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Quantum state discrimination is one of the most fundamental problems in quantum information theory, with
applications ranging from channel coding to metrology and cryptography. In this work, we introduce a variant
of this task: local simultaneous state discrimination (LSSD). While previously studied distributed variants of
state discrimination allowed some communication between the parties to come up with a joint answer, in LSSD
they cannot communicate and have to simultaneously answer correctly. We illustrate by multiple examples that
this problem significantly differs from single-party state discrimination, even when the states are completely
classical. We show that an additional entangled resource can increase the optimal success probability in LSSD,
and stronger-than-quantum no-signaling resources can allow for an even higher success probability. We also
show that finding the optimal strategy in (classical) three-party LSSD is NP-hard. Furthermore, we provide an
example of symmetric LSSD for which the optimal strategy is not symmetric, and prove a sufficient condition for
the existence of an optimal symmetric strategy. While interesting in its own right, the LSSD problem also arises in
quantum cryptography. In particular, we explore the connections between the problem of unclonable encryption
and LSSD. We give an explicit cloning-indistinguishable attack that succeeds with probability 1/2 + μ/16 where
μ is related to the largest eigenvalue of the resulting quantum ciphertext states.
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I. INTRODUCTION

Discriminating among a known set of quantum states
is a well-studied and fundamental problem in quantum in-
formation theory [1–3], with a vast range of applications
ranging from cryptography [4,5] and quantum computing [6]
to quantum information and metrology [7]. In this problem,
a referee prepares a classical register X in a random state x,
based on which they prepare a quantum register A in a fixed
quantum state depending on x. The referee then sends A to
Alice who tries to determine x. An intriguing extension of
the problem is distributed state discrimination, wherein the
referee prepares a bipartite state with two registers AB that
are accessible to Alice and Bob, respectively. Investigating
the task of distributed state discrimination is one possible
avenue for understanding quantum nonlocality, a fundamental
feature of quantum theory which has been key to charting
the foundations of quantum physics (see, e.g., [8] and refer-
ences therein). The most commonly considered scenario of
distributed state discrimination in the context of nonlocality
is when Alice and Bob are allowed to use local operations
and classical communication (LOCC) in the discrimination
process [9]. For example, any orthonormal set of product
states can be prepared by local operations and discriminated
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by a global operation. However, when the requirement is to
discriminate these states solely using local operations, even
with classical communication between the parties, it generally
becomes infeasible [10,11]. In the LOCC setting, the discrimi-
nation task does not become more demanding by asking Alice
and Bob to answer correctly simultaneously since the result
can be communicated between the parties. Surprisingly, the
more restricted scenario where Alice and Bob can only use
local operations (LO) without any classical communication
has received only little attention in the published literature so
far (see below for an overview of related work). As depicted
in Fig. 1, we are particularly interested in a scenario where
Alice and Bob have to locally and simultaneously discrimi-
nate the states (as opposed to the case when at least one of
the players should succeed). We call the resulting task local
simultaneous state discrimination (LSSD). When the states
involved in LSSD are characterized by classical probabili-
ties, the task of distinguishing them resembles the situation
of winning a nonlocal game. This is because general distin-
guishing strategies can be articulated through a conditional
distribution denoted as PXAXB|AB. This distribution presents the
likelihood that Alice and Bob, based on their respective inputs
A and B, jointly produce estimations XA and XB. Analogous to
nonlocal games, one can categorize different strategy classes
contingent on the resources available in advance to Alice and
Bob. Consequently, from classical LSSDs, a different cate-
gory of Bell inequalities emerges, which, to the best of our
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FIG. 1. LSSD setup: The referee samples x according to PX and
transmits a correlated bipartite state ρx

AB to Alice and Bob who need
to simultaneously guess x based on their received state.

knowledge, has not been explored in the existing body of
literature. Our primary contribution lies in the presentation
of a concrete example of LSSD, in which quantum strategies
exhibit an advantage over classical ones. LSSD, therefore,
introduces a family of tasks joining the zoo of operational
problems where the nonlocal nature of quantum correlations
can provide an advantage over purely classical strategies.

While studying LSSD is interesting in its own right, a
concrete motivation arises from a specific area of quantum
cryptography known as unclonable cryptography [12]. The
so-called quantum no-cloning principle stipulates that, in its
simplest form, quantum information cannot be replicated [13].
This distinctive property of quantum information has been ex-
tensively leveraged in the design of unclonable cryptographic
schemes where a certain asset (like a token, message, or
functionality) is encrypted in a way that makes it impossible
to copy. A general observation in the literature of unclon-
able cryptography is that providing formal proofs of security
of these protocols is a challenging endeavor [12,14,15]. We
present a rationale for the complexity of this security anal-
ysis by establishing a link between LSSD and the security
of unclonable cryptography protocols. As elaborated later,
the security analysis of a wide range of protocols ultimately
hinges on establishing upper bounds on the optimal success
probabilities of LSSDs. We demonstrate that determining the
optimal probability of a multiparty LSSD is an NP-hard prob-
lem. Consequently, the precise security analysis of unclonable
protocols may entail computationally intractable challenges.
On the other hand, gaining a deeper understanding of LSSD
could aid in advancing the security analysis of unclonable
cryptography protocols.

II. NOTATION

We will denote by δ[·] the indicator function that evaluates
to one when its argument is true and to zero otherwise. We
will use X ,A ,B, respectively, to denote the finite sets from
which the inputs to the referee, Alice, and Bob are drawn.
Their joint input is described by a probability distribution
PXAB on X × A × B, where the system X belongs to the
referee while A and B belong to Alice and Bob, respectively.
The input and output sets will often be of the form [d] :=
{0, . . . , d − 1}, for some integer d � 1.

When Alice and Bob’s inputs are quantum, the overall in-
put is a classical-quantum-quantum (cqq) state ρXAB where the

classical register X belongs to the referee while the quantum
registers A and B belong to Alice and Bob, respectively. We
will denote the finite-dimensional complex Euclidean spaces
underlying these registers by X = CX , A = CA , and B =
CB.

A quantum state on Cd is a d × d positive-semidefinite
matrix of unit trace, i.e., ρ ∈ Cd×d such that ρ � 0 and
trρ = 1. We denote the set of all quantum states on Cd by
D(Cd ). Operations on quantum states are described by unitary
matrices, i.e., U ∈ Cd×d such that U †U = 1 where 1 is the
identity matrix. We denote the set of all unitaries on Cd by
U(Cd ).

An n-outcome measurement or positive-operator-value
measures (POVM) on Cd is a collection of n positive-
semidefinite d × d matrices that sum to identity. We will
denote a measurement by M = {M1, . . . , Mn} where Mi � 0
and

∑n
i=1 Mi = 1. We denote the set of all n-outcome mea-

surements on Cd by M(Cd ) (since the outcome set is always
clear from the context, we do not specify it). If M2

i = Mi

for all i = 1, . . . , n, we call the measurement projective. We
denote the set of all n-outcome projective measurements on
Cd by PM(Cd ).

III. MATHEMATICAL FORMALISM

A referee prepares a tripartite system XAB in a cqq state

ρXAB =
∑
x∈X

PX(x)|x〉〈x|X ⊗ ρx
AB (1)

and passes the A and B subsystems to two distant parties,
Alice and Bob, respectively, while keeping the system X.
Alice and Bob know the state ρXAB and might share some
resources (as will be precisely quantified later) prior to re-
ceiving their states, but no communication is allowed between
them afterwards. Based on their received states and preshared
resources, Alice and Bob output guesses xA and xB, respec-
tively, to the referee. They win if both guesses are correct, i.e.,
x = xA = xB, and they aim at maximizing their probability of
winning.

Most of our results are concerned with the case where ρXAB
is completely classical, i.e., there exist orthonormal bases
{|a〉 : a ∈ A } and {|b〉 : b ∈ B} for A and B, respectively, that
are independent of x ∈ X , and probability distributions Px

AB
over A × B such that

ρx
AB =

∑
a∈A
b∈B

Px
AB(a, b)|a〉〈a|A ⊗ |b〉〈b|B. (2)

a. Classical strategies. In this case, there are no additional
resources available to Alice and Bob beyond their received
state.1 The optimal probability of simultaneously guessing x

1One can equivalently define classical strategies when only shared
randomness is allowed between Alice and Bob. However, for the
same reason as in nonlocal games, this purely classical resource does
not help, as Alice and Bob could fix their randomness to a realization
conditioned on which their probability of winning is maximized.
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correctly is

ωc(X|A; B)ρ := sup
M∈M(A)
N∈M(B)

∑
x∈X

PX(x)tr
[
ρx

AB(Mx ⊗ Nx )
]
. (3)

When ρXAB is classical and described by a probability distri-
bution PXAB, we can rewrite the optimal probability of winning
as

ωc(X|A; B)P (4)

= max
QXa |A
QXb|B

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)QXa|A(xa|a)QXb|B(xb|b) (5)

(1)= max
f ,g

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)δ[ f (a) = g(b) = x], (6)

where the first maximum is taken over all conditional proba-
bility distributions QXa|A and QXb|B, the second maximum is
taken over all functions f : A → X and g : B → X , and
(1) follows since Alice and Bob can condition any local ran-
domness on the realization that maximizes their probability of
winning.

b. Quantum strategies. In this case, Alice and Bob can
share an entangled state prior to receiving their inputs. Let
A′ = B′ = Cd be two complex Euclidean spaces of dimen-
sion d . Alice and Bob first jointly prepare a quantum state
σA′B′ on A′ ⊗ B′, after which Alice and Bob keep systems A′
and B′, respectively. After receiving their inputs, Alice and
Bob determine their output by measuring the registers AA′
and BB′ with local measurements M and N , respectively (this
is the most general strategy because no communication is
allowed).

When the local dimensions of the shared entangled state
σA′B′ are limited to d for both parties, the optimal probability
of winning is

ωd
q (X|A; B)ρ := sup

σA′B′ ∈D(Cd ⊗Cd )

sup
M∈M(A⊗Cd )
N∈M(B⊗Cd )

×
∑
x∈X

PX(x)tr
[(

ρx
AB ⊗ σA′B′

)
(Mx ⊗ Nx )

]
.

(7)

When the dimensions of A′ and B′ are not limited, the optimal
winning probability is

ωq(X|A; B)ρ := sup
d�1

ωd
q (X|A; B)ρ. (8)

When ρXAB is classical and described by a probability distri-
bution PXAB, we can simplify (7) as follows:

ωd
q (X|A; B)P (9)
= sup

σA′B′ ∈D(Cd ⊗Cd )
sup

M:A →M(Cd )
N :B→M(Cd )

×
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)tr[σA′B′ (Mx(a) ⊗ Nx(b))] (10)

= sup
M:A →M(Cd )
N :B→M(Cd )

∥∥∥∥∥∥∥∥
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Mx(a) ⊗ Nx(b)

∥∥∥∥∥∥∥∥,
(11)

where M and N are collections of measurements, i.e., for
every input a ∈ A and b ∈ B, we have that M(a) = {Mx(a) :
x ∈ X } and N (b) = {Nx(b) : x ∈ X } are measurements on
Cd with outcomes in X . We show in corollary 5 that the
optimization in ωq(X|A; B)P can be restricted to projective
measurements.

c. No-signaling strategies. We define no-signaling strate-
gies only when ρXAB is classical and described by a
probability distribution PXAB. Given classical inputs a ∈ A
and b ∈ B for Alice and Bob, respectively, they output their
estimates xA and xB of x ∈ X according to a conditional
probability distribution QXAXB|AB on X × X × A × B sat-
isfying

∀ xB, a, a′, b :
∑

xA∈X

QXAXB|AB(xA, xB|a, b) (12)

=
∑

xA∈X

QXAXB|AB(xA, xB|a′, b), (13)

∀ xA, a, b, b′ :
∑

xB∈X

QXAXB|AB(xA, xB|a, b) (14)

=
∑

xB∈X

QXAXB|AB(xA, xB|a, b′). (15)

An optimal no-signaling strategy succeeds with probability

ωns(X|A; B)P

:= sup
QXAXB |AB

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)QXAXB|AB(x, x|a, b).

(16)

IV. EXAMPLES

We discuss here two examples of LSSD games. The first
example highlights particular features of LSSD such as the
optimal local strategies are not necessarily optimal for si-
multaneous guessing, or the optimal guessing probability for
product distributions is not the product of the optimal guessing
probability of distributions in general. The second example is
related to applications of LSSD to quantum cryptography.

Example 1. Let X , Y , and Z be independent binary
random variables such that Pr[X = 1] = 1

2 , Pr[Y = 1] =
Pr[Z = 1] = α for some 0 � α � 1

2 . We also set A := X ⊕ Y
and B := X ⊕ Z and denote the joint probability mass func-
tion of (X, A, B) by Pα

XAB. In other words, A and B are
independent noisy versions of the uniform bit X . Consider the
problem of simultaneously guessing X from A and B. When
1 − 1√

2
< α < 1

2 , both parties always output 0 regardless of
their inputs, which is a correct guess of X with probability
1
2 . When 0 � α � 1 − 1√

2
, Alice and Bob estimate X as A

and B, respectively, which are simultaneously correct when
Y = Z = 0, an event that has probability (1 − α)2. By a brute-
force check, one finds that the aforementioned strategies are
optimal without any extra resources and therefore

ωc(X|A; B)Pα =
{

1
2 , 1 − 1√

2
� α � 1

2 ,

(1 − α)2, 0 � α � 1 − 1√
2
.

(17)

Note that when 1 − 1√
2
� α � 1

2 , optimal local estimators
of X are not optimal for simultaneous guessing of X . We
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later show in proposition 1 that when all X, A, B are binary,
ωc(X|A; B)Pα = ωq(X|A; B)Pα = ωns(X|A; B)Pα .

As a next observation, we set α := 1 − 1√
2

and let
(X ′, A′, B′) be an independent copy of (X, A, B). We consider
the simultaneous guessing of (X, X ′) from (A, A′) and (B, B′),
and define a strategy as follows: both Alice and Bob output
(1, 1) if their input bits are (1, 1) and output (0, 0) otherwise.
The probability of simultaneously guessing correctly is

1
4 (1 − α2)2 + 1

4 (1 − α)4 ≈ 0.271 447. (18)

Hence, ωc(XX′|AA′; BB′)Pα×Pα>ωc(X|A; B)Pαωc(X′|A′;B′)Pα

while (X, A, B) and (X ′, A′, B′) are independent. Because
ωc(X|A; B)Pα = ωq(X|A; B)Pα = ωns(X|A; B)Pα , we also have

ωq(XX′|AA′; BB′)Pα×Pα > ωq(X|A; B)Pαωq(X′|A′; B′)Pα ,

(19)

ωns(XX′|AA′; BB′)Pα×Pα > ωns(X|A; B)Pαωns(X
′|A′; B′)Pα .

(20)

Example 2. Let A = B = C3 with an orthonormal ba-
sis {|0〉, |1〉, |⊥〉} and let |φx〉AB := 1√

2
(|x〉 ⊗ |⊥〉 + |⊥〉 ⊗

|x〉) for x ∈ [2]. We also set ρXAB := 1
2

∑
x∈[2] |x〉〈x|X ⊗

|φx〉〈φx|AB. The authors of [16] showed that ωc(X|A; B)ρ �
9

16 and used this fact to prove impossibility of unclonable
encryption, as defined in [16], using pure states as ciphertext.

V. STRICT QUANTUM AND NO-SIGNALING
SEPARATIONS FOR LSSD

Our main result is the following theorem that gives a sim-
ple example of an LSSD problem for which the guessing
probabilities for players with different types of shared re-
sources are all distinct. Namely, ωc(X|A; B) < ωq(X|A; B) <

ωns(X|A; B).
Theorem 1. Let X = {0, 1, 2} and A = B =

{0, 1}, and let PXAB be the uniform distribution over
{(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (2, 0, 1)}. Then

ωc(X|A; B)P = 2/5 = 0.4, (21)

ωq(X|A; B)P = ω2
q(X|A; B)P = 16 + √

13

45
≈ 0.435 679,

(22)

ωns(X|A; B)P = 1/2 = 0.5. (23)

Our proof relies on the following characterization of the
classical and no-signaling guessing probabilities ωc(X|A; B)P

and ωns(X|A; B)P when |A | = |B| = 2 (see Appendix A for
proof).

Lemma 1. Let PXAB be a probability distribution over X ×
A × B with A = B = {0, 1} and X = [d], d � 2. The
classical and no-signaling winning probabilities for PXAB are
given by

ωc(X|A; B)P = max
s,t∈X

s �=t

max{PX(s), PXAB(s, 0, 0) + PXAB(t, 1, 1), PXAB(s, 0, 1) + PXAB(t, 1, 0)}, (24)

ωns(X|A; B)P = max

{
ωc(X|A; B)P, max

k∈{2,... ,d}
max

f ,g

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Qk
XAXB|AB( f (x, a), g(x, b)|a, b)

}
, (25)

where the final maximization in (25) is over all func-
tions f : X × A → X and g : X × B → X such that
f (·, a), g(·, b) : X → X are permutations for every a ∈
A and b ∈ B, and the conditional probability distribution
Qk

XAXB|AB on X × X × A × B is given by

Qk
XAXB|AB(xA, xB|a, b) :=

{ 1
k (xA − xB) mod k = ab,
0 otherwise.

(26)

Proof (of Theorem 1) The given distribution PXAB has
PX(0) = PX(1) = 2

5 , PX(2) = 1
5 , and PXAB(x, a, b) � 1

5 for all
x, a, b. Equation (21) then follows by applying Lemma 1. An
explicit strategy achieving success probability 2

5 is when both
parties ignore their inputs and always output 0.

Next, let us prove Eq. (23). Since |X | = 3, we only need
to consider k = 2 and 3 in Eq. (25) of Lemma 1. Note from
Eq. (26) that Qk

XAXB|AB(xA, xB|a, b) � 1
k for any xA, xB, a, b, so

the corresponding term in Eq. (25) is at most∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Qk
XAXB|AB( f (x, a), g(x, b)|a, b)

� 1

k

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b) = 1

k
. (27)

If k = 2 and we choose f , g : [3] × [2] → [3] according to
Table I then, for all (x, a, b) with PXAB(x, a, b) > 0, we have
f (x, a), g(x, b) ∈ {0, 1} and f (x, a) ⊕ g(x, b) = ab, so the in-
equality in (27) becomes tight. According to (25), this lower

TABLE I. (Left) An optimal choice of functions f and g for
no-signaling strategies [see Eq. (25)]. (Right) We verify that for
any (x, a, b) with PXAB(x) > 0, f (x, a), g(x, b) ∈ {0, 1} (in bold) and
f (x, a) ⊕ g(x, b) = ab, hence this choice is compatible with Eq. (26)
when k = 2.

x 0 1 2

f (x, 0) 2 1 0
f (x, 1) 0 1 2
g(x, 0) 0 1 2
g(x, 1) 1 2 0

x a b ab f (x, a) g(x, b)

0 1 0 0 0 0
0 1 1 1 0 1
1 0 0 0 1 1
1 1 0 0 1 1
2 0 1 0 0 0
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TABLE II. Measurements for Alice and Bob’s quantum strate-
gies. The projector �(θ ) is defined in Eq. (31) and their angles are
given in Eq. (34).

x 0 1 2

Mx (0) 0 �(α0) 1 − �(α0)
Mx (1) �(α1) 1 − �(α1) 0
Nx (0) �(β0) 1 − �(β0) 0
Nx (1) �(β1) 0 1 − �(β1)

bounds the success probability by 1
2 . Since k = 3 can lower

bound it by at most 1
3 , we do not need to consider this case.

Thus, according to Lemma 1, ωns(X|A; B)P = max{ 2
5 , 1

2 } = 1
2

which proves Eq. (23).
It remains to prove Eq. (22). Let us denote the claimed

optimal quantum value in (22) by

t∗ := 16 + √
13

45
. (28)

We will first settle the case when the local dimension of the
shared entangled state is d = 2, i.e., each party has a single
qubit, and then reduce the general case of d � 2 to this one.

Towards establishing Eq. (22), let us first prove that
ω2

q(X|A; B)P � t∗. Alice and Bob can achieve the value t∗ by
using the following strategy. Their shared two-qubit state is

|σ 〉A′B′ := s+|00〉A′B′ + s−|11〉A′B′ ,

s± :=
√

1

2
± 1

78

√
715 − 182

√
13. (29)

To describe their measurements, we denote the qubit state at
angle θ and the corresponding projector by

|ψ (θ )〉 := cos θ |0〉 + sin θ |1〉 =
(

cos θ

sin θ

)
, (30)

�(θ ) := |ψ (θ )〉〈ψ (θ )| =
(

cos2 θ cos θ sin θ

sin θ cos θ sin2 θ

)
. (31)

Depending on their local inputs a, b ∈ {0, 1}, Alice
and Bob apply the projective measurements M(a) :=
{M0(a), M1(a), M2(a)} and N (b) := {N0(b), N1(b), N2(b)}
given in Table II.

For each measurement, one of their operators is 0 while the
other two are of the form �(θ ) and 1 − �(θ ), for some angles
θ ∈ [−π/2, π/2]. The angles used in Table II are chosen as
follows:

(α0, α1, β0, β1) :=
(

− θ1, θ2,
π

2
− θ2, θ1

)
, (32)

θ1 := 1

4
arccos

(
121 + 52

√
13

477

)
, (33)

θ2 := 1

4
arccos

(
−431 + 4

√
13

477

)
. (34)

The angles θ1 and θ2 satisfy cos(4θ1) = 12 + 13 cos(4θ2) and
have the following explicit cosines:

cos θ1 =
√

1

318
(159 +

√
689(23 + 2

√
13)), (35)

cos θ2 =
√

1

318
(159 +

√
53(23 + 2

√
13)). (36)

Using a computer algebra system, one can verify that

〈σ |A′B′

⎛⎜⎜⎝ ∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Mx(a) ⊗ Nx(b)

⎞⎟⎟⎠|σ 〉A′B′

= 16 + √
13

45
= t∗. (37)

In fact, |σ 〉A′B′ is the principal eigenvector of the above oper-
ator.2

Next, let us prove that the above strategy is optimal if the
shared entangled state has local dimension d = 2 and Alice
and Bob use only projective measurements (we will later re-
duce the case of general measurements in any finite dimension
d to this). For now, our goal is to show that

sup
�:A →PM(C2 )

:B→PM(C2 )

∥∥∥∥∥∥∥∥
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)�x(a) ⊗ 
x(b)

∥∥∥∥∥∥∥∥ � t∗.

(38)
First, by Proposition 3 we can assume that

�0(0) = �2(1) = 
2(0) = 
1(1) = 0 (39)

since Alice should not guess 0 if a = 0 and 2 if a = 1, and
Bob should not guess 2 if b = 0 and 1 if b = 1. The remaining
operators form two 2-outcome projective measurements for
each party:

�(0) = {�1(0),�2(0)}, �(1) = {�0(1),�1(1)}, (40)


(0) = {
0(0), 
1(0)}, 
(1) = {
0(1), 
2(1)}. (41)

To simplify notation, let us set (A0, A1, B0, B1) :=
(�0(0),�0(1), 
0(0), 
0(1)) so that

�(0) = {A0, A⊥
0 }, �(1) = {A1, A⊥

1 }, (42)


(0) = {B0, B⊥
0 }, 
(1) = {B1, B⊥

1 }, (43)

where A⊥
i := 1 − Ai and B⊥

i := 1 − Bi. Our matrix of interest
is then

� :=
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)�x(a) ⊗ 
x(b) (44)

= 1

5
[�0(1) ⊗ 
0(0) + �0(1) ⊗ 
0(1) + �1(0) ⊗ 
1(0)

+�1(1) ⊗ 
1(0) + �2(0) ⊗ 
2(1)] (45)

= 1

5
(A1 ⊗ B0 + A1 ⊗ B1 + A0 ⊗ B⊥

0

+ A⊥
1 ⊗ B⊥

0 + A⊥
0 ⊗ B⊥

1 ). (46)

2Indeed, one can check that its eigenvalues are 16+√
13

45 , 25+√
13

90 ,
7+√

13
45 , 19−5

√
13

90 .
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We see from (43) that if any of the remaining Alice’s measurement operators is 0, then all her operators commute. By Lemma 4
their winning probability cannot exceed the classical value ωc(X|A; B)P = 2

5 . Hence, all remaining Alice’s measurement
operators are rank 1, and similarly for Bob.

By applying a local unitary change of basis on Alice and Bob’s systems, we can assume without loss of generality that, for
some angles α, β ∈ [0, 2π ],

A0 =
(

1 0
0 0

)
, A1 = �

(
α

2

)
, (47)

B0 =
(

1 0
0 0

)
, B1 = �

(
π − β

2

)
, (48)

where �(θ ) is the projector defined in Eq. (31). With this choice, � from Eq. (46) can be written as

� =

⎛⎜⎜⎜⎜⎜⎝
−(a + 1)(b − 3) (a + 1)

√
1 − b2 −√

1 − a2(b − 3)
√

1 − a2
√

1 − b2

(a + 1)
√

1 − b2 ab − a + b + 7
√

1 − a2
√

1 − b2
√

1 − a2(b − 1)

−√
1 − a2(b − 3)

√
1 − a2

√
1 − b2 ab − 3a + b + 5 −(a + 1)

√
1 − b2

√
1 − a2

√
1 − b2

√
1 − a2(b − 1) −(a + 1)

√
1 − b2 −ab − b + a + 5

⎞⎟⎟⎟⎟⎟⎠, (49)

where a := cos α and b := cos β. Our goal is to show that
‖�‖ � t∗ over all a, b ∈ [−1, 1]. Using a computer algebra
system we find that the characteristic polynomial of � in
variable t is

f (t, a, b) = t4 − t3 + 32 + (1 + a)(1 + b)

100
t2

− 16 + 3(1 + a)(1 + b)

500
t

+ (1 + a)(1 + b)(4 − (1 − a)(1 − b))

5000
. (50)

Since the largest eigenvalue of � is equal to the largest root of
f , our goal is to show that f has no roots t > t∗. In Lemma 5
in Appendix C we find an exact sum of squares decomposition
for f which shows that f (t, a, b) > 0 for any t > t∗ and a, b ∈
[−1, 1]. This implies that f has no roots larger than t∗.

It remains to show that ωq(X|A; B)P � t∗. We will do this
by reducing a general strategy to the above d = 2 problem.
Let us fix any dimension d � 2 and consider arbitrary local
quantum strategies for Alice and Bob. They are based on a
shared state |σ 〉A′B′ ∈ Cd ⊗ Cd and collections of measure-
ments M : A → M(Cd ) and N : B → M(Cd ). By invoking
Proposition 3 and then Corollary 5 we can reduce M and N to
two two-outcome projective measurements that look the same
as in Eq. (43), except that Ai and Bi are projectors in some
finite-dimensional space Cd ′

where d ′ � d max{|A |, |B|}.
For now, let us focus just on Alice’s measurements. They

are fully parametrized by two projectors A0 and A1. By Jor-
dan’s Lemma [17] (also known as CS decomposition [18]),
there is a unitary change of basis on Alice’s system that
simultaneously block diagonalizes A0 and A1:

A0 =

⎛⎜⎜⎜⎜⎜⎜⎝

⊕k
j=1

(
1 0
0 0

)
1

1

0
0

⎞⎟⎟⎟⎟⎟⎟⎠, (51)

A1 =

⎛⎜⎜⎜⎜⎝
⊕k

j=1 �(θ j )
1

0
1

0

⎞⎟⎟⎟⎟⎠. (52)

Here the first k blocks are of size 2 × 2 and contain rank-1
projectors onto one-dimensional subspaces at angle θ j be-
tween them [see (31)]. The remaining blocks are 1 × 1 and
contain values (1,1), (1,0), (0,1), and (0,0) (the number of
times each pair occurs is determined by the sizes of the iden-
tity and all-zeroes matrices). Note that A⊥

0 and A⊥
1 have similar

block decompositions in the same basis.
We are interested in the largest eigenvalue of � defined in

Eq. (46). Since all Alice’s projectors are block diagonal, �

is also block diagonal (each Alice’s block gets tensored by
Bob’s operator). Since the largest eigenvalue of � must occur
in one of these blocks, Alice might as well restrict her strategy
to this single block. Since each of her blocks has size at most
two, her strategy does not require more than two dimensions.
By a similar argument, Bob’s system can also be reduced to
two dimensions. Since we already analyzed strategies based
on orthogonal measurements on a shared state with local
dimension two, the same upper bound t∗ also applies to the
general case. �

In the following proposition, we show that the example
presented in Theorem 1 is the “smallest” example illustrating
a separation between the ωc(X|A; B)P and ωns(X|A; B)P in
a sense that when A and B have cardinality two, three is
the minimum cardinality of X such that there exists such a
separation. We also upper bound the gap between ωc(X|A; B)P

and ωns(X|A; B)P when A and B have cardinality two and X
is arbitrary.

Proposition 1. Let PXAB be such that |A | = |B| = 2. If
|X | = 2 then

ωc(X|A; B)P = ωq(X|A; B)P = ωns(X|A; B)P. (53)
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If |X | > 2 then

ωns(X|A; B)P � min
{
2ωc(X|A; B)P, ωc(X|A; B)P + 1

8

}
.

(54)

Proof. To show Eq. (53), without loss of generality we
assume that A = B = X = [2]. By Lemma 1, it suffices to
show that

ωc(X |A; B)P � max
f ,g

1

2
Pr[ f (A, X ) − g(B, X ) mod 2 = AB],

(55)

where the maximum is taken over all functions f , g : [2] ×
[2] → [2]. Note first that

max
f ,g

1

2
Pr[ f (A, X ) − g(B, X ) mod 2 = AB] � 1

2
. (56)

Because X is of size two, we also have

ωc(X|A; B)P � max
x∈X

PX(x) � 1

2
. (57)

Therefore, we have Eq. (55) as desired.
When X = [d] for d > 2, we fix two functions f , g :

[2] × [d] → [d] such that for all a, b ∈ [2], f (a, ·) : [d] →
[d] and g(b, ·) : [d] → [d] are bijections. Let f ′, g′ : [2] ×
[d] → [d] be such that for all a, b, x, x′, we have

f (a, x) = x′ ⇐⇒ f ′(a, x′) = x, (58)

g(b, x) = x′ ⇐⇒ g′(b, x′) = x. (59)

Then,

Pr[ f (A, X ) − g(B, X ) mod k = AB] (60)

�
∑
i=0,1

Pr[ f (A, X ) − g(B, X ) mod k = i] (61)

�
∑
i=0,1

∑
j∈[k]

Pr[ f (A, X ) = j, g(B, X ) = ( j + i) mod k]

(62)

�
∑
i=0,1

∑
j∈[k]

Pr
[

f ′(A, j) = X, g′(B, ( j + i) mod k) = X
]

(63)

� 2kωc(X|A; B)P. (64)

Since f , g are arbitrary, we conclude by Lemma 1 that
ωns(X |A; B)P � 2ωc(X |A; B)P.

Next, with relabeling a and b we can always assume that
Pr[AB = 1] � 1

4 . Then

Pr[ f (A, X ) − g(B, X ) mod k = AB] (65)

=
∑
i=0,1

Pr[ f (A, X ) − g(B, X ) mod k = i and AB = i]

Pr[AB = i] (66)

� Pr[ f (A, X ) − g(B, X ) mod k = 0] + 1

4
. (67)

With the same argument as before,

Pr[ f (A, X ) − g(B, X ) mod k = 0] � kωc(X|A; B)P. (68)

Applying Lemma 1 again,

ωns(X|A; B)P � sup
k�2

ωc(X|A; B)P + 1

4k
� ωc(X|A; B)P + 1

8
,

(69)

as desired. �

VI. MULTIPARTITE LSSD IS NP-HARD

One can naturally extend the LSSD setup to the case where
r � 2 parties desire to simultaneously guess x. We study the
computational complexity of finding the optimal simultaneous
guessing probability in multipartite LSSD by investigating
(again fully classical) problem instances based on hyper-
graphs. We reduce the NP-hard three-dimensional matching
problem in a hypergraph [19] to finding the optimal winning
probability of a three-party LSSD whose size is polynomial
in the size of the hypergraph. Therefore, finding the optimal
winning probability of a three-party LSSD is an NP-hard
problem. In the following, we briefly review the definitions
regarding hypergraphs.

A. Hypergraphs and (partial) matchings

A hypergraph G is a pair (V ,E ) where V is a set of
vertices and E is a set of hyperedges, which are nonempty
subsets of V . A matching of a hypergraph G = (V ,E ) is a
subset M ⊂ E of mutually disjoint hyperedges. We denote
by ν(G) the maximum cardinality of a matching of G. A
fractional matching of a hypergraph G = (V ,E ) is a function
g : E → [0, 1] such that

∑
e∈E :v∈e g(e) � 1 for all v ∈ V . We

denote by ν f (G) the maximum of
∑

e∈E g(e) for all fractional
matchings g. For any matching M , g : e �→ δ[e ∈ M ] is a
fractional matching and therefore we always have ν(G) �
ν f (G).

We call a hypergraph G = (V ,E ) r-partite if V can be
partitioned into r parts such that each hyperedge contains
precisely one vertex from each part. If we denote the r
parts by A1, . . . ,Ar , we can characterize a hyperedge e by
(a1, . . . , ar ) ∈ A1 × · · · × Ar where ai is the unique vertex
in e ∩ Ai. We can thus represent an r-partite hypergraph by
(A1, . . . ,Ar, Ẽ ) where Ẽ ⊂ A1 × · · · × Ar .

B. Hypergraph games

For each hypergraph, we can introduce a probability distri-
bution and a corresponding LSSD game. Note that we need to
extend all definitions from Sec. III from two guessing parties
to multiparty guessing, which can be done in a natural way.

Definition 1. Let G = (A1, . . . ,Ar,E ) be an r-partite hy-
pergraph. We define a probability distribution over E × A1 ×
· · · × Ar as

PG
E(A)1···Ar

(e, a1, . . . , ar ) := 1

|E |δ[e = (a1, . . . , ar )]. (70)

In other words, the random variable E is a uniformly chosen
hyperedge of G and Ai is the vertex of E in Ai.

Our main result of this section relates the optimal guessing
probability of the game associated to a hypergraph to its
maximum matching.
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Theorem 2. For any r-partite hypergraph G =
(A1, . . . ,Ar,E ),

ωc (E|A1; . . . ; Ar )PG = ν(G)

|E | , (71)

ωns(E|A1; . . . ; Ar )PG � ν f (G)

|E | . (72)

We defer the proof to Appendix D and here state several
consequences of this theorem.

Corollary 1. For a 3-partite hypergraph G, finding
ωc(E|A1; A2; A3)PG is an NP-hard problem.

Proof. According to Theorem 2, finding
ωc(E|A1; A2; A3)PG is equivalent to finding the size of
the maximum matching in G, which is NP-hard [19]. �

Corollary 2. Given the assumption P �= NP, there exists a
3-partite hypergraph G such that

ωc(E|A1; A2; A3)PG < ωns(E|A1; A2; A3)PG . (73)

Proof. For the sake of contradiction, suppose that for all
3-partite hypergraphs G,

ωc(E|A1; A2; A3)PG = ωns(E|A1; A2; A3)PG . (74)

Since ωns(E|A1; A2; A3)PG can be formulated as a linear
program of size polynomial in |A1||A2||A3|, we can find
ωns(E|A1; A2; A3)PG in polynomial time. Therefore, by our
assumption in Eq. (74), we can also find ωc(E|A1; A2; A3)PG

in polynomial time, which is in contradiction with corollary 1
and the assumption P �= NP. �

Corollary 3. For any r-partite hypergraph G =
(A1, . . . ,Ar,E ),

ωns(E|A1; . . . ; Ar )PG � (r − 1)ωc(E|A1; . . . ; Ar )PG . (75)

Proof. For any r-partite hypergraph G, we have ν f (G) �
(r − 1)ν(G) [20]. Combining this with Theorem 2 completes
the proof. �

Corollary 4. For a bipartite graph G,

ωc(E|A1; A2)PG = ωq(E|A1; A2)PG = ωns(E|A1; A2)PG .

(76)

Proof. Applying Corollary 3 when r = 2, we have
ωns(E|A1; A2)PG � ωc(E|A1; A2)PG . On the other hand,
ωc(E|A1; A2)PG � ωq(E|A1; A2)PG � ωns(E|A1; A2)PG by
definition. Therefore, Eq. (76) holds. �

VII. SYMMETRIC LSSDS

An LSSD problem is symmetric if the corresponding state
ρXAB does not change when the registers A and B are swapped.
A natural question is whether the optimal strategy for a sym-
metric LSSD is also symmetric (i.e., whether Alice and Bob
share a symmetric resource state and perform the same mea-
surement). When ρXAB is described by a classical distribution
PXAB, we present a symmetric example for which the optimal
classical strategy is not symmetric. Let Z5 := {0, 1, 2, 3, 4}
denote the additive group of integers modulo 5 and PXAB be
the classical distribution defined as

PXAB(x, a, b) :=
{

1
10 x = a = b − 1 or x = a − 1 = b,

0 otherwise

(77)

for x, a, b ∈ Z5. PXAB is symmetric with respect to registers A
and B. Furthermore, if Alice outputs x̂A = a and Bob outputs
x̂B = b − 1, they win with probability 1

2 . However, one can
show that the winning probability of any symmetric strategy is
at most the size of a maximum matching in a cycle of length 5
divided by 5, which is 2

5 . This example rules out the possibility
that symmetric LSSDs always have symmetric optimal strat-
egy. Nevertheless, we shall show that under certain structure
in a symmetric LSSD game, there exists a symmetric strategy
in the following lemma.

Lemma 2. Let PXAB be such that PXAB = PXPA|XPB|X, A =
B, and PA|X = PB|X. We then have the following.

(1) There exists an optimal symmetric classical strategy,
i.e.,

ωc(X|A; B)P = sup
f

∑
x∈X

a,b∈A

PXAB(x, a, b) δ[ f (a) = x]

δ[ f (b) = x], (78)

where f : A → X is a function.
(2) For any d � 1,

ωd
q (X|A; B)P

= sup
M:A →M(Cd )

∥∥∥∥∥∥∥∥
∑
x∈X

a,b∈A

PXAB(x, a, b)Mx(a) ⊗ Mx(b)∗

∥∥∥∥∥∥∥∥,
(79)

where M is a collection of POVMs, i.e., M(a) = {Mx(a) : x ∈
X } forms a POVM for every input a ∈ A .

We defer the proof to Appendix E.

VIII. IMPOSSIBILITY OF UNCLONABLE ENCRYPTION
WITH PURE STATES

We discuss the connection of LSSD and unclonable cryp-
tography. The general idea of using the no-cloning principle
in cryptography dates back to Wiesner [21] who proposed a
quantum money scheme where banknotes are quantum states,
preventing copying. Later, quantum copy protection [14,22–
24] and unclonable encryption [12,25] were introduced,
which provide more sophisticated assets in an unclonable way.
The quantification of cryptographic unclonability is naturally
connected to LSSD: intuitively, any distributed decryption of
a “cloned” quantum ciphertext leads to an LSSD where two
parties attempt to guess the message based on their “clone.”

We focus here on unclonable encryption. We formalize it
following [12], and highlight its connection to LSSD by defin-
ing two ingredients: quantum encryption of classical messages
(QECM) schemes and cloning attacks, which we describe
in the following. We first define an encryption scheme that
encrypts a classical message and a classical key to a quantum
ciphertext, and then consider its unclonable security.

Definition 2 ([12], Definition 4). A quantum encryption of
classical messages (QECM) scheme is a triple of algorithms
E = (KeyGen, Enc, Dec) described as follows:

(i) The key generation algorithm KeyGen samples a clas-
sical key k from the key space K with distribution PK.
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(ii) The encryption algorithm Enck (m) takes as inputs the
classical key k and classical message m ∈ M , and produces a
quantum ciphertext ρA ∈ D(A).

(iii) The decryption algorithm Deck (ρA ) takes as inputs
the classical key k and a quantum ciphertext ρA, and returns
the classical message m ∈ M .

We note that our definition of a QECM differs slightly
from [12]. In particular, we do not include a security pa-
rameter in our definition of a QECM because we only study
information-theoretic security in this article and therefore do
not impose any computational assumptions on the adversary.
Our results hold for any fixed underlying security parameter
of the scheme.

Correctness is defined in the natural way.
Definition 3. A QECM scheme E = (KeyGen,

Enc, Dec) is (perfectly) correct if for all k produced by
KeyGen, and for all messages m ∈ M , it holds that

Pr[Deck (Enck (m)) = m] = 1. (80)

As in [12], we define unclonable security, in which the
adversary chooses a message m1 ∈ M and the encrypted mes-
sage is uniformly distributed over the set {m0, m1} for a fixed
m0 ∈ M .

Definition 4 (Cloning attack, [12], Definition 10). Let E =
(KeyGen, Enc, Dec) be a QECM scheme and fix m0 ∈ M .
A cloning attack against E and m0 is a quadruple A =
(m1,NA→BC, {Pb(k)}, {Qb(k)}) such that

(i) the message m1 is in M \ {m0},
(ii) the quantum channel NA→BC describes the adversary’s

cloning operation,
(iii) for every possible key k, {Pb(k) : b ∈ {0, 1}} is Bob’s

POVM on B to guess the message mb,
(iv) for every possible key k, {Qb(k) : b ∈ {0, 1}} is Char-

lie’s POVM on C to guess the message mb.
The success probability of a cloning attack A against en-

cryption scheme E is

pwin-ind(E ;A) := 1

2

∑
b∈{0,1}

Ek←KeyGen{tr[(Pb(k) ⊗ Qb(k))

× NA→BC (Enck (mb))]}. (81)

Our main result in this section is the following lower bound
on optimal probability of success of cloning attacks for any
QECM scheme.

Theorem 3. For any correct (see Definition 3) QECM
scheme E and arbitrary m0 ∈ M , there exists a cloning attack
A against E as defined in Definition 4 and m0 such that

pwin-ind(E ;A) � 1

2
+ maxm∈M Ek←KeyGen(‖Enck (m)‖)

16
.

(82)

Proof. We define the “cloning operation”

VA→BC : |φ〉 �→ 1√
2

(|⊥〉B ⊗ |φ〉C + |φ〉B ⊗ |⊥〉C), (83)

where |⊥〉 is a unit vector orthogonal to A. Intuitively, VA→BC
distributes the input state to B and C “in superposition.” Let
ρ, σ be perfectly distinguishable states, for example, ρ =
|0〉〈0| and σ = |1〉〈1|. We now consider the task where for

a random bit X ∈ {0, 1}, Bob and Charlie have to simultane-
ously distinguish the following two cases:

(i) if X = 0: V ρV † is handed to Bob and Charlie,
(ii) if X = 1: V σV † is handed to Bob and Charlie.
The following lemma gives a nontrivial lower bound on

their simultaneous guessing probability of X for this task. In
particular, for pure states like ρ = |0〉〈0| and σ = |1〉〈1|, we
obtain a lower bound of 1

2 + 1
16 = 9

16 . At first sight, it seems
counterintuitive that Bob and Charlie are able to succeed
with probability strictly higher than 1

2 . One might think that
after applying the cloning operation VA→BC , the state should
be either with Bob or with Charlie, so the other party will
succeed with probability at most 1

2 . However, as one can
see from the explicit simultaneous guessing strategy that we
construct in the proof of Lemma 3 below, Bob and Charlie
can exploit the quantum coherence of the state after applying
VA→BC to achieve a simultaneous guessing probability strictly
larger than 1

2 .
To complete the proof, let m1 := argmaxm∈M\{m0}

Ek←KeyGen(‖Enck (m)‖). We consider the unclonable-
indistinguishable attack (m1,VA→BC, {�k,1 − �k}, {�k,1 −
�k}) where the projector �k is � defined in the proof of
Lemma 3 for ρ = Enck (m0) and σ = Enck (m1). The claim
then follows directly from the lemma below. �

Lemma 3. Let ρ, σ ∈ D(A) such that ρσ = 0, and define
τXBC := 1

2 |0〉〈0|X ⊗ V ρV † + 1
2 |1〉〈1|X ⊗ V σV †. We have

ωc(X|B; C)τ � 1

2
+ max(‖ρ‖, ‖σ‖)

16
. (84)

Proof. Let d denote the dimension of A. We consider
eigendecompositions

ρ =
∑
i∈[d]

λi|ai〉〈ai|, σ =
∑
i∈[d]

μi|bi〉〈bi|, (85)

such that λ0 � · · · � λd−1 and μ0 � · · · � μd−1. We set
|φ〉 := √

1 − α|a0〉 + √
α|⊥〉 for some parameter α ∈ [0, 1]

(to be determined below) and

� := |φ〉〈φ| +
∑

i∈[d]\{0}:λi>0

|ai〉〈ai|. (86)

� is a projector and one can verify the following equalities by
straightforward calculations:

〈⊥|�|⊥〉 = α, (87)

〈a0|�|a0〉 = 1 − α, (88)

〈a0|�|⊥〉 = 〈⊥|�|a0〉 =
√

α(1 − α), (89)

〈ai|�|ai〉 = 1 ∀ i ∈ [d] \ {0} such that λi > 0, (90)

〈ai|�|⊥〉 = 〈⊥|�|ai〉 = 0 ∀ i ∈ [d] \ {0} such that λi > 0.

(91)

It holds that λiμ j |〈ai|b j〉|2 = 0 for all i and j since ρσ = 0.
Hence, �|bj〉 = 0 for all j with μ j > 0 and

〈b j |(1 − �)|bj〉 = 1, (92)

〈bj |(1 − �)|⊥〉 = 〈⊥|(1 − �)|bj〉 = 0, (93)

for all j with μ j > 0.
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Bob and Charlie both use the POVM {�,1 − �} as their
local guessing strategies for X . By definition of ωc(X|B; C)τ ,
we have

ωc(X|B; C)τ � 1
2 (tr((� ⊗ �)V ρV †) + tr(((1 − �)

⊗ (1 − �))V σV †)). (94)

The first term on the right-hand side of Eq. (94) is

tr((� ⊗ �)V ρV †) (95)

=
∑
i∈[d]

λitr((� ⊗ �)V |ai〉〈ai|V †) (96)

= 1

2

∑
i∈[d]

λitr((� ⊗ �)(|ai〉〈ai| ⊗ |⊥〉〈⊥|

+|⊥〉〈⊥| ⊗ |ai〉〈ai|
+|ai〉〈⊥| ⊗ |⊥〉〈ai| + |⊥〉〈ai| ⊗ |ai〉〈⊥|)) (97)

(a)= 2λ1α(1 − α) + α
∑

i∈[d]\{0}
λi (98)

= α + λ0α(1 − 2α), (99)

where (a) follows by using Eqs. (87)–(91). Similarly applying
Eqs. (92) and (93) yields that

tr(((1 − �) ⊗ (1 − �))V σV †) = 1 − α. (100)

Combining Eqs. (94), (99), and (100) and setting α := 1/4,
we obtain that

ωc(X|B; C)τ � 1

2
+ λ0

16
. (101)

Finally, without loss of generality we can assume that λ0 �
μ0, and therefore, λ0 = max(‖ρ‖, ‖σ‖). �

Some related work and open problems

LSSD is a fascinating new problem in quantum informa-
tion processing, and there are many associated open questions.
Our results so far only treat the case where the referee uses
classical states. How do the different success probabilities
behave when distinguishing actual quantum states? Are there
dimension constraints under which the classical and quantum
values coincide?

Earlier work by Buscemi [26] studied “semiquantum” non-
local games where a referee picks a bipartite quantum state
and sends the registers as questions to two players, Alice
and Bob. Their answers are classical bit strings. The sub-
class of quantum XOR games has been studied in depth by
Regev and Vidick [27]. Here, the players’ answers are clas-
sical bits, and the winning predicate only depends on their
XOR. Our LSSD scenario involves a similar restriction, as
the players simultaneously have to guess the referee’s choice.
It is a very interesting open problem to investigate whether
some of the results from quantum XOR games carry over
to the LSSD setting. For instance, does there exist a family
of games that can only be won optimally with an ever-
increasing amount of entanglement? Can we find efficiently
computable lower or upper bounds on the various success
probabilities?

Another line of related work [28–30] studies the relation
between various distinguishability norms with the goal of
maximizing the so-called data hiding ratio, i.e., how much
worse restricted sets of measurements (such as local ones)
perform in the task of state discrimination versus global mea-
surements. In this setting, the “local operations” performed by
the players can still be postprocessed by the referee (akin to
some form of communication), whereas in our LSSD setting,
the players simultaneously have to guess the referee’s input
using only local operations.

The authors of [31] study the LSSD problem for two bi-
partite quantum states that are in tensor product. It shows
the same “two-regime behavior” as our Example 1 where
depending on a parameter, it is better to use the locally optimal
discrimination strategy in one regime, whereas in the other
regime, it is better for the players to correlate their errors.

Concerning unclonable encryption, the followup work
of [32] proves a new impossibility result. The authors im-
prove our lower bound on the indistinguishably of any scheme
whose ciphertexts are pure states. Nevertheless, one cannot
extend their bound beyond pure states unlike our approach. In
other followup work [33], we have investigated the behavior
of LSSD games under parallel repetition, establishing inter-
esting relations with error-correcting and list-decoding codes.

Note added. Recently, we have become aware of indepen-
dent unpublished work by Chitambar and Mančinska [31] that
also studies our scenario.

Our code is available at [34].
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APPENDIX A: PROOF OF LEMMA 1

In the classical case, it is enough to consider only determin-
istic strategies. They can be described by functions f : A →
X and g : B → X that locally map Alice and Bob’s inputs
to outputs. Their success probability is given by

ωc(X|A; B)P =
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)δ[ f (a) = x]δ[g(b) = x]

(A1)

=
∑
a,b

PXAB( f (a), a, b)δ[ f (a) = g(b)]. (A2)

There are two possibilities: Alice can either ignore her input
and always produce a fixed output, or she can take her input
into account.

In the first case, f (0) = f (1) =: s and their success proba-
bility is ∑

a,b

PXAB(s, a, b)δ[s = g(b)]. (A3)
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It is maximized when Bob also ignores his input and outputs
the same fixed value s as Alice, i.e., g(0) = g(1) = s. This
results in success probability∑

a,b

PXAB(s, a, b) = PX(s), (A4)

where s ∈ {0, 1}. This accounts for the first term in Eq. (24).
If Alice does not ignore her input, then f (0) �= f (1). We

can assume that neither does Bob, i.e., g(0) �= g(1). Indeed,
if Bob were to ignore his input, Alice could improve her
strategy by outputting the same value as Bob and we would
again arrive at Eq. (A4). To maximize the success probability
in Eq. (A2), the strategies f and g should be coordinated so
that { f (0), f (1)} = {g(0), g(1)} as sets. In other words, ei-
ther f (0) = g(0) and f (1) = g(1), or f (0) = g(1) and f (1) =
g(0). These two cases result in success probabilities

PXAB( f (0), 0, 0) + PXAB( f (1), 1, 1), (A5)

PXAB( f (0), 0, 1) + PXAB( f (1), 1, 0). (A6)

Letting {s, t} := { f (0), f (1)} ⊆ X we recover the last two
terms in (24).

We now prove Eq. (25). Recall from Eq. (16) that

ωns(X|A; B)P

:= sup
QXAXB |AB

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)QXAXB|AB(x, x|a, b),

(A7)

where QXAXB|AB is a conditional probability distribution satis-
fying the no-signaling conditions in Eqs. (13) and (15). Since
the objective function and all constraints are linear, an optimal
QXAXB|AB is an extreme point of the set of all no-signaling
conditional probability distributions. A local extreme point
can achieve success probability at most ωc(X|A; B)P, corre-
sponding to the first term in (25).

According to [35, Theorem 1], any nonlocal extreme point
of the two-party no-signaling polytope where each party has
two inputs and d outputs, is given by Qk

XAXB|AB in (26), for
some k ∈ {2, . . . , d}, up to reversible local relabeling. Intu-
itively, Eq. (26) says that we choose xB ∈ [k] uniformly at
random and set

xA =
{

xB + 1 (mod k) if (a, b) = (1, 1),
xB otherwise. (A8)

A reversible local relabeling means that each party can lo-
cally permute their input as well as output values, and the
output permutation may depend on the local input value. The
extreme distributions in Eq. (26) have the property that any
local permutation of input values can be achieved by instead
locally permuting outputs conditioned on inputs. For example,
the input permutation a �→ 1 − a for Alice can be achieved by
first negating both variables (i.e., xA �→ −xA and xB �→ −xB)
and then Bob increasing his output by one (i.e., xB �→ xB + 1)
whenever b = 1. Indeed, this will cause xA = xB + 1 when-
ever (a, b) = (0, 1) and xA = xB otherwise [see Eq. (A8)].

Since we only need to take into account local output
permutations that may depend on local inputs, any nonlocal

extreme point of the no-signaling polytope is of the form

Q̃k
XAXB|AB(xA, xB|a, b) = Qk

XAXB|AB( f (xA, a), g(xB, b)|a, b),
(A9)

where Qk
XAXB|AB is given by Eq. (26) and f : X × A → X

and g : X × B → X are functions such that f (·, a), g(·, b) :
X → X are permutations for every a ∈ A and b ∈ B. This
establishes Eq. (25).

APPENDIX B: CONSTRAINTS ON OPTIMAL
MEASUREMENTS

The following proposition shows that any measurement
can be replaced by a projective measurement on a larger space.

Proposition 2. For any an n-outcome measurement M =
{M1, . . . , Mn} on Cd , there is a projective measurement
{�1, . . . ,�n} on Cd ⊗ Cn and an isometry U : Cd → Cd ⊗
Cn such that, for all i = 1, . . . , n,

Mi = U †�iU . (B1)

Proof. Let U :=∑n
i=1

√
Mi ⊗ |i〉 and �i := 1 ⊗ |i〉〈i|.

Clearly, each �i is a projector and
∑n

i=1 �i = 1. Equa-
tion (B1) holds since

U †�iU =
(

n∑
j=1

√
Mj ⊗ 〈 j|

)
�i

(
n∑

k=1

√
Mk ⊗ |k〉

)
(B2)

=
n∑

j,k=1

√
Mj1

√
Mk ⊗ 〈 j|i〉〈i|k〉 (B3)

= Mi. (B4)

Finally, U is an isometry since U †U = U †(
∑n

i=1 �i )U =∑n
i=1 U †�iU =∑n

i=1 Mi = 1. �
Using the above result, we can show that it suffices to

consider only projective measurements when determining the
optimal winning probability for quantum strategies assisted
by an entangled state of an arbitrarily large dimension. Our
argument is similar to [36, Lemma 9].

Corollary 5. If PXAB is a probability distribution over X ×
A × B then

ωq(X|A; B)P = sup
d�1

ωd
q (X|A; B)P = sup

d�1
sup

�:A →PM(Cd )

:B→PM(Cd )

×

∥∥∥∥∥∥∥∥
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)�x(a) ⊗ 
x(b)

∥∥∥∥∥∥∥∥,
(B5)

where the last supremum is over collections of projective
measurements.

Proof. The first equality in (B5) is by definition [see
Eq. (8)]. For the second equality, recall from Eq. (11) that

ωd
q (X|A; B)P

= sup
M:A →M(Cd )
N :B→M(Cd )

∥∥∥∥∥∥∥∥
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Mx (a) ⊗ Nx(b)

∥∥∥∥∥∥∥∥.
(B6)
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We need to show that, at the cost of increasing the dimension
d , the optimization here can be restricted to just projective
measurements. For convenience, let

�A′B′ :=
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Mx(a) ⊗ Nx(b), (B7)

where Ma
x and Nb

x act on registers A′ and B′ of dimension d .
Let us fix a dimension d � 1 and set A = CA and B =

CB as usual. Using Proposition 2, we can find collections of
isometries Ua : Cd → Cd ⊗ A and Vb : Cd → Cd ⊗ B and
projective measurements �(a) ∈ PM(Cd ⊗ A) and 
(b) ∈
PM(Cd ⊗ B) such that

Mx(a) = U †
a �a

xUa, Nx(b) = V †
b 
b

xVb, (B8)

for all a ∈ A , b ∈ B, and x ∈ X . Then

�A′B′ =
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)(Ua ⊗ Vb)†(�x(a) ⊗ 
x(b))

(Ua ⊗ Vb). (B9)

Let |σ 〉A′B′ ∈ Cd ⊗ Cd denote its principal eigenvector.
Let us fix some arbitrary states |α〉 ∈ A and |β〉 ∈ B, and

arbitrarily extend the isometries Ua and Vb to unitaries Ũa ∈
U(Cd ⊗ A) and Ṽb ∈ U(Cd ⊗ B) so that

Ua = Ũa(1A′ ⊗ |α〉A ), Vb = Ṽb(1B′ ⊗ |β〉B). (B10)

Furthermore, we promote |σ 〉A′B′ ∈ Cd ⊗ Cd to |σ̃ 〉A′A,B′B ∈
(Cd ⊗ A) ⊗ (Cd ⊗ B) by defining

|σ̃ 〉A′A,B′B := |σ 〉A′B′ ⊗ |α〉A ⊗ |β〉B, (B11)

where the registers on the right-hand side should be rear-
ranged accordingly. Then

(UA ⊗ Vb)|σ 〉A′B′ = (Ũa ⊗ Ṽb)|σ̃ 〉A′A,B′B (B12)

because of Eq. (B10). Substituting this in Eq. (B9),

〈σ |�|σ 〉 = 〈σ̃ |
( ∑

x∈X
a∈A ,b∈B

PXAB(x, a, b)(�̃x(a) ⊗ 
̃x(b))

)
|σ̃ 〉,

(B13)

where �̃x(a) := Ũ †
a �x(a)Ũa and 
̃x(b) := Ṽ †

b 
x(b)Ṽb are
projectors on Cd ⊗ A and Cd ⊗ B.

Hence, we have promoted the original d-dimensional strat-
egy to one in dimension d max{|A |, |B|} that uses only
projective measurements and achieves the same success prob-
ability. Since ωq(X|A; B)P in (B5) is defined as a supremum
over all d � 1, this increase of dimension does not matter.
Hence, we can obtain the optimal quantum value by optimiz-
ing only over projectors. �

Intuitively, Alice and Bob should never guess values of x
that cannot occur based on their local inputs. The following
result shows that optimal measurements for Alice and Bob’s
quantum strategies can always be assumed to have this prop-
erty.

Proposition 3. Let PXAB be a probability distribution on
X × A × B and d � 1 an integer. The supremum in

ωd
q (X|A; B)P

= sup
M:A →M(Cd )
N :B→M(Cd )

∥∥∥∥∥∥∥∥
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Mx(a) ⊗ Nx(b)

∥∥∥∥∥∥∥∥
(B14)

is achieved by collections of measurements M(a) = {Mx(a) :
x ∈ X } and N (b) = {Nx(b) : x ∈ X } on Cd with

Mx(a) = 0 if PXA(x, a) = 0 and PA(a) > 0, (B15)

Nx(b) = 0 if PXB(x, b) = 0 and PB(b) > 0. (B16)

In particular, if the supremum can be achieved by projective
measurements then it can also be achieved by projective mea-
surements that satisfy Eqs. (B15) and (B16).

Proof. The set of all measurements on a finite-dimensional
complex Euclidean space and with a finite output set X is
compact. Since the objective function is continuous, the max-
imum is achieved by some collections of measurements M(a)
and N (b). We can potentially improve Alice’s measurement
Ma by absorbing those measurement operators Mx′ (a) that
correspond to pairs (x′, a) that never occur into other oper-
ators. More specifically, for each a ∈ A with PA(a) > 0 there
exists some xa ∈ X with PXA(xa, a) > 0, so we can absorb all
Mx′ (a) with PXA(x′, a) = 0 into Mxa (a):

M̃a
x :=

⎧⎨⎩0 if PXA(x, a) = 0 and PA(a) > 0,

Mx(a) +∑x′:PXA (x′,a)=0 Mx′ (a) if PA(a) > 0 and x = xa,

Mx(a) otherwise.
(B17)

We can perform a similar procedure for Bob’s measure-
ments N (b) to obtain Ñ (b). It is clear that all M̃(a) and Ñ (b)
are still measurements, and that they satisfy (B15) and (B16).
In particular, if M(a) are projective measurements then so are
M̃(a). Moreover,
PXAB(x, a, b)M̃x(a) ⊗ Ñx(b) � PXAB(x, a, b)Mx (a) ⊗ Nx(b),

(B18)

for all x, a, b. Indeed, if PXAB(x, a, b) = 0 then this holds
trivially, and if PXAB(x, a, b) > 0 then M̃x(a) � Mx(a) and
Ñx(b) � Nx(b), so M̃x(a) ⊗ Ñx(b) � Mx(a) ⊗ Nx(b). Since

Eq. (B18) still holds when summing over all x, a, b,∥∥∥∥∥∥∥∥
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)M̃x(a) ⊗ Ñx(b)

∥∥∥∥∥∥∥∥
�

∥∥∥∥∥∥∥∥
∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)Mx(a) ⊗ Nx(b)

∥∥∥∥∥∥∥∥, (B19)

as desired. �
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Lemma 4. Let PXAB be a joint probability distribution. We
fix a quantum strategy consisting of a quantum bipartite state
σA′B′ with A′ = B′ = Cd and collections of measurement M :
A → M(Cd ) and N : B → M(Cd ) with output on X . Let
M be such that [M(a)x, M(a′)x′] = 0 for all a, a′ ∈ A and for
all x, x′ ∈ X . Then,∑

x∈X
a∈A ,b∈B

PXAB(x, a, b)tr[σA′B′ (Mx(a) ⊗ Nx(b))]

� ωc(X|A; B)P. (B20)

Proof. Because Alice’s measurement operators commute,
she can jointly perform all measurements for all inputs a ∈ A
before receiving her input to obtain a collection of random
variables {Xa : a ∈ A } and use Xa as her output when her
input is a. Let X̃ denote the register containing all {Xa : a ∈
A }. Equivalently, Alice and Bob can share σX̃B′ in the first
place, which is a cq state and therefore separable. Let σX̃B′ =∑

i piσ
(i)
X̃

⊗ σ
(i)
B′ where {pi} is a probability distribution. For

any collection of measurements M̃ : A → M(X̃ ),∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)tr[σX̃B′ (M̃x(a) ⊗ Nx(b))] (B21)

=
∑

i

pi

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)

×tr
[(

σ
(i)
X̃

⊗ σ
(i)
B′
)
(M̃x(a) ⊗ Nx(b))

]
(B22)

=
∑

i

pi

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)

×tr
[
σ

(i)
X̃

M̃x(a)
]
tr
[
σ

(i)
B′ Nx(b)

]
. (B23)

Therefore, for each i, Alice and Bob can use classical
strategies QXA|A(xa|a) := tr[σ (i)

X̃
M̃x(a)] and QXB|B(xb|b) :=

tr[σ (i)
B′ Nx(b)], respectively. Hence,∑

i

pi

∑
x∈X

a∈A ,b∈B

PXAB(x, a, b)tr
[
σ

(i)
X̃

M̃x(a)
]
tr
[
σ

(i)
B′ Nx(b)

]
�
∑

i

piωc(X|A; B)P = ωc(X|A; B)P, (B24)

as desired. �

APPENDIX C: SOS REPRESENTATION

Lemma 5. For any t > t∗ = 16+√
13

45 and a, b ∈ [−1, 1], the
polynomial

f (t, a, b) = t4 − t3 + 32 + (1 + a)(1 + b)

100
t2

− 16 + 3(1 + a)(1 + b)

500
t

+ (1 + a)(1 + b)(4 − (1 − a)(1 − b))

5000
(C1)

is strictly positive.
Proof. Let us first establish that f (t, a, b) � 0 for all t � t∗

and a, b ∈ [−1, 1]. This would be evident if we managed to

find a representation of f of the form

f (t, a, b) = v(t, a, b)T[Q1 + (t − t∗)Q2

+ (1 − a2)Q3 + (1 − b2)Q4]v(t, a, b), (C2)

where Qi are fixed positive-semidefinite matrices and
v(t, a, b) is a vector whose entries depend on t, a, b (e.g.,
are monomials in them). Generally such “sums of squares”
representations can be found using semidefinite programming
(see lectures 10–14 of Fawzi [37] or Sec. 3.4.4 of [38]). In
our case this is a semidefinite feasibility problem where the
matrices Qi are subject to Qi � 0 and a set of linear constraints
obtained by comparing the coefficients of the polynomials in
Eqs. (C1) and (C2).

We found the following exact solution of this problem:

v(a, b, t ) =

⎛⎜⎜⎜⎜⎜⎜⎝
1
a
b

ab
t
t2

⎞⎟⎟⎟⎟⎟⎟⎠, (C3)

Q1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α β β γ δ ε

β ζ η θ − 3
1000

1
200

β η ζ θ − 3
1000

1
200

γ θ θ ι − 3
1000

1
200

δ − 3
1000 − 3

1000 − 3
1000 κ − 1

2

ε 1
200

1
200

1
200 − 1

2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(C4)

Q2 =

⎛⎜⎜⎜⎜⎜⎜⎝
λ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,

Q3 =

⎛⎜⎜⎜⎜⎜⎜⎝
μ 0 θ 0 0 0
0 0 0 0 0 0
θ 0 ν 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠, (C5)

Q4 =

⎛⎜⎜⎜⎜⎜⎜⎝
μ θ 0 0 0 0
θ ν 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠, (C6)

where the values of the missing matrix entries are as follows:

α = 973 343 + 240 821
√

13

371 790 000
, β = 33 139 − 617

√
13

82 620 000
,

(C7)

γ = 20 − √
13

45 000
, δ = −1721 + 62

√
13

81 000
, (C8)

ε = 25 − 2
√

13

600
, ζ = 21 592 − 2903

√
13

185 895 000
, (C9)
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η = −2 + √
13

45 000
, θ = −91 + 617

√
13

82 620 000
, (C10)

ι = −47 + 127
√

13

4 590 000
, κ = 37 + √

13

150
, (C11)

λ = 91 + 31
√

13

20 250
, μ = 8203 − 1325

√
13

743 580 000
, (C12)

ν = 871 + 127
√

13

9 180 000
. (C13)

The correctness of this decomposition can be verified by plug-
ging these values into Eq. (C2) and comparing the resulting
polynomial with Eq. (C1).

To verify that Qi are positive semidefinite, we can simply
compute their eigenvalues. The nonzero eigenvalues of Q1 are

1.255 390 507 . . . ,

0.020 376 547 . . . ,

0.000 059 985 . . . ,

0.000 024 167 . . . ,

0.000 015 112 . . . .

(C14)

The remaining matrices Q2, Q3, Q4 have rank one and their
only nonzero eigenvalues are

91 + 31
√

13

20 250
,

39 377 + 4481
√

13

371 790 000
,

39 377 + 4481
√

13

371 790 000
.

(C15)

To prove that f (a, b, t ) > 0 when t > t∗, expand Eq. (C2) to
obtain

f (t, a, b) = vTQ1v + (t − t∗)vTQ2v + (1 − a2)vTQ3v

+ (1 − b2)vTQ4v. (C16)

Note that all terms are non-negative when t � t∗ and a, b ∈
[−1, 1]. Since λ > 0, the second term

(t − t∗)vTQ2v = (t − t∗)λ (C17)

is strictly positive when t > t∗. �
The above solution was found using Mathematica. First,

we used the SemidefiniteOptimization function to find
an initial solution. Then, for all sufficiently small matrix en-
tries, we included additional linear constraints that force them
to be exactly zero. This resulted in a preliminary solution
with sufficiently many zeros. Our hope was to convert this
to an exact algebraic solution using the RootApproximant
function. However, this would work only if the solution is
isolated (i.e., cannot be perturbed to other nearby solutions)
and of sufficiently high accuracy. Unfortunately, the built-in
SemidefiniteOptimization function cannot obtain high-
accuracy solutions.

To overcome this, we had to rely on the generic NMinimize
and FindMinimum routines that support WorkingPrecision
option. However, since they do not support semidefinite con-
straints, we had to use the preliminary solution to choose a
sufficiently simple ansatz matrix Ai and set Qi = AT

i Ai. This
automatically guarantees that all Qi are positive semidefinite.
By further tweaking the ansatz we managed to obtain an
isolated solution.

To get an exact algebraic solution, we supplied this isolated
numerical solution as an initial point to the FindMinimum

routine and, by increasing the WorkingPrecision option,
dialed up the accuracy to several hundreds of digits. Finally,
applying RootApproximant to Qi, followed by ToRadicals,
produced the above exact algebraic solution.

APPENDIX D: PROOF OF THEOREM 2

Consider a matching M of G. For a fixed 1 � i � r we
define hi : Ai → E as follows. Given a ∈ Ai, there is at most
one e = (a1, . . . , ar ) ∈ M such that ai = a. We set fi(a) = e
if there is such hyperedge e and set fi(a) to an arbitrary hyper-
edge otherwise. The probability of winning for this strategy is∑

e,a1,... ,ar

PG
E(A)1···Ar

(e, a1, . . . , ar )

×δ[h1(a1) = · · · = hr (ar ) = e] (D1)

= 1

|E |
∑

e,a1,... ,ar

δ[e = (a1, . . . , ar ))]

×δ[h1(a1) = · · · = hr (ar ) = e] (D2)

= 1

|E |
∑

e=(a1,... ,ar )∈E

δ[h1(a1) = · · · = hr (ar ) = e]

(D3)

� 1

|E |
∑

e=(a1,... ,ar )∈M

δ[h1(a1) = · · · = hr (ar ) = e]

(D4)

= |M |
|E | , (D5)

which implies that ωc(E|A1; . . . ; Ar )PG � ν(G)
|E | .

To show the other direction, consider an arbitrary classical
strategy described by functions h1, . . . , hr . Define the subset

M := {e = (a1, . . . , ar ) ∈ E : h1(a1) = · · · = hr (ar ) = e}.
(D6)

To show that M is a matching, let e = (a1, . . . , ar ) and e′ =
(a′

1, . . . , a′
r ) be two distinct hyperedges in M . Also suppose

that ai = a′
i for some i. From the definition of M , we have

e = hi(ai ) = hi(a′
i ) = e′ which contradicts the distinctness of

e and e′. Therefore, e and e′ differ in all vertices and M is a
matching. Next, note that∑

e,a1,... ,ar

PG
E(A)1···Ar

(e, a1, . . . , ar )

×δ[h1(a1) = · · · = hr (ar ) = e] (D7)

= 1

|E |
∑

e,a1,... ,ar

δ[e = (a1, . . . , ar )]

×δ[h1(a1) = · · · = hr (ar ) = e] (D8)

= 1

|E |
∑

e=(a1,... ,ar )∈E

δ[h1(a1) = · · · = hr (ar ) = e] (D9)

= |M |
|E | . (D10)

Therefore, ωc(E|A1; . . . ; Ar )PG � ν(G)
|E | .
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We now prove Eq. (72). Let QE1···Er |A1···Ar be a no-signaling
strategy. For e = (a1, . . . , ar ) ∈ E , we define

g(e) := QE1···Er |A1···Ar (e, . . . , e|a1, . . . , ar ). (D11)

We have g(e) ∈ [0, 1] and for any a ∈ Ai∑
e=(a1,... ,ar )∈E :ai=a

g(e) (D12)

=
∑

e=(a1,... ,ar )∈E :ai=a

QE1···Er |A1···Ar (e, . . . , e|a1, . . . , ar )

(D13)

�
∑

e=(a1,... ,ar )∈E :ai=a

∑
e1,... ,ei−1,ei+1,... ,er

×QE1···Er |A1···Ar (e1, . . . , ei−1, e, ei+1, . . . , e|a1, . . . , ar )

(D14)

=
∑

e=(a1,... ,ar )∈E :ai=a

QEi|A1,... ,Ar (e|a1, . . . , ar ) (D15)

(a)=
∑

e=(a1,... ,ar )∈E :ai=a

QEi|Ai (e|a) (D16)

(b)
� 1, (D17)

where (a) follows since QE1···Er |A1···Ar is nonsignaling and
(b) follows since QEi|Ai is a conditional probability distri-
bution. Therefore, g is a fractional matching. We can upper
bound the probability of winning for the no-signaling strategy
QE1···Er |A1···Ar as∑

e,a1,... ,ar

PG
EA1···Ar

(e, a1, . . . , ar )

×QE1···Er |A1···Ar (e, . . . , e|a1, . . . , ar ) (D18)

= 1

|E |
∑

e=(a1,... ,ar )

QE1···Er |A1···Ar (e, . . . , e|a1, . . . , ar )

(D19)

= 1

|E |
∑

e=(a1,... ,ar )

g(e) (D20)

� ν f (G)

|E | , (D21)

which completes the proof of Eq. (72).

APPENDIX E: PROOF OF LEMMA 2

We only prove the second statement since the first state-
ment is a special case of the second statement for d = 1.
Let us consider an arbitrary quantum strategy (σA′B′ , M, N )
where A′ = B′ = Cd , σA′B′ ∈ D(Cd ⊗ Cd ), and M : A →
M(Cd ) and N : B → M(Cd ) are two collections of POVMs.
It achieves winning probability∑

x∈X ,a∈A ,b∈B

PXAB(x, a, b)tr[σA′B′Mx(a) ⊗ Nx(b)]. (E1)

Without loss of generality we can assume that σA′B′ is pure,
i.e., there exists a unit vector |�〉A′B′ ∈ Cd ⊗ Cd such that

σA′B′ = |�〉〈�|A′B′ . Consider its Schmidt decomposition

|�〉A′B′ =
∑
i∈[d]

√
λi|ei〉 ⊗ | fi〉, (E2)

where λ0, . . . , λd−1 are non-negative real numbers with∑
i∈[d] λi = 1, and {|ei〉 : i ∈ [d]} and {| fi〉 : i ∈ [d]} are or-

thonormal bases for Cd . Alice and Bob can locally perform
unitaries UA′ : |ei〉 �→ |i〉 and UB′ : | fi〉 �→ |i〉, respectively,
prior to their measurement, where |0〉, . . . , |d − 1〉 is the
computational basis for Cd . This operation does not change
their probability of winning and, therefore, we can assume
without loss of generality that

(E3)

where L :=∑i∈[d]

√
λi|i〉〈i| is the matrix whose vectorization

is |�〉A′B′ . We then have

tr[|�〉〈�|Mx(a) ⊗ Nx(b)] (E4)

= 〈�|(Mx(a) ⊗ Nx(b))|�〉 (E5)

= (E6)

= (E7)

= tr[Nx(b)TLMx(a)L] (E8)

= tr[
√

LNx(b)T
√

L
√

LMx(a)
√

L], (E9)

where we used the cyclic property of trace and the “transpose
trick” or “sliding” in graphical notation. Using Eq. (E9) and
PXAB = PXPA|XPB|X, we can re-rewrite the probability of win-
ning as∑

x∈X ,a∈A ,b∈B

PXAB(x, a, b)tr[
√

LNx(b)T
√

L
√

LMx(a)
√

L]

=
∑
x∈X

PX(x) × tr

[√
L

(∑
b∈B

PB|X(b|x)Nx(b)T

)√
L

×
√

L

(∑
a∈A

PA|X(a|x)Mx(a)

)√
L

]
. (E10)

Defining Qx :=∑a∈A PA|X(a|x)Mx(a) and Rx :=∑
b∈B PB|X(b|x)Nx(b)∗, the winning probability is∑

x∈X

PX(x)tr[
√

LR†
x

√
L
√

LQx

√
L]. (E11)

The set V = {F : X → L(Cd )} is a vector space and

〈F, G〉
:=
∑
x∈X

PX(x)tr[
√

LF (x)†
√

L
√

LG(x)
√

L], ∀ F, G ∈ V

(E12)
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defines an inner product on V . Setting F (x) := Rx and
G(x) := Qx, the probability of winning the game for distribu-
tion PXAB = PXPA|XPB|X by using strategies N and M is 〈F, G〉.
Note that 〈F, F 〉 and 〈G, G〉 are the winning probabilities for
quantum strategies (σA′B′ , M, M∗) and (σA′B′ , N∗, N ), respec-

tively. By Cauchy-Schwarz inequality, we have |〈F, G〉| �
|〈F, F 〉| or |〈F, G〉| � |〈G, G〉|. Without loss of generality,
assume that |〈F, G〉| � |〈F, F 〉|. Then, the quantum strategy
(σA′B′ , M, M∗) performs at least as well as an optimal strategy
(σA′B′ , M, N ), and satisfies the desired condition.

[1] C. W. Helstrom, J. Stat. Phys. 1, 231 (1969).
[2] G. Jaeger and A. Shimony, Phys. Lett. A 197, 83 (1995).
[3] J. Bae and L.-C. Kwek, J. Phys. A: Math. Theor. 48, 083001

(2015).
[4] V. Scarani, A. Acín, G. Ribordy, and N. Gisin, Phys. Rev. Lett.

92, 057901 (2004).
[5] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek,

N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301
(2009).

[6] S. Satyajit, K. Srinivasan, B. K. Behera, and P. K. Panigrahi,
Quantum Inf. Proc. 17, 212 (2018).

[7] R. Konig, R. Renner, and C. Schaffner, IEEE Trans. Inf. Theory
55, 4337 (2009).

[8] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Rev. Mod. Phys. 86, 419 (2014).

[9] E. Chitambar, D. Leung, L. Mančinska, M. Ozols, and A.
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