
PHYSICAL REVIEW A 109, 052219 (2024)

Qubit dynamics of ergotropy and environment-induced work
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We investigate the dynamics of ergotropy in open systems under Markovian and non-Markovian evolutions. In
this scenario, we begin by formulating the ergotropy of an arbitrary qubit state in terms of energy and coherence.
Thus we determine the conditions for ergotropy freezing and ergotropy sudden death as a consequence of the
system-bath interaction. In order to use ergotropy as a resource for energy extraction in the form of work
in an open-system scenario, we adopt the entropy-based formulation of quantum thermodynamics. In this
approach, the work gains an additional environment-induced component, which may be present even for constant
Hamiltonians. We then establish an analytical relationship between the environment-induced work and ergotropy,
providing an interpretation of environment-induced work in terms of variation of ergotropy. In particular, energy
transfer by environment-induced work can be performed up to a limit, which is governed by the energy cost to
transit between the initial and final passive states of the quantum dynamics. We illustrate these results for qubit
states evolving under nondissipative and dissipative quantum processes.
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I. INTRODUCTION

Quantum thermodynamics [1–3] is an essential ingredient
behind a full understanding of quantum technologies. Indeed,
the engineering of quantum tasks typically entails energy
transfer operations. The maximum amount of energy that
can be extracted from a quantum system by unitary trans-
formations is referred to as ergotropy [4]. Since only unitary
operations are allowed, ergotropy means energy extraction in
the form of work, which can be performed by an external field.
On the other hand, the amount of ergotropy available for a
system is also affected by its interaction with the surrounding
environment. In this open-system picture [5], heat and work
may be interchanged via thermodynamic processes, allowing
for the experimental realization of a diversity of quantum
devices, such as quantum heat engines [6–8], quantum refrig-
erators [9], and quantum batteries [10,11], among others.

The use of ergotropy as a resource for quantum tasks
has to obey the energy balance dictated by the first law of
thermodynamics, whose quantum version has been originally
established by Alicki [12]. In this description, internal energy
is taken as the expectation value of the underlying system
Hamiltonian governing the quantum dynamics. Concerning
work, it is associated with a change in the gap structure of
the energy spectrum, which is induced by a time-dependent
Hamiltonian. Finally, heat may be exchanged by the system
as the external environment is taken into account, leading to
a time-dependent density operator and setting a population
dynamics governed by the system-bath interaction. Alterna-
tively, heat may also be directly defined through the change
of entropy of the quantum system [13,14]. By adopting this
entropy-based formulation, the first law of thermodynamics
implies that work gains an additional environment-induced

component, which may be present even for constant Hamilto-
nians. From a foundational point of view, the entropy-based
approach leads to the debate on the barrier between work
and heat definitions so that the energy balance is ensured.
This has implications for the analysis of entropy production
and irreversibility for processes far from equilibrium (e.g.,
Ref. [15]). As an application, the environment-induced work
may be useful for quantum devices as long as we can engineer
the system-bath interaction so that the energy transfer from (or
to) the system realizes a desired quantum task.

In this work, we aim at exploring the environment-induced
work, analytically relating it with ergotropy. We begin with
the investigation of the dynamics of ergotropy in open sys-
tems under Markovian and non-Markovian evolutions. By
expressing ergotropy for qubit states in terms of energy
and coherence, we will split ergotropy in both coherent
and incoherent contributions, obtaining the conditions for
ergotropy sudden death and ergotropy freezing as a conse-
quence of the system-bath interaction. These phenomena can
be seen as analogous to the previously established sudden
changes and freezing for classical and quantum correlations
[16,17], including entanglement [18]. Then, we will establish
a relationship between ergotropy variation and environment-
induced work. More specifically, we will show that, for a
constant Hamiltonian, ergotropy can be effectively changed
by the environment-induced work, providing an interpreta-
tion of environment-induced work in terms of variation of
ergotropy in the quantum system. The remaining contribution
for the ergotropy variation is then given by the energy cost
to transit between the initial and final passive states of the
dynamics, with the passive state denoting the state with no
energy available to be extracted. This result closely connects
the environment-induced work with the ergotropy dynamics.

2469-9926/2024/109(5)/052219(6) 052219-1 ©2024 American Physical Society

https://orcid.org/0009-0000-1567-2932
https://orcid.org/0000-0001-5939-3230
https://orcid.org/0000-0002-5481-8559
https://orcid.org/0000-0003-0910-4407
https://ror.org/02rjhbb08
https://ror.org/03rp50x72
https://ror.org/028kg9j04
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.052219&domain=pdf&date_stamp=2024-05-16
https://doi.org/10.1103/PhysRevA.109.052219


J. M. Z. CHOQUEHUANCA et al. PHYSICAL REVIEW A 109, 052219 (2024)

We illustrate our relationship by looking at qubit states evolv-
ing under an amplitude damping process. For this example, we
explicitly show that the ergotropy variation is an upper limit
for the environment-induced work throughout the dynamics.

II. ERGOTROPY AND ITS QUANTUM DYNAMICS

The ergotropy is defined as the maximum amount of energy
that can be extracted from a quantum system via cyclic uni-
tary operation [4], i.e., E(ρ) = maxV ∈U{U (ρ) − U (V ρV †)},
where U (ρ) = tr[ρH] represents the internal energy, with H
and ρ denoting the Hamiltonian and the density operator,
respectively, and U the set of all unitary transformations.
These transformations are required to be cyclic with respect to
H . Assuming the spectral decomposition ρ = ∑

n rn |rn〉 〈rn|
and H = ∑

n εn |εn〉 〈εn|, with the eigenstates reordered so
that r0 � r1 � · · · and ε0 � ε1 � · · · , a close expression for
the ergotropy can be obtained in terms of the passive state,
ρπ = ∑

n rn |εn〉 〈εn|:
E(ρ) = U (ρ) − U (ρπ ). (1)

In order to explore the role played by quantum coherence, let
us consider the l1 norm of coherence, C(ρ) = minδ∈I ‖ρ −
δ‖l1 , with I representing the set of all incoherent states (i.e.,
diagonal states) in the basis {|εn〉}. The minimization leads to
C(ρ) = ‖ρ − ρ�‖l1 , where ρ� = ∑

n 〈εn| ρ |εn〉 |εn〉 〈εn| de-
notes the dephased state [19]. In terms of ρ�, we can define
the incoherent ergotropy, i.e., the maximum amount of energy
that can be extracted from ρ without altering its quantum
coherence,

EI (ρ) = E(ρ�), (2)

as well as the coherent ergotropy,

EC (ρ) = E(ρ) − E(ρ�). (3)

Note that E(ρ) = EI (ρ) + EC (ρ) [20]. Now, let us consider a
two-level quantum system governed by dimensionless Hamil-
tonian H = −σz represented through its spectral decomposi-
tion as H = |ε1〉 〈ε1| − |ε0〉 〈ε0|, with associated eigenvalues
ε0 = −1 and ε1 = 1. In this case, quantum coherence and
energy are, respectively, given by

C(ρ) = 2| 〈ε0| ρ |ε1〉 |, (4)

U (ρ) = 1 − 2 〈ε0| ρ |ε0〉 , (5)

where −1 � U � 1 and 0 � C � 1 such that U 2 + C2 � 1.
From Eqs. (1)–(3), we can express the ergotropy for an arbi-
trary two-level system as a function of C and U , yielding

E(C,U ) =
√

C2 + U 2 + U . (6)

For the incoherent and coherent contributions for ergotropy,
we obtain

EI (U ) = 2 max{0,U } = E(0,U ) (7)

and

EC (C,U ) =
√

C2 + U 2 − |U | = E(C,−|U |), (8)

respectively. Note that E(C, 0) = EC (C, 0) = C. According to
Eq. (6), the dynamics of ergotropy will depend on the dynam-
ics of both coherence C and internal energy U . We can then

determine explicit conditions for U and C that ensure peculiar
behaviors for the ergotropy as a function of time. In particular,
it is evident that (a) E(t ) = E0 iff C(t ) = C0 and U (t ) = U0

(∀ t ) and (b) E(t ) = 0 iff C(t ) = 0 and U (t ) � 0 (∀ t ), where
E0 = E(0), C0 = C(0), and U0 = U (0). The properties (a) and
(b) reveal that the dynamics of ergotropy can exhibit freezing
and sudden death effects, respectively. In order to explore
these two phenomena, we start by defining the dynamics of
a quantum system interacting with an environment in terms
of Kraus representation as ρ(t ) = ∑

i Ki(t )ρ(0)Ki(t )†, where
the Kraus operators {Ki(t )} satisfy the completeness relation∑

i Ki(t )†Ki(t ) = I and allow the environment characteriza-
tion in both Markovian and non-Markovian regimes.

A. Freezing

According to condition (a), the ergotropy freezing can be
observed in nondissipative quantum processes, such as the
phase damping (PD) channel, when the coherence remains
unchanged. The Kraus operators for a non-Markovian version
of the PD channel are defined as [21,22]

K0(t ) =
√

1 + e−q(t )

2
I, K1(t ) =

√
1 − e−q(t )

2
σz, (9)

where q(t ) = γ

2 {t + 1
	

[exp(−	t ) − 1]}. Here γ −1 and 	−1

define the qubit relaxation time and the reservoir correlation
time, respectively, with the Markovian regime obtained in
the limit 	 → ∞. For this non-Markovian channel, the time
evolution of the coherence and energy are, respectively, given
by

C(t ) = e−q(t )C0, U (t ) = U0. (10)

Thus, from Eq. (6), a freezing ergotropy at a nonvanishing
value 2U0 is accomplished for zero initial coherence and pos-
itive initial energy, i.e.,

E(t ) = 2U0 ∀ t iff C0 = 0, U0 > 0. (11)

As a consequence of Eqs. (7) and (11), EI (t ) = 2U0 ∀ t iff
U0 > 0 (for all C0). To illustrate this phenomenon, we show
E, EI , and EC in Fig. 1 as functions of γ t for C0 = 0.5 and
U0 = 0.5, where the initial state is taken as ρ00 = 0.25, ρ11 =
1 − ρ00, and |ρ01| = 0.25. In both non-Markovian and Marko-
vian regimes, notice that the incoherent component freezes for
all γ t , while the coherent part exhibits a monotonic decay. In
terms of the total ergotropy, the contribution of its coherent
component allows the ergotropy to decay until it achieves a
steady state. Additionally, it is clear to see in Fig. 1 a delayed
ergotropy decay in the non-Markovian regime in comparison
with the Markovian regime.

B. Sudden death

Condition (b) ensures that the sudden death phenomenon
can be achieved in dissipative quantum processes, such as the
amplitude damping (AD) channel, when coherence is absent.
The Kraus operators for a non-Markovian AD channel are
given by [23]

K0(t ) =
[

1 0
0

√
q(t )

]
, K1(t ) =

[
0

√
1 − q(t )

0 0

]
, (12)
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FIG. 1. Dynamics of the ergotropy E, incoherent ergotropy EI ,
and coherent ergotropy EC as functions of γ t under a non-Markovian
PD channel with 	 = 0.01γ . Inset: same functions under a Marko-
vian PD channel (	 → ∞). The initial conditions in both cases are
C0 = 0.5 and U0 = 0.5.

where q(t ) = exp(−	t ){cos( dt
2 ) + 	

d sin( dt
2 )}2 with

d =
√

2γ	 − 	2. The spectral width 	 and the coupling
strength γ are related to the reservoir correlation time
(	−1) and the qubit relaxation time (γ −1), respectively. The
dynamics of coherence and energy for this non-Markovian
channel are, respectively, determined by

C(t ) =
√

q(t )C0, U (t ) = (1 + U0)q(t ) − 1. (13)

As U (t ) < U0 for all t > 0, ergotropy collapses and revivals
can be observed if the initial coherence is zero and the initial
energy is positive, in agreement with the property (b). These
sudden changes occur when the energy changes its sign during
the quantum process. Consequently, the sudden change times
{tn} satisfy the condition

q(tn) = 1

1 + U0
with t1 < t2 < · · · < tsd , (14)

where odd and even values of n indicate sudden deaths and
births, respectively, with tsd characterizing an eternal death.
Thus we conclude that

E(t ) = 0 ∀ t � tsd iff C0 = 0,U0 > 0. (15)

Consequently, EI (t ) = 0 ∀ t � tsd iff U0 > 0 (for all C0).
In the Markovian regime, 	 → ∞, the emergence of eter-
nal death is determined by tsd = t1 = γ −1 ln(1 + U0). In this
limit, there are no temporary collapses and revivals.

Figure 2 shows the ergotropy, as well as its incoherent and
coherent parts, as functions of γ t for the initial conditions
C0 = 0.5, U0 = 0.5, and initial state given by ρ00 = 0.25,
ρ11 = 1 − ρ00, and |ρ01| = 0.25. Remarkably, the incoherent
component exhibits a nonmonotonic (monotonic) decay un-
til the eternal death time tsd ≈ 297/γ (tsd ≈ 0.405/γ ) for
the non-Markovian (Markovian) regime, with 	 = 0.001γ

(	 → ∞). Besides, notice that the coherent part contributes
to the inhibition of this phenomenon.

FIG. 2. Dynamics of the ergotropy E, incoherent ergotropy EI ,
and coherent ergotropy EC as functions of γ t under a non-Markovian
AD channel with 	 = 0.001γ . Inset: same functions under a Marko-
vian AD channel (	 → ∞). The initial conditions in both cases are
C0 = 0.5 and U0 = 0.5.

III. ENVIRONMENT-INDUCED WORK

In order to use ergotropy as a resource, we will investigate
how to explicitly extract energy in the form of work via
the system-environment interaction. The energy balance in a
thermodynamic process is ruled by the first law of thermody-
namics. In its quantum version, a standard formulation can be
written as [12]

dU = δQ̃ + δW̃ , (16)

where dU is the infinitesimal internal energy change, δQ̃ is
the infinitesimal heat exchanged in the process, and δW̃ is
the infinitesimal work performed by (or on) the system, with
U = Tr(Hρ), δQ̃ = Tr(H dρ), and δW̃ = Tr(dH ρ). As an
alternative formulation, we can modify the definition of δQ̃
so that heat is directly linked with the entropy variation. In
this entropy-based framework for quantum thermodynamics
[13], heat and work are defined through δQ = δQ̃ − δW ∗ and
δW = δW̃ + δW ∗, so that the first law of thermodynamics is

dU = δQ + δW, (17)

with δW ∗ introduced as an environment-induced work [13]

δW ∗ =
∑

n

rn(〈rn|H d|rn〉 + H.c.), (18)

where |rn〉 represents an eigenvector of the density operator
ρ and rn the corresponding eigenvalue. Notice that the first
law of thermodynamics is preserved, with the internal energy
infinitesimal dU kept unchanged due to the new definitions
of heat and work. From this point on, unless stated otherwise,
heat and work will refer to the entropy-based formulation of
quantum thermodynamics.

A utility for the definition of heat Q as a witness of
non-Markovianity for unital quantum maps has been recently
provided [24]. Now, we will provide an operational meaning
for W ∗ in terms of ergotropy variation. We consider a quantum
system described by an initial density operator ρ(t = 0) → ρ0

and governed by a constant Hamiltonian H . In this scenario,
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the conventional work W̃ is null. The system interacts with an
external environment and is taken to a final density operator
ρ(tc) → ρc at a specific characteristic time tc such that the
total heat Q exchanged with the environment is vanishing.
For this effective adiabatic process, the environment-induced
work is the only contribution to the energy balance in the first
law of thermodynamics, i.e.,

Q(ρc) = 0 (19)

and, consequently,

W ∗(ρc) = �U (ρc) = U (ρc) − U (ρ0). (20)

By examining the ergotropy variation,

�E(ρc) = E(ρc) − E(ρ0), (21)

by using Eq. (1), we can write

�E(ρc) = [U (ρc) − U (ρcπ )] − [U (ρ0) − U (ρ0π )], (22)

where ρcπ and ρ0π are the passive states associated with ρc

and ρ0, respectively. Finally, by using Eq. (20), and defining
the passive energy variation,

�Uπ (ρc) = U (ρcπ ) − U (ρ0π ), (23)

we obtain

�E(ρc) = W ∗(ρc) − �Uπ (ρc). (24)

The contribution �Uπ (ρc) for the ergotropy can be inter-
preted as the energy cost to transit between the initial and
final passive states ρ0π and ρcπ , respectively. We observe
that Eq. (24) agrees with the discussion about the energet-
ics of the ergotropy in Ref. [25], with �Uπ defined there
as an operational heat. Here, we can then directly con-
nect the environment-induced work W ∗ with the variation
of ergotropy for constant Hamiltonians, reinforcing the in-
terpretation of W ∗ as an effective work extracted due to the
system-environment interaction. For two-level systems, the
Hamiltonian is given by H = −σz and the density matrix, in
terms of the Bloch sphere, can be written as ρ(t ) = [I + �r(t ) ·
�σ ]/2, where �r(t ) = [x(t ), y(t ), z(t )] is the Bloch vector and
I, �σ are Pauli operators. In this case, coherence and internal
energy are given by C(t ) =

√
x(t )2 + y(t )2 and U (t ) = −z(t ),

respectively. Since δQ = (U/r)dr [24], the characteristic adi-
abatic time tc can be obtained through the condition

Q(tc) = −
∫ tc

0

z(t )

r(t )
ṙ(t ) dt = 0. (25)

For the components of �E(tc) in Eq. (24), we have

W ∗(tc) = −�z(tc), (26)

�Uπ (tc) = −�r(tc). (27)

Thus we conclude that the work W ∗(tc) and the passive energy
variation −�Uπ (tc) are associated with the ergotropic cost
of rotation and scale transformation (dilation or contraction)
of the Bloch vector �r, respectively. According to Eq. (7),
the incoherent ergotropic variation, �EI , vanishes for quan-
tum processes with constant or nonpositive energy. In these
cases, the ergotropy variation is purely coherent, i.e., �E(t ) =

FIG. 3. Dimensionless characteristic time τc as a function of the
initial state (r0, θ0 ) for 0 � r0 � 1 and 0 � θ0 � π .

�EC (t ) if U̇ (t ) = 0 or U (t ) � 0 for all t . For nondissipative
quantum processes,

�EC (tc) = W ∗(tc) = �Uπ (tc) = 0 (U̇ = 0). (28)

Thus the PD process discussed in Sec. II A is unable to extract
the available quantum resource EC through environment-
induced work. In other words, there is no effective adiabatic
process with W ∗(tc) 
= 0 for PD channels. On the other hand,
the extraction is possible for dissipative quantum processes
such as the AD channel described in Sec. II B.

Here, we will illustrate the connection between W ∗ and
�E by considering the paradigmatic model of the decay of
an excited state of a two-level atom interacting with an envi-
ronment by spontaneous emission [26,27] (a Markovian AD
process). The spontaneous emission process is governed by
the Markovian master equation

ρ̇(t ) = i[σz, ρ(t )] + γ
[
σ−ρ(t )σ+ − 1

2 {σ+σ−, ρ(t )}], (29)

where γ is the dissipation rate of spontaneous emission and
σ+ = (σx − iσy)/2 and σ− = (σx + iσy)/2 are the raising
and lowering operators for a two-level atom. Notice that the
ground state of H is the computational state |0〉 in the north
pole of the Bloch sphere, which is the expected long time
limit after energy loss in the spontaneous emission dynam-
ics. The solution of Eq. (29) with an arbitrary initial state
�r0 = [x0, y0, z0] is given by �r(t ) = [x(t ), y(t ), z(t )] with

x(t ) = e−γ t/2[x0 cos 2t + y0 sin 2t], (30)

y(t ) = e−γ t/2[y0 cos 2t − x0 sin 2t], (31)

z(t ) = e−γ t [−1 + z0 + eγ t ]. (32)

According to this solution and Eq. (25), the dimension-
less characteristic adiabatic time τc = γ tc is a function only
of the initial parameters r0 = (x2

0 + y2
0 + z2

0 )1/2 and θ0 =
arccos[z0/r0], where 0 � r0 � 1 and 0 � θ0 � π . We numer-
ically investigate the characteristic adiabatic time for arbitrary
initial states �r0 = (r0, θ0) in Fig. 3. Notice that τc is not
negligible for initial states close to θ0 = π/2 or r0 = 1, mainly
for θ0 � π/2 (north hemisphere), where �E = �EC . We also
study the energy cost �Uπ as a function of r0 and θ0. This
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FIG. 4. Passive energy cost �Uπ as a function of the initial state
(r0, θ0 ) for 0 � r0 � 1 and 0 � θ0 � π .

is exhibited in Fig. 4. Notice that �Uπ � 0 for all initial
states. Therefore, from Eq. (24), the work W ∗(tc) performed
on the system by the environment is not greater (in absolute
value) than the ergotropy variation �E(tc). This result im-
plies that the environment cannot provide more energy to the
system than can be extracted via the definition of extractable
work through a variation of ergotropy. Finally, we plot �E(tc)
and W ∗(tc) for two particular types of families of initial states:
a family of mixed states located on the equatorial plane of the
Bloch sphere (see Fig. 5) and a family of pure states located
on the upper surface of the Bloch sphere (see Fig. 6), where
tc 
= 0. As a by-product, we can also determine the energy
cost associated with the remaining contribution �Uπ (tc) for
the ergotropy variation, as shown in the inset of Figs. 5 and 6.
In these cases, it is evident that W ∗(tc)/�E(tc) � 1, where
�E(tc) = �EC (tc). Notice also that the singular behavior of
the dimensionless characteristic time shown in Fig. 3 is not
manifested in Figs. 5 and 6. This occurs because we have kept

FIG. 5. Environment-induced work in the Markovian W ∗ and
non-Markovian W ∗

n regimes, as well as ergotropy variation in the
Markovian �E and non-Markovian �En regimes, as functions of
r0 (0 � r0 � 1) for θ0 = π/2. For the non-Markovian dynamics, we
adopted 	 = 0.01γ . Inset: passive energy cost for both Markovian
�Uπ and non-Markovian �Uπn regimes.

FIG. 6. Environment-induced work in the Markovian W ∗ and
non-Markovian W ∗

n regimes, as well as ergotropy variation in the
Markovian �E and non-Markovian �En regimes, as functions of
θ0 (0 � θ0 � π/2) for r0 = 1. For the non-Markovian dynamics, we
adopted 	 = 0.01γ . Inset: passive energy cost for both Markovian
�Uπ and non-Markovian �Uπn regimes.

the dynamics in the north hemisphere of the Bloch sphere,
with θ0 � π/2.

We can also consider a more general dynamics, such as
the non-Markovian case. This can be analyzed using the
physical process as in Eq. (12), from which Eq. (29) follows
as a Markovian limit. For each initial state, instead of only
a single tc, a set of characteristic times emerges, which is
denoted by {tnc}. By looking at these characteristic times,
we show that, by taking the largest tnc for each state, we
obtain results very close to the Markovian case, as shown
in Figs. 5 and 6. This behavior holds independently of the
ratio 	/γ .

IV. CONCLUSIONS

We have investigated the dynamics of ergotropy and the en-
ergy extraction of quantum systems via environment-induced
work W ∗ in the entropy-based formulation of quantum ther-
modynamics. By introducing an analytical expression for
W ∗ in terms of the ergotropy variation �E under a generic
quantum map, we have explicitly found W ∗ as a resource
for system-environment energy transfer. Indeed, by consid-
ering a constant system Hamiltonian and by assuming the
engineering of the system-environment interaction, we have
explicitly shown that W ∗ is able to induce energy transfer
up to a fixed limit in a qubit system under amplitude damp-
ing, with the remaining contribution for �E provided by the
energy cost to transit between the initial and final passive
states. This motivates further considerations, such as the in-
vestigation of this passive energy cost in other open-system
evolutions. Moreover, additional analysis can also be fruitful
for the contribution of W ∗ for the efficiency of quantum heat
engines in the machine steps where contact with the thermal
bath occurs. These considerations in the view of the first and
second laws of thermodynamics are potential targets of future
developments.
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