energy
differences of the poles of the Green’s function (which are no
longer the HF orbital energy differences after the first cycle).
As the number of poles increases, the number of brackets and
thus the number of roots increase extremely rapidly, quickly
exceeding the correct total number of roots in a finite basis set.
The growth is factorial of the iterative cycle.

Figure 22 shows the poles and residues in the zeroth and
first cycles of the self-consistent second-order Green’s func-
tion method in comparison with the exact poles and residues.
The bottom panel is the same as Fig. 4, but shown in a full
domain of ω, and the top panel is equivalent to MBGF(2)
in the diagonal approximation. In the zeroth cycle (n = 0),
the distribution of the poles agree reasonably well with that
of the exact poles. The number of poles is 72 as compared
with 600 exact poles including ones with zero residues. In
the first cycle (n = 1), the number of poles already reaches
4314, far exceeding the total number (600) of ionized and
electron-attached states of a FCI calculation. Furthermore,
these spurious poles are not necessarily phantom mathemat-
ical roots with zero residues; they have nonzero residues and
encroach on the regions where there are no exact poles. In
the second cycle (n = 2), the number of roots reaches such
an astronomical value that our computer code can no longer

handle, and we judged that it was not worthwhile to pursue
full self-consistency. This difficulty was recognized by earlier
workers, many of whom then decided to abandon this class of
methods.

The bold-line self-energy diagrams in Fig. 19 is obtained
by cutting one bold line (and then trimming the resulting two
dangling lines) [64] of a skeleton diagram of the Luttinger-
Ward functional [8,88,89,114] in the zero-temperature limit.
Several mathematical difficulties associated with this func-
tional have been reported recently [12,14–19].

V. ANALYSIS

A. Cause of nonconvergence

What is the cause of the nonconvergence? This can be
answered by analyzing a model Green’s function of the form
[9]

g(ω) = 1

ω − E1
+ 1

ω − E2
+ 1

ω − E3
+ 1

ω − E4
, (37)

which consists of four poles. These poles are stipulated to be
quadratic functions of the perturbation strength λ:

E1 = 1.9 + 0.2λ + 0.2λ2, (38)

E2 = 0.75 + 0.1λ + 0.1λ2, (39)

E3 = −1.1 − 0.1λ − 0.1λ2, (40)

E4 = −2.2 − 0.15λ − 0.15λ2. (41)

The functional forms of g(ω) and the Es are arbitrary, but a
different choice would lead to essentially the same conclusion.

One can expand g(ω) in a Taylor series in λ,

g(ω) = g(0)(ω) + λg(1)(ω) + λ2g(2)(ω) + λ3g(3)(ω) + · · · .

(42)

A truncation of this series after a finite number of terms
captures the key features of the Feynman-Dyson perturbation
approximations of a Green’s function or self-energy.

Figure 23 shows the zeroth-, first-, and second-order Tay-
lor expansions of g(ω). The exact g(ω) and its zeroth-order
approximation g(0)(ω) have essentially the same functional
forms in that they are separated into consecutive ω brackets
by their singularities and within each bracket they are mono-
tonically decreasing functions. The first-order approximation
g(0) + g(1) has a qualitatively different functional form, which
is convex or concave except in the central bracket. The g(0) +
g(1) + g(2) largely restores the same functional form as the
exact g(ω), although the former is a rather poor approximation
at many frequencies despite the fact that the second-order
Taylor expansions of E1 through E4 are exact. These are
consistent with the overall patterns of behaviors of ab initio
odd- and even-order perturbative self-energies observed in the
foregoing sections.

Figure 24 extends this analysis to the nineteenth-order
Taylor expansion. It is convergent at the exact g(ω) in some
domains of ω, but nonconvergent in the other domains. Gener-
ally, convergence is attained within the overlap of the bracket
demarcated by the singularities of g(ω) and the one delineated
by the singularities of g(0)(ω). (The latter singularities are
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FIG. 23. Taylor expansions up to the second order in λ of the
model Green’s function g(ω) of Eq. (37).

where the near-vertical rapid oscillations of the nineteenth-
order Taylor expansion occur.) In this overlap, both g(ω) and
g(0)(ω) are in the middle “shoulder” part of the monotoni-
cally decreasing functions of ω, displaying similar functional
forms. Here, a Taylor expansion from g(0)(ω) is convergent.
Outside this overlap, either g(ω) or g(0)(ω) is in the left “neck”
part of the function, while the other is in the right “arm”
part. They are both monotonically decreasing, but one of them
has a singularity at one boundary of the domain, while the
other has a singularity at the other boundary, and they have
dissimilar functional forms in this sense. The g(ω) in this
domain is nonanalytic and its Taylor expansion has zero radius
of convergence.

In a molecular Green’s function or self-energy, there are
dense manifolds of singularities outside the central overlap-
ping bracket, which encloses most principal roots and some
low-energy satellite roots. Therefore, in practice, their pertur-
bation expansions are safely convergent only in this central
overlapping bracket as well as in the two terminal overlapping

FIG. 24. Same as Fig. 23 but for the nineteenth-order Taylor
expansion.

FIG. 25. Same as Fig. 23 but for Padé approximants.

brackets. The central overlapping bracket is an overlap of the
bracket bounded by the highest 2p1h and lowest 2h1p HF
orbital energy differences and the bracket demarcated typi-
cally by the least negative and least positive singularities of
the exact self-energy [77].

B. Padé approximants

In Sec. V A, the nonconvergence is shown to be caused
by the very definition of the exact Green’s function, which is
nonanalytic. Even when the positions of the poles, E1, . . . , E4,
are exactly expanded by second-order Taylor series, the Taylor
expansion of g(ω) is not only inexact at the second order, but
also nonconvergent at exactness at an infinite order. There-
fore, the cause of nonconvergence is a mathematical one:
The rational-function form of the exact Green’s function is
unamenable to a converging Taylor expansion, even though it
contains full physical information about the poles.

For this mathematical problem, the purely mathematical re-
summation technique of Padé approximants [106] may prove
useful. The [M, N] Padé approximant of a function f (λ) is a
power-series expansion of a rational function and is defined
by

[M, N] f (λ) = a0 + a1λ + a2λ
2 + · · · + aMλM

1 + b1λ + b2λ2 + · · · + bNλN
, (43)

whose expansion coefficients, {a0, . . . , aM} and {b1, . . . , bN },
are determined such that the above agrees with the (M +
N + 1)-order Taylor expansion of f (λ). Padé approximants
are known to generate a rapidly converging series out of
even a divergent Taylor series, often working well “beyond
their proven range of applicability” [106] at essentially no
additional cost if the (M + N + 1)-order Taylor expansion
dominates the cost.

Figure 25 shows the [1,1], [1,2], and [2,2] Padé approxi-
mants of g(ω). The [2,2] Padé approximant (summing through
the fifth-order Taylor series) is nearly exact and indistinguish-
able to the human eye from g(ω) except for a few spurious
spikes. This is in contrast with Fig. 24 in which even the
nineteenth-order Taylor expansion suffers from infinite errors
in multiple ω domains. The remarkable performance of Padé
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FIG. 26. The third diagonal element of ε + �(ω) as a function
of ω of the BH molecule obtained by a [2,1] Padé resummation of
�(n)(ω) over 1 � n � 5. The corresponding elements of the exact
ε + �(ω) and ε + �(5)(ω) are also shown.

approximants is ascribed to separately expanding the numera-
tor and denominator of the rational-function form of g(ω).

Padé approximants were introduced to many-body pertur-
bation energies by Goscinski [99] and further developed by
Brändas and Goscinski [100,102] and by Bartlett and Brändas
[103,104]. They were applied to both convergent [105] and
divergent [107] series of many-body perturbation energies,
and in the latter case a rapid convergence was restored. In
each case, the size-consistency is maintained [103,104]. Their
applications to Green’s functions were proposed by Goscinski
and Lukman [34] and by Linderberg and Ratner [101], but no
numerical results beyond a two-site model calculation were
given.

Figures 26 and 27 show the [2,1] and [5,5] Padé approx-
imants of the perturbative self-energies of the BH molecule.
They were obtained by using Eqs. (12)–(17) of Laidig and
Bartlett [105] of which their “E (n)” should be read �(n) in
our case. The [N, N − 1] and [N, N] Padé approximants sum
over perturbative self-energies through 2N + 1 and 2N + 2

FIG. 27. The same as Fig. 26 but for a [5,5] Padé resummation
of �(n)(ω) over 1 � n � 12.

orders, respectively, at no additional cost. The [2,1] Padé
approximant (Fig. 26) not only largely eliminates the incorrect
(concave and convex) shapes of �(5), but it also shifts the
positions of the singularities in the right directions to be in
better agreement with the exact self-energy. The [5,5] Padé
approximant (Fig. 27) traces the exact self-energy even more
closely, although spurious spikes can be seen.

In this context, it may be instructive to compare the �MPn
method [36,63,64,162] with MBGF(n). �MPn computes the
perturbative self-energy as the difference in the nth-order
many-body perturbation energy between the frozen-orbital
N ± 1 and N electron systems. At the second and third
orders, the �MPn self-energy agrees with the MBGF(n) self-
energy in the diagonal, frequency-independent approximation
[63,64]. At fourth and higher orders, these two self-energies
deviate from each other, but they both converge at the same
exact self-energy at an infinite order (unless they diverge).
�MPn can reach the exact limit by including semireducible
and linked-disconnected diagrams, which correct the errors
from the diagonal and frequency-independent approxima-
tions, respectively. These strange diagrams (also implicit in
EOM-CC) are, however, illegal in MBGF(n) [63,64].

Unlike MBGF(n), which is nonconvergent for most roots,
�MPn is only occasionally divergent (see Fig. 6 of Ref. [64])
as it is based on the Hirschfelder-Certain degenerate pertur-
bation theory (HCPT) [163] applied to individual states. This
again underscores the fact that the positions of the poles can
be directly and more reliably expanded in converging Taylor
series; only when they are placed in the denominator of a
rational function does a perturbation theory struggle to shift
their positions in a systematic, converging manner. A Padé
resummation of the perturbative self-energies works well be-
cause it expands the numerator and denominator of a Green’s
function separately and the power-series expansion of the
denominator is analogous to �MPn.

VI. CONCLUSIONS

The Feynman-Dyson diagrammatic perturbation expan-
sions of the self-energy and Green’s function are reliably
convergent and thus physically sound only in some small
domains of ω, which includes the central overlapping bracket
around ω = 0 enclosing most principal roots and some low-
energy satellite roots. Outside these domains, the perturbation
expansions are nonconvergent. Our mathematical analysis
suggests that the convergence is assured only in an overlap of
the exact and mean-field ω brackets. An odd-order MBGF(n)
method can have roots that are complex or whose residues
are outside the valid range of zero to one, whereas a higher-
even-order self-energy tends to consist of many vertical lines,
predicting phantom poles with zero residues. A majority of
satellite roots of MBGF(n) are distributed in nearly the same
frequency domains spanned by mere HF orbital energy differ-
ences and include little to no electron-correlation effects, no
matter how high the perturbation order is raised.

This is in contrast with the �MPn method [36,63,64,162],
in which IPs and EAs are computed as the energy differences
of the nth-order HCPT [163] applied to the frozen-orbital
N ± 1 and N electron systems. The HCPT energies for both
principal and satellite ionized or electron-attached states [163]
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are only occasionally divergent, and when they converge, they
do so at the exact energies. Even though both �MPn and
MBGF(n) can be formulated in terms of the HCPT corrections
to the identical zeroth-order wave functions and energies [64],
the former is mostly sound for both principal and satellite
states, while the latter is pathological for most satellite states.

Infinite partial resummations of diagrams can exacerbate
the nonconvergence. The summation of the ring and ladder
diagrams up to an infinite order by vertex renormalization
(TDA) deteriorates the self-energy outside the central bracket.
Worse still, the result of calculation changes dramatically
and alternately with the number of cycles taken to solve the
amplitude equations in an iterative algorithm, making the
method ill-defined when all roots are sought. The summation
of all tower diagrams by edge renormalization (self-consistent
Green’s function method) has a factorially increasing number
of roots, whose energies encroach on the frequency domains
where no exact roots can be found.

This is in sharp contrast with coupled-cluster theory. TDA
is to IPs and EAs as LCCD is to ground-state energies since
they both sum over the same infinite set of ring and ladder
diagrams. Despite this similarity, TDA is pathological for low-
and high-lying satellite roots, while coupled-cluster theory via
the EOM-CC formalism offers the most accurate, robust, and
converging approximations for all roots obtained directly as
eigenvalues of a matrix [72,137–146]. The EOM formula-
tion of MBGF [37,45–47,83], which can also be viewed as
an infinite partial resummation of diagrams, is recast into a
matrix diagonalization [48] and may thus be free from the
convergence difficulties faced by MBGF(n).

The nonconvergence of the Feynman-Dyson perturbation
theory, which is the mathematical foundation of quantum field
theory [20–24,27], makes it hard to use higher-than-second-
order self-energy and Green’s function in the Ansätze that
are predicated on the knowledge of all poles and residues.
Such Ansätze include the Galitskii-Migdal identity [108–111],
self-consistent Green’s function methods [8,18,88–98], and
some models of the ADC [51,52] that evaluate the static
part of its self-energy by summing over all poles of a
Feynman-Dyson perturbative self-energy (see Deleuze et al.
[112,113] for the ADC’s lack of size- or charge-consistency,
which may be related to the pathologies discussed here).
Insofar as the self-consistent Green’s function methods are
derived from the diagrammatic Luttinger-Ward functional
[8,15,16,19,88,89,114], on which the formalisms of DMFT
[115] are also based, these methods may be adversely affected
by the ill-defined nature of the perturbative Feynman propaga-
tors at many frequencies.

The nonconvergence is rooted in the rational-function form
of the exact Green’s function, featuring numerous singulari-

ties of the forms (ω − E0 + EI )−1 and (ω − EA + E0)−1 even
before a perturbation approximation is introduced. This func-
tion is nonanalytic at many frequencies and thus cannot be
expanded in converging power series, which is ultimately
why perturbation theory tends to fail. This is reminiscent
of the Bardeen-Cooper-Schrieffer theory of superconductiv-
ity [164], whose superconducting gap formula, 2δ e−1/ρV , is
nonanalytic and cannot be expanded in a converging power
series of the electron-phonon coupling V , even though it is
small. To such a problem, “perturbation theory would not
be easy to apply” (in page 224 of Ref. [25]). Likewise, the
Kohn-Luttinger nonconvergence [2,8] of finite-temperature
many-body perturbation theory [3–7] is ascribed to the non-
analyticity of the rational-function forms of the exact grand
potential and internal energy at T = 0 [9,10].

A Padé approximant is a power-series expansion of a
rational function and is particularly promising for approxi-
mating a Feynman propagator, which is a nonanalytic rational
function. Padé approximants were shown to accelerate the
convergence of many-body perturbation energies, sometimes
transforming a divergent series into a rapidly convergent one
at no additional cost [99,100,102–105,107]. For MBGF(n),
Padé approximants exhibit remarkable performance, largely
restoring the correct functional form of the self-energy
and shift its poles in the right directions by the right
amounts, which is consistent with our identified cause of the
nonconvergence.
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[41] J. Paldus and J. Čížek, Adv. Quantum Chem. 9, 105 (1975).
[42] L. S. Cederbaum, J. Phys. B: At. Mol. Phys. 8, 290 (1975).
[43] L. S. Cederbaum and W. Domcke, Adv. Chem. Phys. 36, 205

(1977).
[44] J. Simons, Annu. Rev. Phys. Chem. 28, 15 (1977).
[45] M. F. Herman, D. L. Yeager, and K. F. Freed, Chem. Phys. 29,

77 (1978).
[46] M. F. Herman, K. F. Freed, and D. L. Yeager, J. Chem. Phys.

72, 602 (1980).
[47] M. F. Herman, K. F. Freed, D. L. Yeager, and B. Liu, J. Chem.

Phys. 72, 611 (1980).

[48] J. Baker and B. T. Pickup, Chem. Phys. Lett. 76, 537 (1980).
[49] Y. Öhrn and G. Born, Adv. Quantum Chem. 13, 1 (1981).
[50] P. Jørgensen and J. Simons, Second Quantization-Based Meth-

ods in Quantum Chemistry (Academic Press, New York, 1981).
[51] J. Schirmer, Phys. Rev. A 26, 2395 (1982).
[52] J. Schirmer, L. S. Cederbaum, and O. Walter, Phys. Rev. A 28,

1237 (1983).
[53] W. von Niessen, J. Schirmer, and L. S. Cederbaum, Comput.

Phys. Rep. 1, 57 (1984).
[54] M. D. Prasad, S. Pal, and D. Mukherjee, Phys. Rev. A 31, 1287

(1985).
[55] M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390

(1986).
[56] J. Oddershede, Propagator methods, in Advances in Chemical

Physics: Ab Initio Methods in Quantum Chemistry Part 2,
edited by K. P. Lawley (Wiley, Hoboken, NJ, 1987), Vol. 69.

[57] W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432
(1997).

[58] F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237
(1998).

[59] J. V. Ortiz, Adv. Quantum Chem. 35, 33 (1999).
[60] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

(2002).
[61] J. V. Ortiz, Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 123

(2013).
[62] S. Y. Willow, K. S. Kim, and S. Hirata, J. Chem. Phys. 138,

164111 (2013).
[63] S. Hirata, M. R. Hermes, J. Simons, and J. V. Ortiz, J. Chem.

Theory Comput. 11, 1595 (2015).
[64] S. Hirata, A. E. Doran, P. J. Knowles, and J. V. Ortiz, J. Chem.

Phys. 147, 044108 (2017).
[65] C. M. Johnson, A. E. Doran, S. L. Ten-no, and S. Hirata,

J. Chem. Phys. 149, 174112 (2018).
[66] A. E. Doran and S. Hirata, J. Chem. Theory Comput. 15, 6097

(2019).
[67] E. Opoku, F. Pawłowski, and J. V. Ortiz, J. Chem. Phys. 155,

204107 (2021).
[68] J. V. Ortiz, Adv. Quantum Chem. 85, 109 (2022).
[69] E. Opoku, F. Pawłowski, and J. V. Ortiz, J. Chem. Theory

Comput. 18, 4927 (2022).
[70] E. Opoku, F. Pawłowski, and J. V. Ortiz, J. Phys. Chem. A 127,

1085 (2023).
[71] E. Opoku, F. Pawłowski, and J. V. Ortiz, J. Chem. Phys. 159,

124109 (2023).
[72] S. Hirata, M. Nooijen, and R. J. Bartlett, Chem. Phys. Lett.

328, 459 (2000).
[73] M. R. Hermes and S. Hirata, J. Chem. Phys. 139, 034111

(2013).
[74] X. Y. Qin and S. Hirata, J. Phys. Chem. B 124, 10477 (2020).
[75] S. Suhai, Phys. Rev. B 27, 3506 (1983).
[76] J.-Q. Sun and R. J. Bartlett, Phys. Rev. Lett. 77, 3669 (1996).
[77] J. Q. Sun and R. J. Bartlett, J. Chem. Phys. 104, 8553 (1996).
[78] S. Hirata and R. J. Bartlett, J. Chem. Phys. 112, 7339 (2000).
[79] S. Hirata and T. Shimazaki, Phys. Rev. B 80, 085118 (2009).
[80] S. Y. Willow, K. S. Kim, and S. Hirata, Phys. Rev. B 90,

201110(R) (2014).
[81] S. Hirata, Y. Shigeta, S. S. Xantheas, and R. J. Bartlett, J. Phys.

Chem. B 127, 3556 (2023).
[82] B. D. Day, Rev. Mod. Phys. 39, 719 (1967).
[83] D. J. Rowe, Rev. Mod. Phys. 40, 153 (1968).

052220-16

https://doi.org/10.1088/1367-2630/14/1/013056
https://doi.org/10.1103/PhysRevLett.110.246405
https://doi.org/10.1103/PhysRevB.90.045143
https://doi.org/10.1088/1367-2630/17/9/093045
https://doi.org/10.1103/PhysRevLett.114.156402
https://doi.org/10.1088/1751-8113/48/48/485202
https://doi.org/10.1103/PhysRevB.94.235108
https://doi.org/10.1103/PhysRevB.96.045124
https://doi.org/10.1103/PhysRevLett.119.056402
https://doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/PhysRev.75.486
https://doi.org/10.1103/PhysRev.75.1736
https://doi.org/10.1073/pnas.37.7.455
https://doi.org/10.1088/2058-7058/6/8/28
https://doi.org/10.1098/rspa.1965.0116
https://doi.org/10.1103/PhysRev.139.A796
https://doi.org/10.1103/PhysRev.139.A1063
https://doi.org/10.1016/0009-2614(67)80025-3
https://doi.org/10.1016/0009-2614(70)87007-5
https://doi.org/10.1063/1.1678374
https://doi.org/10.1080/00268977300102261
https://doi.org/10.1063/1.1679074
https://doi.org/10.1103/PhysRevA.7.146
https://doi.org/10.1016/0301-0104(74)85037-8
https://doi.org/10.1016/S0065-3276(08)60040-4
https://doi.org/10.1088/0022-3700/8/2/018
https://doi.org/10.1002/9780470142554.ch4
https://doi.org/10.1146/annurev.pc.28.100177.000311
https://doi.org/10.1016/0301-0104(78)85063-0
https://doi.org/10.1063/1.438950
https://doi.org/10.1063/1.438951
https://doi.org/10.1016/0009-2614(80)80663-4
https://doi.org/10.1016/S0065-3276(08)60291-9
https://doi.org/10.1103/PhysRevA.26.2395
https://doi.org/10.1103/PhysRevA.28.1237
https://doi.org/10.1016/0167-7977(84)90002-9
https://doi.org/10.1103/PhysRevA.31.1287
https://doi.org/10.1103/PhysRevB.34.5390
https://doi.org/10.1063/1.474405
https://doi.org/10.1088/0034-4885/61/3/002
https://doi.org/10.1016/S0065-3276(08)60454-2
https://doi.org/10.1103/RevModPhys.74.601
https://doi.org/10.1002/wcms.1116
https://doi.org/10.1063/1.4801862
https://doi.org/10.1021/acs.jctc.5b00005
https://doi.org/10.1063/1.4994837
https://doi.org/10.1063/1.5054610
https://doi.org/10.1021/acs.jctc.9b00693
https://doi.org/10.1063/5.0070849
https://doi.org/10.1016/bs.aiq.2022.03.004
https://doi.org/10.1021/acs.jctc.2c00502
https://doi.org/10.1021/acs.jpca.2c08372
https://doi.org/10.1063/5.0168779
https://doi.org/10.1016/S0009-2614(00)00965-9
https://doi.org/10.1063/1.4813123
https://doi.org/10.1021/acs.jpcb.0c08493
https://doi.org/10.1103/PhysRevB.27.3506
https://doi.org/10.1103/PhysRevLett.77.3669
https://doi.org/10.1063/1.471545
https://doi.org/10.1063/1.481372
https://doi.org/10.1103/PhysRevB.80.085118
https://doi.org/10.1103/PhysRevB.90.201110
https://doi.org/10.1021/acs.jpcb.3c00620
https://doi.org/10.1103/RevModPhys.39.719
https://doi.org/10.1103/RevModPhys.40.153


NONCONVERGENCE OF THE FEYNMAN-DYSON … PHYSICAL REVIEW A 109, 052220 (2024)

[84] M. Baldo, Nuclear Methods and the Nuclear Equation of State
(World Scientific, Singapore, 1999).

[85] G. D. Purvis and Y. Öhrn, J. Chem. Phys. 60, 4063 (1974).
[86] J. Schirmer and L. S. Cederbaum, J. Phys. B: At. Mol. Phys.

11, 1889 (1978).
[87] O. Walter and J. Schirmer, J. Phys. B: At. Mol. Phys. 14, 3805

(1981).
[88] G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
[89] G. Baym, Phys. Rev. 127, 1391 (1962).
[90] D. Van Neck, M. Waroquier, and J. Ryckebusch, Nucl. Phys.

A 530, 347 (1991).
[91] W. H. Dickhoff, The nucleon propagator in the nuclear

medium, in Nuclear Methods and the Nuclear Equation of
State, International Review of Nuclear Physics, edited by
M. Baldo (World Scientific, Singapore, 1999), Vol. 8, Chap. 7,
pp. 326–380.

[92] W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52,
377 (2004).

[93] N. E. Dahlen and R. van Leeuwen, J. Chem. Phys. 122, 164102
(2005).

[94] C. Barbieri, Phys. Lett. B 643, 268 (2006).
[95] C. Barbieri and W. H. Dickhoff, Int. J. Mod. Phys. A 24, 2060

(2009).
[96] J. J. Phillips and D. Zgid, J. Chem. Phys. 140, 241101 (2014).
[97] D. Neuhauser, R. Baer, and D. Zgid, J. Chem. Theory Comput.

13, 5396 (2017).
[98] C. J. N. Coveney and D. P. Tew, J. Chem. Theory Comput. 19,

3915 (2023).
[99] O. Goscinski, Int. J. Quantum Chem. 1, 769 (1967).

[100] E. Brändas and O. Goscinski, Phys. Rev. A 1, 552 (1970).
[101] J. Linderberg and M. Ratner, Chem. Phys. Lett. 6, 37 (1970).
[102] O. Goscinski and E. Brändas, Int. J. Quantum Chem. 5, 131

(1971).
[103] R. J. Bartlett and E. J. Brändas, J. Chem. Phys. 56, 5467

(1972).
[104] R. J. Bartlett and E. J. Brändas, J. Chem. Phys. 59, 2032

(1973).
[105] W. D. Laidig, G. Fitzgerald, and R. J. Bartlett, Chem. Phys.

Lett. 113, 151 (1985).
[106] C. M. Bender and S. A. Orszag, Advanced Mathematical Meth-

ods for Scientists and Engineers I. Asymptotic Methods and
Perturbation Theory (Springer-Verlag, New York, 1999).

[107] S. Hirata and R. J. Bartlett, Chem. Phys. Lett. 321, 216 (2000).
[108] V. M. Galitskii and A. B. Migdal, Zh. Éxsp. Teor. Fiz. 34, 139

(1958) [Sov. Phys. JETP 7, 96 (1958)].
[109] D. S. Koltun, Phys. Rev. Lett. 28, 182 (1972).
[110] L. J. Holleboom and J. G. Snijders, J. Chem. Phys. 93, 5826

(1990).
[111] J. V. Ortiz, Int. J. Quantum Chem. 56, 331 (1995).
[112] M. Deleuze, M. K. Scheller, and L. S. Cederbaum, J. Chem.

Phys. 103, 3578 (1995).
[113] M. S. Deleuze, Int. J. Quantum Chem. 93, 191 (2003).
[114] L. Lin and M. Lindsey, Proc. Natl. Acad. Sci. USA 115, 2282

(2018).
[115] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).
[116] I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry

and Physics (Cambridge University Press, Cambridge, 2009).
[117] J. V. Ortiz, J. Chem. Phys. 153, 070902 (2020).

[118] R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem.
Phys. 122, 034104 (2005).

[119] R. J. Bartlett, Chem. Phys. Lett. 484, 1 (2009).
[120] R. Manne and T. Åberg, Chem. Phys. Lett. 7, 282 (1970).
[121] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry

(MacMillan, New York, 1982).
[122] O. Walter, L. S. Cederbaum, and J. Schirmer, J. Math. Phys.

25, 729 (1984).
[123] P. Piecuch, S. Zarrabian, J. Paldus, and J. Čížek, Phys. Rev. A
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