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Kochen–Specker contextuality is a fundamental feature of quantum mechanics and a crucial resource for quan-
tum computational advantage and reduction of communication complexity. Its presence is witnessed in empirical
data by the violation of noncontextuality inequalities. However, all known noncontextuality inequalities corre-
sponding to facets of noncontextual polytopes are either Bell inequalities or refer to cyclic or state-independent
contextuality scenarios. We introduce a general method for lifting noncontextuality inequalities, deriving facets
of noncontextual polytopes for more complex scenarios from known facets of simpler subscenarios. Concretely,
starting from an arbitrary scenario, the addition of a new measurement or a new outcome preserves the facet-
defining nature of any noncontextuality inequality. This extends the results of Pironio [J. Math. Phys. 46, 062112
(2005)] from Bell nonlocality scenarios to contextuality scenarios, unifying liftings of Bell and noncontextuality
inequalities. Our method produces facet-defining noncontextuality inequalities in all scenarios with contextual
correlations, and we present examples of facet-defining noncontextuality inequalities for scenarios where no
examples were known. Our results shed light on the structure of noncontextuality polytopes and the relationship
between such polytopes across different scenarios.
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I. INTRODUCTION

A. Motivation

Kochen–Specker (KS) contextuality [1,2], i.e., the im-
possibility of explaining with a single global probability
distribution the marginal probability distributions produced
by either ideal measurements of compatible observables [3,4]
or by measurements on spatially separated systems [5,6], is a
characteristic signature of quantum mechanics. More recently,
it has been shown that contextuality is a crucial resource for
universality in some models of quantum computation [7,8],
non-oracular quantum computational advantage [9], quantum
communication complexity advantage [10], and secure com-
munication [11,12].

Contextuality is typically witnessed by the violation of
linear constraints called noncontextuality (NC) inequalities.
Indeed, the set of noncontextual correlations for a given mea-
surement scenario forms a convex polytope. A minimal set
of conditions for deciding whether measurement statistics are
contextual is provided by the set of inequalities that support
its facets. However, all known facet-defining NC inequalities
are either for Bell scenarios [6] or refer to cyclic [3] or state-
independent [4,13,14] contextuality scenarios.

Moreover, characterizing all the facet-defining inequalities
of such polytopes is a notoriously hard problem (NP-complete
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[15]) to solve in general. As such, there are few fully charac-
terized scenarios, for which all facet-defining NC inequalities
are known: non-Bell scenarios include two-outcome k-cycle
(k � 5) scenarios [16], Bell scenarios include the (2,2,2)
Clauser–Horne–Shimony–Holt (CHSH) scenario [6], and
various classes generalizing it such as (2, m, 2) [17,18],
(n, 2, 2) [19], and (2, 2, k) [20] scenarios, where (n, m, k)
stands for n parties, each with m measurement settings, each
with k possible outcomes. Furthermore, there are many Bell
scenarios for which a partial characterization of their Bell
inequalities has been carried out.

Despite the demoralizing hardness of characterizing arbi-
trary scenarios, some nontrivial work has been done linking
simpler Bell scenarios with more complex ones. In Ref. [21],
Pironio proposed a method to derive (some of the) facet-
defining Bell inequalities of complex Bell polytopes starting
from known inequalities of simpler Bell polytopes. It em-
ployed the idea of lifting, a commonly used technique in
convex polyhedral theory to derive facet-defining inequalities
of a polytope in Rn from facet-defining inequalities of a re-
lated polytope in Rm where m < n. The upshot is that once
the facets of a simpler polytope have been fully or partially
identified, one need not start from scratch when searching
for the facets of a more complex polytope. One may instead
concentrate efforts on finding the facet-defining inequalities
that are absent in or do not arise from simpler scenarios.

Aiming to foster facet characterization for general Bell
scenarios, Pironio showed that any facet-defining inequal-
ity of an arbitrary Bell polytope can be lifted to one or
more facet-defining inequalities of any more complex Bell
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polytope, where by “more complex” we mean a Bell scenario
with more parties, more local measurements for a party, or
more outcomes for a measurement (or a combination of all
three) than the original scenario. Building on this work, in
Ref. [22] Pironio characterized Bell scenarios whose only
facets are given by liftings of the CHSH inequality. These
include, e.g., the bipartite scenarios where one party has a
binary choice of dichotomic measurements, irrespective of the
number of measurement settings and outcomes for the other
party.

Non-Bell-type contextuality scenarios, on the other hand,
have not received as much attention in terms of facet charac-
terization. This work aims to address this gap.

B. Contributions

We introduce a method for producing facet-defining NC
inequalities in arbitrary KS contextuality scenarios. This is
based on—and strictly extends—the lifting techniques used
by Pironio [21] for Bell scenarios. The method allows us
to identify facet-defining NC inequalities for all scenarios
which admit contextual correlations and thus provides a key
to explore an infinity of as-yet unexplored scenarios. This is
ensured by Vorob’ev’s theorem [23], which guarantees that
any contextuality-witnessing scenario contains an induced
k-cycle subscenario (for some k � 4), and by the complete
characterization of the noncontextual polytopes for all such
cycle scenarios [16].

We now give a concise, high-level summary of our main
results, bearing in mind that the concepts involved will only
be properly introduced in later sections. A scenario S can
be extended to a more complex scenario T by adding more
measurements and/or more outcomes. We focus on one such
step at a time: either adding one measurement or adding one
outcome for an already existing measurement. An arbitrary
extension can be seen as a sequence of such single-step ex-
tensions. We fix an initial facet-defining NC inequality for
S which we aim to lift to (one or more) facet-defining NC
inequalities for T. We achieve this in both situations, but the
specifics differ somewhat.

Measurement lifting. When T is obtained from S by ad-
joining a new measurement A, the method of lifting depends
both on the compatibility relations between A and the pre-
existing measurements and on the facet-defining inequality
being lifted, namely, on the set of measurements that effec-
tively contribute to that inequality. We distinguish two cases:

I. If A is incompatible with some measurement that con-
tributes to the initial inequality, then the inequality lifts
unchanged to a facet-defining inequality for the scenario
T. The new measurement A is traced out and does not
effectively contribute to the lifted inequality, thus it need
not be performed for testing the inequality.

II. If A is compatible with all the measurements that con-
tribute to the initial inequality, then the inequality lifts
to a facet-defining inequality of T for each outcome ak

of A. Each such lifted inequality can be tested by first
measuring A, postselecting on obtaining the outcome ak ,
and then testing the initial inequality.

Outcome lifting. When T is obtained from S by adding
a new outcome a0 for an already existing measurement A,
the original inequality lifts to a facet-defining inequality on
T for each choice of (pre-existing) outcome ak �= a0 of A.
The choice indicates the outcome ak of A with which a0 is
to be “clubbed together.” When testing the inequality, any
occurrence of the new outcome a0 for A is treated as if it were
an ak in the original scenario. An exception is that the initial
inequality cannot itself be the result of case II measurement
lifting with the same choice of outcome ak : intuitively, that
would entail postselecting on two different outcomes for A.

C. Structure

In Sec. II, we introduce all the definitions required in
the work. The first three sections present the framework for
studying contextuality: measurement scenarios (Sec. II A),
correlations (Sec. II B), and the noncontextual polytope
(Sec. II C). Section II D contains concepts of polytope theory.

In Sec. III, we give an informal overview of our lifting tech-
niques. Section III A illustrates the gist of our liftings via some
trivial but visualizable polytopes. Section III B compares our
work with Pironio’s, describing the shift in perspective re-
quired for our extension of his lifting methods from Bell to
NC inequalities.

In Sec. IV, we formally present our results. After fixing
notation in Sec. IV A, Sec. IV B briefly outlines the logical
structure common to the various lifting proofs presented.
Then, Secs. IV C and IV D describe (and prove) in detail
our methods for measurement lifting and outcome lifting,
respectively.

In Sec. V, we employ our results to obtain facet-defining
NC inequalities for scenarios for which no such inequalities
were known. Section V A applies sequential measurement
lifting to the CHSH inequality to obtain facet-defining NC
inequalities for the two-outcome antiheptagon scenario C̄7

(the complement of the seven-cycle), while Sec. V B applies
sequential outcome lifting to the Klyachko–Can–Binicioğlu–
Shumovsky (KCBS) inequality to obtain facet-defining NC
inequalities for the three-outcome five-cycle scenario C5, the
simplest non-Bell cyclic scenario with three outcomes per
measurement. Section V C wraps up with general remarks
concerning such applications.

In Sec. VI, we conclude and suggest some directions for
future research.

II. CONCEPTS

In this section, we introduce the necessary background,
including the setup to discuss contextuality and elements of
polytope theory.

A. Measurement scenarios

Abstractly, a measurement scenario (a.k.a. contextuality
scenario or simply scenario) S is given by a finite set XS of
measurements, a symmetric reflexive relation on XS indicat-
ing compatibility, and a finite set OS,A of outcomes for each
measurement A ∈ XS. We think of the set XS equipped with
the compatibility relation as a graph, known as the compati-
bility graph of the scenario. A measurement context is a clique
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in the compatibility graph, i.e., a set of pairwise-compatible
measurements. We write CS = {C1, . . . ,Cn} for the set of max-
imal contexts, fixing an enumeration. By maximal we mean
that for all Ci and Cj in CS, Ci ⊆ Cj implies Ci = Cj . We omit
the subscript S whenever discussing a single scenario, as in
the remainder of this section.

A Bell scenario is a scenario in which measurements are
assigned to parties, and where any two measurements are
compatible if and only if they belong to different parties. So,
the compatibility graph is a complete N-partite graph where N
is the number of parties, and the maximal contexts correspond
precisely to a choice of one measurement per party. This is the
setting appropriate to study Bell nonlocality.

In a quantum-mechanical realization of a scenario, mea-
surements are taken to be quantum observables and compat-
ibility has the usual meaning of joint measurability. When
discussing KS contextuality, measurements are assumed to be
ideal, i.e., yielding the same outcome when repeated and not
disturbing any compatible observable. Therefore, in quantum
theory, they are represented as PVMs and compatibility cor-
responds to commutativity of the corresponding operators.

In a Bell scenario, one does not typically assume that the
measurements must be ideal, so that in quantum theory they
could be represented as POVMs. On the other hand, each
party’s measurements must be local observables acting on
a part of the system that is spatially separated from all the
others; mathematically, on a factor of a tensor product Hilbert
space. It turns out, however, that all quantum-mechanical
correlations in Bell scenarios are achievable by ideal measure-
ments. Consequently, not only do the notions of classicality
agree, but also the set of quantum correlations for a Bell
scenario (interpreted as a nonlocality scenario) is contained
in the set of quantum correlations for the corresponding
contextuality scenario, being identical when restricting to
finite-dimensional quantum systems. This observation justi-
fies regarding nonlocality as a special case of contextuality
[24–26]. It has proved very useful in understanding the prin-
ciples that shape quantum Bell nonlocal correlations [27,28].

B. Correlations

A correlation (a.k.a. empirical model or behavior) on a
scenario S collects specific outcome statistics for that sce-
nario. It is a family comprising a probability distribution
on the joint outcomes for each maximal context in C. For
each Ci, we fix an enumeration of the set of joint outcomes
OCi = ∏

A∈Ci
OA = {s1

i , s2
i , . . . , smi

i }. A correlation can then
be represented as a vector

p = [
p
(
s1

1

)
, . . . , p

(
sm1

1

)
, . . . , p

(
s1

n

)
, . . . , p

(
smn

n

)]
,

where the component p(s j
i ), often written more explicitly as

p(s j
i | Ci ), represents the probability of observing the jth joint

outcome s j
i upon jointly performing the measurements of the

ith context Ci. We have p ∈ Rd , where d = ∑
Ci∈C |OCi | is the

dimension of the vector space wherein all the correlations on
the given scenario live.

The fact that they determine a probability distribution pi

over each maximal context Ci means that the components
must all be non-negative, i.e., p(s j

i ) � 0 for all i, j, and in

addition satisfy normalization for each context Ci,
mi∑
j=1

p
(
s j

i

) = 1.

Moreover, we assume that the marginal probability dis-
tributions on the outcomes of each observable (or set of
observables) is independent of the context, i.e., of what other
measurements are performed together. This condition is called
no-disturbance—or, in Bell scenarios, no-signaling—and it
prevents using the statistics for achieving communication
between observers that are performing compatible measure-
ments. Correlations obtainable in quantum mechanics, in the
ways briefly outlined above, always satisfy this condition.
More precisely, the no-disturbance condition can be stated as
follows: for any pair of maximal contexts Ci and Ci′ , the corre-
sponding distributions pi and pi′ determine the same marginal
distribution over the intersection Ci ∩ Ci′ , i.e. for each (partial)
joint outcome t ∈ OCi∩Ci′ , it holds that∑

j∈Ei (t )

p
(
s j

i

) =
∑

j′∈Ei′ (t )

p
(
s j′

i′
)
, (1)

where the index j on the left runs over the set
Ei(t ) = { j | s j

i |Ci∩Ci′ = t} indexing those joint out-
comes in OCi that extend t , and analogously
for j′.

One may think of either side of Eq. (1) as determining the
probability p(t ) of obtaining outcome t in the partial context
Ci ∩ Ci′ ; no-disturbance guarantees it is uniquely well defined.
Notice that the no-disturbance assumption justifies consider-
ing only the maximal contexts in C.

C. The noncontextual polytope

We are interested in characterizing the set of correlations
that admit a classical, i.e., noncontextual, explanation.

A noncontextual deterministic assignment is a joint as-
signment of outcomes to all the measurements in a scenario,
λ ∈ OX = ∏

A∈X OA, which one may think of as a hidden
variable. It determines a deterministic correlation

vλ = [
vλ

(
s1

1

)
, . . . , vλ

(
sm1

1

)
, . . . , vλ

(
s1

n

)
, . . . , vλ

(
smn

n

)]
,

where vλ(s j
i ) ∈ {0, 1} indicates whether λ assigns the joint

outcome s j
i to the context Ci,

vλ

(
s j

i

) =
{

1 if λ|Ci = s j
i

0 otherwise.

Note that over each context Ci such a vector vλ has precisely
one component valued 1 and the remaining valued 0.

A correlation p is said to be noncontextual (NC) if it can
be described as a convex combination of such deterministic
correlations, i.e., if

p =
∑

λ∈OX

αλvλ (2)

for some αλ � 0 with
∑

λ αλ = 1. This means that each com-
ponent satisfies

p
(
s j

i

) =
∑

λ

αλvλ

(
s j

i

)
.
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One may think of the coefficients αλ as defining a prob-
ability distribution on the hidden-variable space of global
assignments OX .

Equation (2) means that the set of NC correlations is the
convex hull of a finite number of vectors {vλ}λ∈OX . It thus
forms a convex polytope in Rd , here given in terms of its
V-representation; see Sec. II D for more details on convex
polytopes. Any convex polytope can equally be described as
the intersection of a finite number of half-spaces, given by
linear inequalities; this is called an H-representation of the
polytope. Each valid inequality for the noncontextual polytope
of a given scenario is known as a noncontextuality inequality
for that scenario, marking a boundary between the noncon-
textual and contextual regions. The violation of any such
inequality [2–4] by a correlation witnesses contextuality, the
nonexistence of a global probability distribution (on outcome
assignments for all measurements in X ) whose marginals
reproduce the given correlation.

A minimal H-representation is given by the facet-defining
inequalities; see Sec. II D below for details. Although for
restricted classes of polytopes, such as simplicial polytopes,
there are known polynomial-time algorithms for facet enu-
meration (the problem of computing the H-representation
given the V-representation) [29–31], characterizing all the
facets of the noncontextuality polytope for an arbitrary sce-
nario is a notoriously hard problem to solve (NP complete
[15]).

Given a measurement scenario, let LND denote the sub-
set of Rd consisting of all correlation vectors that satisfy
no-disturbance. Similarly, write LQ and LNC for the sets of
quantum correlations and of noncontextual correlations, re-
spectively. Both LND and LNC are convex polytopes, whereas
LQ is also convex but in general not a polytope. There is a
sequence of inclusions

LNC ⊆ LQ ⊆ LND,

and moreover these inclusions are strict for any nontrivial
scenario. However, it holds that the affine dimension of all
three sets is the same,

dim (LNC) = dim(LQ) = dim (LND).

This fact can be interpreted as stating that quasiprobability
distributions (which are normalized but may take negative
values) on deterministic noncontextual assignments can ac-
count for any nondisturbing correlation [25]. Along with
normalization, the no-disturbance condition imposes linear
equality constraints on the components of a correlation
vector, rendering LND (and thus also LNC) not full dimen-
sional, i.e., dim(LND) < d . In general, such linear constraints
must be accounted for in the minimal H-representation of
any non-full-dimensional polytope, as they introduce a de-
gree of nonuniqueness to the form of the facet-defining
inequalities.

In this work, our focus is on characterizing the polytope
LNC of noncontextual correlations for arbitrary scenarios. To
simplify the presentation, given a scenario S, we denote its
noncontextual polytope by S (analogously, T and T ).

D. Convex polytopes

We recall some basic definitions of polytope theory that
will be useful later on. For more details, we refer the reader
to Ref. [32]. For brevity, in the context of this paper, the term
polytope always means convex polytope.

An affine combination of a set of points p1, . . . , pk ∈ Rd

is a linear combination whose coefficients add up to 1, i.e.,∑k
i=1 αi pi for some αi ∈ R with

∑
i αi = 1. A convex combi-

nation is an affine combination with the additional condition
that all coefficients be non-negative, i.e., αi � 0. The affine
span (convex hull) of a set of points is the set of all their affine
(convex) combinations.

A set of points p0, . . . , pk ∈ Rd is affinely independent
when

∑k
i=0 αi pi = 0 with αi ∈ R satisfying

∑
i αi = 0 im-

plies that αi = 0 for all i. This is equivalent to the vectors
p1 − p0, . . . , pk − p0 being linearly independent. It is also
equivalent to saying that no element of the set is an affine
combination of the others.

A set of k + 1 affinely independent points spans a set
of dimension k. More generally, the affine span of a set of
points has dimension k if and only if the maximum number of
affinely independent points in that set is k + 1. The affine span
of any such k + 1 points equals the affine span of the whole
set, and those k + 1 points are called an affine basis for the
set. The dimension dim(S) of an arbitrary subset S of Rd is
defined to be the dimension of its affine span.

A convex polytope is a subset P ⊆ Rd that is a convex
hull of a finite set of points, its vertices. This set of vertices
constitutes the V-representation of the polytope.

A linear inequality on Rd is a predicate I (p) ≡ b · p � β

on a variable vector p ∈ Rd , determined by a vector b ∈ Rd of
coefficients and a bound β ∈ R. It defines a half-space of Rd :
{p ∈ Rd | I (p)} = {p ∈ Rd | b · p � β}. A linear inequality is
a valid inequality for a polytope P ⊆ Rd whenever P lies
entirely within the half-space described by it; that is, when

P ∩ {p ∈ Rd |b · p � β} = P.

Since any point in P can be written as a convex combination of
its vertices, it is sufficient to test an inequality on the vertices
to check for its validity.

Given a valid inequality b · x � β for a polytope P, the
set F = {p ∈ P | b · p = β} of points of P that saturate the
inequality is called the face of P supported by the inequality.
Each face of a convex polytope P is a convex polytope itself.
A face F is called proper when it is neither the empty face
nor the whole polytope itself, i.e., when F �= ∅ and F �= P.
Clearly, for a proper face F of P, 0 � dim(F ) < dim(P). The
minimal proper faces, of dimension 0, are the vertices of P.
A maximal proper face, of dimension dim(P) − 1, is called a
facet of P.

According to the Minkowski–Weyl theorem [32–34], a
convex polytope can equivalently be described as an in-
tersection of finitely many half-spaces. This defines an
H-representation of the polytope,

P =
⋂

i

{p ∈ Rd |b(i) · p � β (i)}.

The set of inequalities supporting the facets of P gives
a minimal complete description of the polytope as an
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H-representation. In fact, any valid inequality of P can be
derived from the facet-defining inequalities.

By the remarks above about the dimension of any subset
of Rd , the maximum number of affinely independent points
in a polytope P is dim(P) + 1. One can always draw such
dim(P) + 1 affinely independent points from the vertices of
P. Similarly, any face F of P contains dim(F ) + 1 affinely
independent vertices of P, which of course saturate the in-
equality supporting F . In particular, a facet contains a set
of dim(P) affinely independent vertices of P. This means
that one can always choose an affine basis of P comprising
dim(P) + 1 affinely independent vertices in such a way that
dim(P) of those vertices belong to a chosen facet F , and the
remaining vertex can be chosen arbitrarily among the vertices
not belonging to F . We make use of this fact repeatedly in our
proofs.

III. OVERVIEW OF LIFTING METHOD

Before diving into the detailed description of our results
and proofs in Sec. IV, we offer an accessible, intuitive sketch
of the main ingredients of our lifting method. Section III A
uses small—trivial yet visualizable—examples to convey the
flavor of the various forms of lifting. In Sec. III B, we discuss
how these extend Pironio’s method from Bell scenarios.

A. Visualizing lifting

A scenario S can be extended to a larger scenario T through
the addition of new measurements and/or outcomes. In each
case, S is a subscenario of T. It is natural to enquire whether
the knowledge of a facet-defining NC inequality for the sub-
scenario S gives us some information about facet-defining NC
inequalities for T. Lifting answers this question in the affir-
mative in that it is a method to transform each facet-defining
inequality of the noncontextual polytope S into one or more
facet-defining inequalities of the polytope T .

The noncontextual polytope for the simplest contextuality-
witnessing scenario (i.e., a scenario for which LNC �= LND)
is eight dimensional. This makes it impossible to visualize
lifting starting from this polytope. Nonetheless, there are some
simple visualizable NC polytopes—albeit for scenarios un-
able to witness contextuality—which aptly capture the idea of
lifting. We use these examples to provide some intuition for
the idea behind our lifting method. Despite being thoroughly
uninteresting from the point of view of contextuality, these
examples are indeed special cases of our lifting results which
“contain all the germs of generality.”

Measurement lifting. For measurement lifting, we consider
two cases, as outlined in Sec. I B.

Case I applies when the new measurement added to S is not
simultaneously compatible with all the measurements effec-
tively contributing to the facet-defining inequality being lifted,
i.e., it is incompatible with at least one such measurement;
see Sec. IV C for details including the meaning of “effectively
contributing.” We illustrate this case with an example that
serves as a proxy for all such situations.

Consider S the scenario with two dichotomic measure-
ments, A and B, that are incompatible with each other. Its
NC polytope S is two-dimensional (embedded in a four-

FIG. 1. Depiction of measurement lifting in simple scenarios
with dichotomic measurements. (a) Case I measurement lifting, from
the scenario S with two incompatible measurements to the scenario
T with three pairwise-incompatible measurements. The shaded line
and directional arrow on the left represent a facet-defining inequality
saturated by vertices v10 and v11, while the shaded plane and arrow
on the right represent the lifted inequality, saturated by all extensions
of v11 and v10 to T . (b) Case II measurement lifting, from the scenario
with a single measurement to the scenario with two compatible
measurements. The facet-defining inequality saturated only by v0,
depicted on the left, is lifted to a facet-defining inequality saturated
by both extensions of v0 (v00 and v01) plus one extension of v1 (v11),
depicted on the right.

dimensional ambient vector space) and is shown on the
left-hand side of Fig. 1(a). Its four vertices correspond to the
deterministic assignments—00, 01, 10, 11—to measurements
A and B, in that order. Observe that the fact that A and B
are incompatible induces an affine dependency among the
vertices of the polytope,

v00 − v01 + v11 − v10 = 0, (3)

which would not hold were A and B compatible; cf. the sim-
plex on the right-hand side of Fig. 1(b). This kind of affine
relation induced by incompatibility plays a crucial role in our
proofs; see, for example, Eq. (13).

Since S is a two-dimensional polytope, its facets are one
dimensional. One of its facet-defining inequalities is depicted
in the figure; it supports the facet containing the vertices v10

and v11.
Now consider extending S to T by introducing a new mea-

surement C incompatible with both A and B. The NC polytope
T is three dimensional (embedded in a six-dimensional am-
bient vector space) and is shown on the right-hand side of
Fig. 1(a). Notice that each outcome of C determines an ex-
tension of each deterministic assignment in S (hence, vertex
of S) to a deterministic assignment in T (vertex of T ); e.g.,
v010 and v011 in T are the two extensions of v01 in S. One can
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think of this as captured by a polytope projection from T to S
which “forgets” the outcome of C.

The polytope T has a facet with vertices v100, v101, v110,
and v111, whose supporting inequality is depicted on the right
of Fig. 1(a). These four vertices of T are precisely the ex-
tensions of the vertices v01 and v11 of S, which saturate the
initial inequality depicted on the left. This inequality shown
on the right of Fig. 1(a) is thus the lifting of the inequality
on the left. One can similarly obtain three other facet-defining
inequalities of T from the remaining three facets of S.

In general, case I measurement lifting maps a facet F of
S to the facet of T whose set of vertices is exactly the set of
all extensions of vertices in the original facet F . As we see
in Sec. IV C, the explicit form of the lifted inequality turns
out to be, in a sense, the same as that of the initial inequality,
since the outcome of the new measurement is ignored and thus
“traced out.”

Case II applies when the newly added measurement is
compatible with all the preexisting measurements that effec-
tively contribute to the facet-defining inequality being lifted.

To visualize lifting in this case, we take S to be the scenario
with a single dichotomic measurement, say A. Its NC polytope
S is a one-dimensional line segment or 1-simplex (embedded
in a two-dimensional ambient vector space), as shown on
the left-hand side of Fig. 1(b). It has only two facet-defining
inequalities. One of them, saturated only by the vertex v0, is
depicted in the figure.

We extend this scenario to T by adding a dichotomic mea-
surement B compatible with A. The resulting NC polytope T
is a three-dimensional tetrahedron or 3-simplex (embedded in
a four-dimensional ambient vector space), as shown on the
right-hand side of Fig. 1(b).

The facet-defining inequality depicted in the figure is one
of two possible liftings of the initial inequality on the left of
Fig. 1(b). It is saturated by the vertices v00, v01, and v11. The
first two are all the extensions of v0, the vertex that saturates
the initial inequality, while the third is one of the two possible
extensions of v1, the other, nonsaturating vertex of S. The
vertex of T corresponding to the other extension, v10, does not
saturate the inequality shown on the right of Fig. 1(b). How-
ever, a different lifting of the same initial inequality shown
on the left of Fig. 1(b) would support the facet containing the
vertices v00, v01, and v10.

In general, case II measurement lifting maps a facet F of
S to a facet of T whose set of vertices consists of: (i) every
possible extension of the vertices in the original facet F , and
(ii) every possible extension of the remaining vertices of S
(not in the original facet F ) except those that assign a chosen
fixed outcome to the new measurement (outcome 0 for B in
the example depicted above). Varying the choice of this fixed
outcome for the new measurement yields different liftings to
T of the same facet-defining inequality of S.

Notice that in both cases I and II above, the lifted inequality
is effectively testing the original one, i.e., it simply represents
a reexpression of the original inequality in the language of the
larger polytope T . Moreover, while in case I each facet of S
yields a single facet of T , in case II it yields one facet for each
possible outcome of the newly added measurement.

Outcome lifting. In the case of outcome lifting, we consider
extending a scenario S to T by adding an extra outcome

a0 to an existing measurement A. Here, unlike in the case
of measurement lifting, there is no (immediate) concept of
extension of assignments, and thus of vertices of S to vertices
of T . In fact, the vertices of S could be seen as a strict subset
of those of polytope T .

These vertices behave the same way with respect to an
outcome-lifted inequality in T as they do with respect to the
initial facet-defining inequality of S, either saturating both or
falling short by the same amount. However, there are more
vertices in the larger polytope T , namely, those that assign
the new outcome a0 to the measurement A. Each such vertex
behaves exactly as the vertex obtained by substituting ak for
the outcome of A (while leaving the rest of the assignment
intact), for some fixed choice of outcome ak of A already
present in the initial scenario S.

In other words, a facet F of S is lifted to a facet of T whose
set of vertices consists of the vertices in F plus the vertices
obtained from a vertex in F by replacing (the fixed) outcome
ak by a0 for the measurement A.

As for case II measurement lifting, there is an element of
choice involved. Indeed, for each choice of k, one obtains a
(possibly different) facet-defining inequality of T . There is
one exception, though: choosing k fails to yield a facet of T
when the initial facet of S is itself obtainable from a subsce-
nario of S via case II measurement lifting by fixing the choice
of outcome ak when adding measurement A; in other words,
when the facet-defining inequality being lifted is such that A is
compatible with all the measurements effectively contributing
to it and all its nonsaturating vertices assign outcome ak to A.

One may think of each such choice of k as determining a
polytope projection T → S which performs a coarse-graining
of the outcomes of A by clubbing together a0 and ak into
the same outcome. The lifted inequality then corresponds
to “tracing out” along this identification, much as in case I
measurement lifting. This means that the form of the lifted
inequality is such that it does not distinguish between the
vertices with ak and a0 as outcomes of A, while the remain-
ing vertices behave as they did with respect to the original
inequality. Indeed, in the new scenario, the lifted inequality is
still in effect testing the original inequality. That is why the
new outcome needs to be clubbed together with—and thus
made indistinguishable from—some pre-existing outcome, so
that the “effective” number of outcomes is kept the same.

B. Lifting: From Bell to Kochen–Specker

We now comment on the comparison with the work of
Pironio in Ref. [21] for the case of Bell scenarios, a source
of inspiration for the present work.

From an arbitrary contextuality scenario, the simplest
(single-step) extensions are of two types: (a) adding a new
measurement, and (b) adding a new outcome for an already
existing measurement. Lifting across Bell scenarios, as in
Ref. [21], means that the extended scenario must also be
a Bell scenario. In such extensions, type (a) can be further
divided into two subcases: adding a new party with a single
measurement setting, or adding a new measurement to an
already existing party. When adding a new party with a single
measurement, this new measurement is necessarily compati-
ble with all the preexisting measurements (as they belong to
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different parties). Hence, this situation is always captured by
case II measurement lifting (see Secs. I B and III A). On the
other hand, when adding a new measurement to an already
existing party, the new measurement is necessarily incompat-
ible with all other measurements of that same party. Thus, if
the initial Bell inequality being lifted effectively involves this
party, this situation falls within case I measurement lifting;
otherwise, it falls within case II.

On a more technical note, the following distinction is rel-
evant in establishing the Bell lifting results, and needs to
be revised for our generalization. When adding a new party,
the new measurement is appended to all previously existing
maximal contexts. By contrast, when adding a new mea-
surement to an already existing party, the previous maximal
contexts are preserved intact but new maximal contexts are
introduced, namely, those involving the newly added measure-
ment. When generalizing to arbitrary contextuality scenarios,
one no longer has a notion of parties. Consequently, this
neat separation is no longer possible, and we are forced to
consider situations in which a mix of new maximal contexts
and extensions of previous maximal contexts arises. This is
reflected in the general form taken by a correlation vector on
the extended scenario, shown in Eq. (4) ahead.

IV. LIFTING NONCONTEXTUALITY INEQUALITIES

We now move on to presenting our results in detail. After
fixing some notation in Sec. IV A, we sketch in Sec. IV B the
structure common to our proofs of measurement and outcome
lifting. We then delve into each of the forms of lifting in detail,
in Secs. IV C and IV D, respectively.

A. Notation

As before, when extending one scenario to another, the
initial scenario is always denoted by S and its extension by
T. The respective noncontextual polytopes are denoted by S
and T . The dimensions of these polytopes are denoted by
dS and dT , respectively. The newly added measurement (for
measurement lifting) or the existing measurement to which a
new outcome is added (for outcome lifting) is denoted by A.

We use the letter p to refer to a general vector in the space
of correlations for S, i.e., the ambient vector space of the
polytope S, and we similarly use q for T.

We reserve the letters u, v,w for vertices of S or T . Re-
call from Sec. II C that these vertices are of the form vλ

corresponding to global assignments λ of outcomes to all
measurements. To simplify the presentation, from now on we
often elide the distinction between a vertex and its underlying
assignment: e.g., we say that a vertex v assigns a value to a
measurement, and write v|C for the joint outcome assignment
over a context C determined by the vertex v (the restriction of
the underlying global assignment to the measurements in C).

Recall that in specifying correlations on a scenario we only
consider the maximal contexts, since statistics for their subsets
can be recovered by marginalization unambiguously due to
no-disturbance. We use the term partial context to refer to a
proper subset of a maximal context, whenever such emphasis
is required.

Non-full-dimensional convex polytopes satisfy nontrivial
affine equality constraints. In the case of NC polytopes, these
correspond to the no-disturbance and normalization condi-
tions. A valid inequality b · p � β for a polytope remains
valid if one adds to it any linear combination of the equality
constraints. In the case of NC polytopes, one can always
add a multiple of a normalization condition to rewrite any
NC inequality so that its lower bound is zero. Therefore,
without loss of generality, an arbitrary NC inequality will be
represented in the form b · p � 0. Moreover, at various points,
we make use of the freedom afforded by the (linear) no-
disturbance conditions to pick particularly convenient vectors
of coefficients.

We typically denote by BP an affine basis of interest for a
polytope P, whose elements are taken from the vertices of the
polytope. We make crucial use of the fact that dim(P) vertices
of BP can be chosen from any given facet. When lifting a
facet-defining inequality of S, we consider such an affine basis
BS = {ui}dS+1

i=1 . For slight convenience, we enumerate BS in
a way that lists dS saturating vertices of the inequality (i.e.,
vertices in its supported facet) as the first dS elements, with
the last element being the nonsaturating one.

B. Proof outline

Before burdening the reader with the mathematical details
of the proofs of our results, we outline the logical structure
underlying them. The proofs of measurement lifting and out-
come lifting follow a common script.

Let IT be the inequality claimed to be the lifting of inequal-
ity IS . To prove this claim we proceed as follows:

1. We pick an affine basis BS = {v1, . . . , vdS+1} of vertices
of S chosen so that its first dS points saturate the initial
inequality IS .

2. We use it to construct an over-complete affine basis
BT of vertices of T , partitioned as BT = ⋃

j Vj , where

each component Vj = {v( j)
1 , . . . , v

( j)
dS+1} consists of ds +

1 affinely independent vertices of T . Each v
( j)
i is built

from the corresponding vertex vi of BS . The specific
construction depends on the type of lifting under con-
sideration, but the common aspect is that v

( j)
i is an

“extension” of vi in that it is mapped to vi under the
appropriate polytope projection T → S.

3. By construction, the first dS vertices of each partition
component Vj saturate the inequality IT . Moreover, there
is (at least) one partition component Vk where the last
vertex does not saturate IT .

4. For all other partition components, i.e., for all j �= k,
either the last element v

( j)
dS+1 saturates the inequality IT ,

or one can affinely eliminate it from BT by expressing
it as an affine combination of the remaining vertices of
Vj and the vertices of Vk , essentially using Eq. (3). This
leaves only one remaining nonsaturating vertex within
BT , namely, v

(k)
dS+1, the last vertex in Vk .

5. This is enough to establish the claim. Since (the reduced)
BT affinely spans T , it contains a set of dT + 1 affinely
independent vertices. From the previous step, it has only
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one nonsaturating vertex. It must therefore contain a
set of dT affinely independent vertices that saturate IT ,
proving that this inequality is facet-defining.

C. Measurement lifting

We first consider lifting under measurement extensions.
Let S be extended to T by the addition of a new measurement
A. Write J ⊆ XS for the set of measurements in S that are com-
patible with A, i.e., the neighborhood of A in the compatibility
graph of T.

1. The extended ambient space

For any (not necessarily maximal) context, i.e., set of pair-
wise compatible measurements, U contained in J , the set
U ∪ {A} is a context of T. If U is maximal within J then
this results in a maximal context. Thus, A may contribute to
maximal contexts of T in two ways:

(1) create maximal contexts by being compatible with max-
imal contexts in CS: for each context maximal within
J that is also maximal within XS (i.e., belongs to CS),
appending A to it gives a (maximal) context in CT.

(2) create maximal contexts by being compatible with par-
tial contexts in S: for each context maximal within J
that is a partial context with respect to XS (i.e., does
not belong to CS), appending A to it gives a (maximal)
context in CT.

Let Cmc+A denote the set of all contexts in CT arising as in
item (1) above, where “mc” reminds us that these contexts are
extensions of maximal contexts of S. Likewise, write Cpc+A

for the set of contexts in CT arising as in item 2, where “pc”
indicates that they are extensions of partial contexts of S. No-
tice that the case covered by item 2 also implies the existence
of maximal contexts in CS that are not fully compatible with
A, and thus remain maximal contexts in CT. We write Cold for
the set of all such contexts. We can therefore write CT as a
disjoint union of three mutually exclusive sets:

CT = Cold ∪ Cmc+A ∪ Cpc+A.

This induces a direct sum decomposition of the vector space
of correlations for T, which is the ambient space of the poly-
tope T . An arbitrary vector q in this space can be written as

q = [qold, qmc+A, qpc+A], (4)

where qold represents the components indexed by joint out-
comes of contexts in Cold and likewise for qmc+A and qpc+A.

2. Effectively contributing measurements

We need to consider two different forms of measurement
lifting, depending on the (compatibility behavior of the) new
measurement and on the initial inequality being lifted. The
distinction hinges on the notion of an effectively contributing
measurement to an inequality, which we define by its negation.

Consider an inequality b · p � 0 over the space of corre-
lations for S. In short, a measurement M ∈ XS is said not
to contribute effectively to the inequality when the latter is
insensitive to the outcome of M, i.e., its left-hand side remains

invariant under any change of outcome for M, rendering this
measurement’s role irrelevant to the inequality.

More formally, recall from Sec. II C that the vertices of
S are deterministic noncontextual correlations vλ, determined
by global assignments λ of outcomes to all measurements in
XS. Write λ[M 
→ mk] for the assignment obtained from λ by
changing M’s outcome to mk ,

λ[M 
→ mk](B) =
{

mk if B = M
λ(B) otherwise.

The condition is then that for any λ and any outcome mk of
M, one has b · vλ = b · vλ[M 
→mk ].

In terms of the vector of coefficients b, this means that,
using the equality constraints (viz. no-disturbance), b can be
brought into a form that is symmetric under any change of
outcome for M, i.e., such that

b(mk s|M U ) = b(mj s|M U ) (5)

for all mk , mj outcomes of M, and all maximal contexts
{M} ∪ U and outcome assignments to the remaining measure-
ments s ∈ OU . With the coefficient vector brought to such a
symmetric form, one can unambiguously write b(s | U ) for
the unique coefficient in Eq. (5), without reference to the
measurement M. One could, in fact, effectively regard the
inequality as being defined over the subscenario that excludes
the measurement M.

We assume throughout that the starting inequality on S
has been put in such an effective form, eliminating all the
measurements not effectively contributing to it. Note that this
means that there is a single b(s | U ) whenever U is a partial
context of S that is maximal within the set of effectively
contributing measurements, even if U belongs to more than
one maximal context of S, when combined with different sets
of non-effectively-contributing measurements.

3. The form of the lifted inequalities

Let b · p � 0 be a facet-defining NC inequality for the sce-
nario S. What we aim, effectively, is to test this inequality in
the extended scenario T. This is the premise of lifting: choos-
ing a vector of coefficients b′ in such a way that the inequality
b′ · q � 0 over the space of correlations for T remains in
essence equivalent to b · p � 0, but also is a facet-defining NC
inequality for T. In other words, the lifted inequality b′ · q � 0
still effectively tests (reduced) statistics on the subscenario
S but given statistics for T. This requires tweaking with the
role of the added measurement A in the expression b′ · q by a
judicious choice of the coefficients b′.

To this end, we must consider two different constructions
of coefficient vectors built from b, which provide an appro-
priate answer in different circumstances. In summary (to be
expanded below):

I. The coefficient vector bI,tr(A),0 traces A out in the Cmc+A

components whereas it zeroes out each component in
Cpc+A, leaving Cold ones as they appear in the original
inequality.

II. The coefficient vector b0,ak ,ak enforces only the con-
ditional statistics in b′ · q: it fixes an outcome ak of A
within the contexts in Cmc+A ∪ Cpc+A (i.e., the contexts
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containing A), treating the corresponding components
like the original coefficient vector b, while it zeroes out
all components where the outcome of A is not equal to
ak , including all components in the Cold part.

The subscripts “I, tr(A), 0” and “0, ak, ak” above were cho-
sen to be suggestive of the action of the coefficient vector on
each of the three components of the space of correlations as
defined in Eq. (4) in comparison with that of the initial vector
of coefficients b: “I” for leaving the action unchanged from b,
“0” for picking coefficients equal to zero, “tr(A)” for tracing
out the outcomes of the new measurement A, and “ak” for
selecting on a chosen outcome ak for A.

Depending on the compatibility relations between the
newly added measurement A and the preexisting measure-
ments in XS, one of the above options gives a vector of
coefficients for a lifted inequality. We now explain when to
use which form and describe the constructions in more detail.
Bear in mind once again that, in each case, these will only give
one possible form for the inequality supporting the lifted facet:
since the noncontextual polytopes are not full-dimensional,
there is not a unique form (i.e., vector of coefficients) for the
inequality supporting each facet.

Case I is used to obtain a lifted inequality when the
measurement A is not compatible with all the measurements
effectively contributing to the initial inequality b · p � 0. In
this case, the lifted inequality takes the form

bI,tr(A),0 · q � 0. (6)

where we build from b the new vector of coefficients bI,tr(A),0

as follows:

(a) Over a context C in Cold, we pick the same coefficients
as in the initial inequality thus leaving b unchanged. For
each s ∈ OC ,

bI,tr(A),0(s | C) = b(s | C). (7)

(b) Over a context {A} � C in Cmc+A, we trace out mea-
surement A by assigning coefficients taken from b
irrespective of A’s outcome. For each s ∈ OC and a ∈
OA,

bI,tr(A),0(a s|AC) = b(s|C). (8)

(c) A context {A} � U in Cpc+A is ignored completely by
picking the coefficients to be zero. For each s ∈ OU and
a ∈ OA,

bI,tr(A),0(a s|AU ) = 0.

To better understand this construction, note that any
nondisturbing correlation q on T determines a correlation q|S
on the subscenario S by marginalization, forgetting the out-
come of A by summing over all the possibilities. Concretely,
given C ∈ CS, either it is in Cold and then q|S(s | C) = q(s | C),
or it is wholly compatible with A (so that {A} � C ∈ Cmc+A)
and then q|S(s | C) = ∑

a∈OA
q(a s | AC). The inequality de-

termined by bI,tr(A),0 effectively tests for the initial inequality
b · p � 0 over such marginal statistics. That is, for all nondis-
turbing correlations q on T we have that

bI,tr(A),0 · q = b · q|S. (9)

Later, within the proof of Theorem 3, it will become clear
why this construction (case I) is not applicable when A is com-
patible with all the “effectively contributing measurements”.
Despite still yielding a valid inequality, it does not yield a
facet-defining one. For those situations, we need to consider
the other case that we now describe.

Case II is used to obtain a lifted inequality whenever A is
compatible with all the effectively contributing measurements
for the initial inequality b · p � 0. Recall that we assume that
the vector b is in the effective form described in Sec. IV C 2.
The explicit form of the lifted inequality is then

b0,ak ,ak · q � 0, (10)

where we build from b the new vector of coefficients b0,ak ,ak

as follows:

(a) A context C in Cold is ignored. For each s ∈ OC ,

b0,ak ,ak (s | C) = 0. (11)

(b) Over a context {A} � U in Cpc+A ∪ Cmc+A, we pick the
coefficient from the initial b when the outcome for A is
the fixed ak and ignore the event otherwise. For each s ∈
OU and a ∈ OA,

b0,ak ,ak (a s | AU ) =
{

b(s | U ) if a = ak

0 if a �= ak , (12)

where b(s | U ) is well defined due to b being in effective
form: see Eq. (5) and subsequent explanation, noting that
any extension of the context U in S consists solely of
measurements incompatible with A, which are therefore
not effectively contributing to the inequality b · p � 0.

4. Recovering the initial inequality

Since we provide an “if and only if” condition in the mea-
surement lifting theorem (Theorem 3), it is also worth noticing
that the constructions of the new (lifted) inequalities over T
can be inverted, i.e., one can recover the initial inequality
given inequalities (6) and (10). In going back from scenario
T to scenario S, the contexts in Cold remain, those in Cpc+A

are eliminated, and the measurement A is dropped from each
context in Cmc+A, yielding the set of contexts we denote by
Cmc.

Given the coefficient vector bI,tr(A),0, one can easily re-
cover the vector b: for contexts in Cold, the components are
unchanged; for a context C ∈ Cmc, the components can be
read off from the components of bI,tr(A),0 on the corresponding
context C ∪ {A} ∈ Cmc+A, since b(s | C) = bI,tr(A),0(a s | AC)
for any a ∈ OA.

The second case is a little more subtle. Given the vector
b0,ak ,ak , one may not necessarily recover the original coeffi-
cient vector b, but one can recover some b′ that determines
an equivalent inequality. Note that b0,ak ,ak has nonzero co-
efficients only in the components corresponding to Cmc+A ∪
Cpc+A For each context U ∪ {A} ∈ Cmc+A ∪ Cpc+A, pick some
maximal context CU in CS that extends U , and let RU = CU \
U be the set of added measurements. Note that if U ∪ {A}
comes from Cmc+A, then U is already itself maximal in S,
being in Cmc, and so RU = ∅; if it comes from Cpc+A, then
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U is a partial context of S which may thus be extended to
some maximal context in Cold (in this case the choice of CU

is not necessarily unique). Now, for any s ∈ OU and r ∈ ORU ,
set b′(s r | U RU ) = b0,ak ,ak (ak s | AU ). The components in b′
corresponding to contexts not of the form CU for any U are
set to zero. Note that the assignment U 
→ CU is injective:
if U1,U2 are both included in the same maximal context
and Ui ∪ {A} ∈ Cpc+A, then U1 ∪ U2 ∪ {A} is itself a context
including both Ui ∪ {A}, which forces U1 = U2 by maximality
of the contexts in Cpc+A.

5. Validity of the lifted inequalities

Before proving our main results regarding their facet-
defining nature, we prove the validity of these newly defined
inequalities for the polytope T .

Recall from Sec. II D that it is sufficient to test the inequal-
ity on vertices of T . Over each maximal context C, a vertex v

has precisely one nonzero component, equal to 1, that of the
joint outcome v|C ∈ OC . Thus, evaluating an inequality on a
vertex amounts to adding up the coefficients corresponding to
those components, a single surviving one for each maximal
context.

Moreover, note that any vertex v of T determines a vertex u
of S by restricting the global assignment to the measurements
in XS.

Proposition 1. Let the scenario T be an extension of the
scenario S by the addition of a single measurement A. Then
b · p � 0 is a valid inequality for S if and only if bI,tr(A),0 · q �
0 is a valid inequality for T .

Proof. This essentially amounts to Eq. (9), but we now
show it explicitly in terms of the vertices.

Let v be a vertex of T , and u = v|S be the corresponding
vertex of S obtained by restriction of the global outcome
assignment. The nonzero coefficients in bI,tr(A),0 are all in
components relative to contexts in Cold ∪ Cmc+A. When eval-
uating bI,tr(A),0 · v, we have the following: over a context
C ∈ Cold the surviving coefficient corresponds to v|C = u|C ,
being given as b(u|C | C) by Eq. (7); over a context {A} ∪ C ∈
Cmc+A, the surviving coefficient corresponds to v|{A} ∪ C,
being given as bI,tr(A),0(v|{A}∪C | AC) = b(u|C | C) by Eq. (8).

Since each context C ∈ CS is either in Cold or extends to one
in Cmc+A, the above cases exhaust all the contexts of S and we
obtain that bI,tr(A),0 · v = b · u, an instance of Eq. (9).

The forward direction of the result then follows from the
validity of the initial inequality for S, which implies b · u � 0.
Conversely, any vertex u of S can be extended to some vertex
v of T by picking any outcome for A. Validity of the final
inequality gives bI,tr(A),0 · v � 0, hence the same instance of
Eq. (9) implies b · u � 0. �

Proposition 2. Let the scenario T be an extension of the
scenario S by the addition of a single measurement A, and
let b · p � 0 be an inequality over S (written in effective
form). If A is compatible with all the measurements effectively
contributing to the inequality b · p � 0, then b · p � 0 is a
valid inequality for S if and only if b0,ak ,ak · q � 0 is a valid
inequality for T .

Proof. Let v be a vertex of T , and u = v|S be the cor-
responding restriction to a vertex of S. The only nonzero

coefficients in b0,ak ,ak correspond to contexts in Cmc+A ∪
Cpc+A.

If the vertex v assigns outcome ak to A, then the
surviving coefficient at each maximal context {A} ∪ U is
b0,ak ,ak (v|{A}∪U | AU ) = b(u|U | U ) by Eq. (12). We thus ob-
tain b0,ak ,ak · v = b · u, and so b0,ak ,ak · v � 0 by validity of the
initial inequality for S.

If v assigns any other outcome to A, then all the surviving
coefficients are zero by Eqs. (11) and (12). Thus, the vertex
saturates the inequality, b0,ak ,ak · v = 0.

Conversely, given a vertex u of S, it can be extended to
a vertex v of T by assigning outcome ak to A, and b · u �
0 follows from b0,ak ,ak · v = b · u and validity of the final
inequality. �

6. Facetness of the lifted inequalities

We now move to the core of the measurement lifting result:
to show that the constructed inequalities for T are facet-
defining. For both cases, the proof follows the general plan
outlined in Sec. IV B.

Given the initial inequality b · p � 0 which supports a facet
of S, we pick

BS = {v1, . . . , vdS+1}
an affine basis for S made up of vertices, chosen so that
the first dS vertices saturate the inequality. Any vertex of S
extends to a vertex of T by fixing an outcome for the new
measurement A. For each outcome ak ∈ OA, the correspond-
ing extension of vertex vi is denoted v

(k)
i . Thus, the set

Vk = {
v

(k)
1 , . . . , v

(k)
dS+1

}
contains the vertices of T that are extensions of those in BS by
fixing the outcome ak for A.

There is a one-to-one correspondence between vertices of
S and vertices of T that have a fixed outcome ak for A.
This correspondence preserves and reflects affine dependen-
cies. From the fact that BS is an affine basis for S, we can
therefore conclude that each set Vk is affinely independent
and is, moreover, an affine basis for all the vertices of T
that assign outcome ak to A. That is, any vertex that assigns
outcome ak to A is an affine combination of the vertices in
Vk . Consequently, the union BT = ⋃

k Vk affinely spans the
polytope T . In other words, it is an overcomplete affine basis
for T , where ‘overcomplete’ indicates that its elements are not
necessarily affinely independent, and so some of them could
be discarded with the remaining set still affinely spanning T .

Theorem 3. Let the scenario T be an extension of the sce-
nario S by the addition of a single measurement A, and let
b · p � 0 be an inequality over S (written in effective form).
Then,

I. if A is incompatible with some measurement that ef-
fectively contributes to the inequality, then b · p � 0
supports a facet of S if and only if bI,tr(A),0 · q � 0 sup-
ports a facet of T .

II. if A is compatible with all the measurements that effec-
tively contribute to the inequality, then for any outcome
ak of A, b · p � 0 supports a facet of S if and only if
b0,ak ,ak · q � 0 supports a facet of T .
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Proof. We establish each case separately.
Case I. First, assume that b · p � 0 supports a facet of

S. We have to show that the inequality bI,tr(A),0 · q � 0 is
saturated by dT affinely independent vertices and no more.
Already from the proof of Proposition 1, or even from Eq. (9),
we know that bI,tr(A),0 · v

(k)
i = b · vi for all vi ∈ BS and ak ∈

OA. Hence, in each Vk , all but the last element saturate the
inequality bI,tr(A),0 · q � 0.

Fixing some k, we show next that for all l �= k, the
(nonsaturating) vertex v

(l )
dS+1 can be written as an affine com-

bination of Vl ∪ Vk \ {v(l )
dS+1}. This implies that the vertex can

be dropped from BT without affecting its affine span, i.e.,
the fact that it spans the whole polytope T . Doing so for all
l �= k, the only nonsaturating point that remains within BT is
v

(k)
dS+1. Consequently, among any set of dT + 1 affinely inde-

pendent points in (the reduced) BT , dT of them must saturate
the inequality bI,tr(A),0 · q � 0, implying that the inequality is
facet-defining for T .

In establishing the above-mentioned affine elimination, the
key idea is to use an affine relation akin to Eq. (3) with re-
spect to the measurement A and some effectively contributing
measurement incompatible with A, and then expanding on the
affine bases Vk and Vl . We now see this in detail.

From the assumption, there is a measurement M that effec-
tively contributes to the initial inequality and is not compatible
with A. Let w(k) be a vertex of T obtained from v

(k)
dS+1 by

changing the outcome of the measurement M to something
other than what it is for v

(k)
dS+1, keeping the rest of the measure-

ment outcomes the same. Likewise, perform the same change
of outcome of M to obtain w(l ) from v

(l )
dS+1. Considering the

four vectors v
(k)
dS+1,w

(k), v
(l )
dS+1,w

(l ), we establish that the fol-
lowing equation holds:

w(k) − v
(k)
dS+1 = w(l ) − v

(l )
dS+1. (13)

This has the same form as Eq. (3), and holds for much the
same reason, deriving from the incompatibility between the
measurements M and A. It follows from the way w(k) and w(l )

are constructed from v
(k)
dS+1 and v

(l )
dS+1, respectively: changing

the outcome of M means that no change is made to the com-
ponents corresponding to contexts in Cmc+A ∪ Cpc+A, since M
cannot belong to any such context, incompatible as it is with
A, i.e.,

v
(k)
dS+1(mc+A, pc+A) = w(k)(mc+A, pc+A), (14)

v
(l )
dS+1(mc+A, pc+A) = w(l )(mc+A, pc+A). (15)

Moreover, the fact that v
(k)
dS+1 and v

(l )
dS+1 only differ on the

outcome they assign to A means that

v
(k)
dS+1(old) = v

(l )
dS+1(old), (16)

and for the same reason

w(k)(old) = w(l )(old). (17)

Equation (13) can then be justified as follows: the difference
between the two terms on the left-hand side cancels out the
components over Cmc+A ∪ Cpc+A due to Eq. (14), and similarly
on the right-hand side due to Eq. (15); for the components

over Cold, the equation follows by subtracting Eq. (16) from
Eq. (17).

Now, due to the symmetry between Vk and Vl and the
symmetric construction of w(k) and w(l ), we can expand these
vectors in the respective affine basis (Vk and Vl ) with the same
coefficients, i.e.,

w(k) =
dS+1∑
i=1

λiv
(k)
i , (18)

w(l ) =
dS+1∑
i=1

λiv
(l )
i , (19)

where
∑

i λi = 1. This results in

w(k) − v
(k)
dS+1 =

dS∑
i=1

λiv
(k)
i + (λdS+1 − 1)v(k)

dS+1, (20)

w(l ) − v
(l )
dS+1 =

dS∑
i=1

λiv
(l )
i + (λdS+1 − 1)v(l )

dS+1. (21)

Given Eq. (13), we can equate the right-hand sides, obtaining

dS∑
i=1

λiv
(k)
i + (λdS+1 − 1)v(k)

dS+1 =
dS∑

i=1

λiv
(l )
i + (λdS+1 − 1)v(l )

dS+1.

(22)
Provided λdS+1 �= 1, we can rearrange this as

v
(l )
dS+1 = v

(k)
dS+1 −

dS∑
i=1

λiv
(k)
i

1 − λdS+1
+

dS∑
i=1

λiv
(l )
i

1 − λdS+1
, (23)

exhibiting v
(l )
dS+1 as an affine combination of Vk ∪ Vl \ {v(l )

dS+1},
as desired.

The last step requires that λdS+1 �= 1. A value of λdS+1 = 1
precludes v

(l )
dS+1 being expressed as an affine combination of

Vk ∪ Vl \ {v(l )
dS+1}, thwarting the proof strategy. One can work

around this problem by picking a different nonsaturating ver-
tex of the original inequality as the last element vdS+1 of BS ,
or by picking a different outcome of M to which its value
changes in going from v

(k)
dS+1 to w(k). We defer a careful analy-

sis to Sec. IV C 7, where we show that it is always possible to
make a choice that avoids the troublesome λdS+1 = 1 when-
ever the measurement M effectively contributes to the initial
inequality and is incompatible with A.

Case II. We now consider the case when A is compatible
with all the effectively contributing measurements to the ini-
tial inequality b · p � 0. Fix an outcome ak of A and consider
the inequality b0,ak ,ak · q � 0. In this case, we have that for all
l �= k every vector in Vl saturates the inequality, since as we
have seen the left-hand side evaluates to zero. Only in Vk does
the (dS + 1)st vertex not saturate the inequality. The vertex
v

(k)
dS+1 is thus the only element of BT that does not saturate

the inequality. Since BT affinely spans the polytope T , there
must be dT + 1 affinely independent vertices within it. As
only one element of BT does not saturate the inequality, there
is a set of dT affinely independent vertices that do. Hence,
b0,ak ,ak · q � 0 represents a facet-defining inequality for T .

Converse. This completes our proof of measurement lifting
in one direction. Now we go about proving the converse state-
ments, i.e., that if the inequality (6) or (10) is facet-defining
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for T , then the original inequality b · p � 0 is facet-defining
for S. Notice that earlier (in Sec. IV C 4) we already showed
how to recover b from the given inequalities (6) or (10).

Given bI,tr(A),0 · q � 0 or b0,ak ,ak · q � 0 facet-defining, let
F be the set of vertices that saturate it, and partition it into two
sets F (k) and F (¬k): those that assign ak to A and those that do
not. A consequence of the assumed facet-defining nature of
the inequality is that for any nonsaturating vertex v (i.e., any
v /∈ F ), the set F ∪ {v} affinely spans the whole polytope T .
Given the specific inequalities under consideration, one can
always choose such a v that assigns outcome ak to A.

Now, let w be any vertex that assigns ak to A. Expand it as
an affine combination of F ∪ {v}:

w = λv +
∑

vi∈F (k)

λivi +
∑

v j∈F (¬k)

λ jv j . (24)

Then, for all vertices that appear in the equation, switch the
outcome of A to ak . This transformation preserves the equal-
ity because it is a linear map on the space of correlations:
for contexts in Cmc+A ∪ Cpc+A, each component of the form
p(ak s | AU ) takes a value given by the linear expression∑

j p(a j s | AU ) and the remaining components become zero;
for contexts in Cold, the components are unchanged. This
yields

w = λv +
∑

vi∈F (k)

λivi +
∑

v j∈F (¬k)

λ jv j[A 
→ ak]. (25)

Notice that the transformation leaves the vertices in F (k) as
well as v and w unchanged, while those in F (¬k) get mapped
to vertices in F (k). Hence, Eq. (25) shows that w can be written
as an affine combination of vertices in F (k) ∪ {v}.

Given how w was specified, we have established that
F (k) ∪ {v} affinely spans the set of all vertices of T that assign
ak to A. This set determines a subpolytope of T that is isomor-
phic to S by the correspondence that forgets the outcome of
A. The vertices of S obtained in this way from F (k) saturate
the inequality over S determined by b. We have shown that it
is enough to add a single nonsaturating vertex, namely, v|S,
in order to affinely span the whole of S. Thus the inequality
determines a face of co-dimension 1, i.e., a facet, of S. �

7. The curious case of λdS+1 = 1

We now discharge the issue left not fully resolved in the
proof of case I above, on why one can always avoid a situa-
tion when λdS+1 = 1. We do this by examining what such a
situation implies about the original inequality being lifted.

Observe that Eqs. (18) and (19) actually arise at the level
of the original scenario S already. Let m be the outcome of M
used in the change from v

(k)
dS+1 to w(k) in the proof of case

I. That is, adopting the notation from Sec. IV C 2, one has
w(k) = v

(k)
dS+1[M 
→ m]. At the level of S, one may consider

a similar change w = vdS+1[M 
→ m], and expanding w as an
affine combination of BS gives

w =
dS+1∑
i=1

λivi. (26)

FIG. 2. (a) Compatibility graph of the initial scenario with the
node labeled 4 representing a measurement added to the CHSH
scenario. Bicolored nodes represent dichotomic measurements and
edges represents compatibility between measurements. (b) Com-
patibility graph of scenario obtained from (a) by adding a new
measurement (node labeled 5) compatible with all the measurements
effectively contributing to inequality (29).

The case λdS+1 = 1 implies that

w = vdS+1 +
dS∑

i=1

λivi, (27)

where
∑dS

i=1 λi = 0. Under the initial inequality, i.e., multiply-
ing the vector of coefficients b, this yields

b · w = b · vdS+1 +
dS∑

i=1

λib · vi = b · vdS+1, (28)

where the last equality follows from the fact that all the ver-
tices {vi}dS

i=1 saturate the inequality b · p � 0. In other words,
the vertex w attains the same value for the inequality as the
vertex vdS+1.

Now, note that, in picking the affine basis BS , the last
vertex vdS+1 could be chosen arbitrarily to be any nonsat-
urating vertex of the inequality. Moreover, the outcome m
could also be freely chosen. The fact that the measurement
M effectively contributes to the inequality (see Sec. IV C 2)
means that there exists a vertex v and an outcome m of M such
that b · v �= b · v[M 
→ m]. Without loss of generality, such v

can always be chosen to be nonsaturating, because one of v

or v[M 
→ m] must not saturate the inequality, as they attain
different values. This guarantees that it is possible to pick a
nonsaturating vertex vdS+1 and an outcome m of M in such a
way that the problematic λdS+1 = 1 does not occur.

In turn, if the measurement M does not effectively con-
tribute to the inequality, then λdS+1 = 1 for all choices of
vdS+1 and outcome m. We illustrate such a situation through
a (paradigmatic) example where the newly added measure-
ment is compatible with all the measurements that effectively
contribute to the initial inequality, and check that the case I
construction indeed fails to lift it to a facet-defining inequality.

Consider the scenario given by the compatibility graph
shown in Fig. 2(a). The following is a facet-defining NC
inequality to which measurement ‘4’ does not effectively con-
tribute:

p(010|014) + p(011|014) + p(100|014) + p(101|014)

+ p(01|12) + p(10|12) + p(01|23) + p(10|23)

− p(01|30) − p(10|30) � 0. (29)
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In fact, this inequality is a lifting of the CHSH inequality
(with the classical bound set to zero) over the induced subsce-
nario with measurement set {0, 1, 2, 3} through the addition
of measurement ‘4’. Notice how the measurement ‘4’ is being
traced out, and so the inequality is still, in essence, the CHSH
inequality:

ICHSH =, p(01|01) + p(10|01) + p(01|12) + p(10|12)

+ p(01|23) + p(10|23) − p(01|30) − p(10|30)

� 0. (30)

Now, consider the extension of the scenario in Fig. 2(a) to
the scenario in Fig. 2(b). The newly added measurement ‘5’
is compatible with all the measurements that effectively con-
tribute to the inequality (29). This indicates that, in order to
lift the inequality, one must use case II. Indeed, doing so gives
rise to two facet-defining inequalities, one for each outcome
ak ∈ O5 = {0, 1}:

Iak = p(10ak|015) + p(01ak|015) + p(10ak|125)

+ p(01ak|125) + p(10ak|235) + p(01ak|235)

− p(01ak|305) − p(10ak|305) � 0.

Had we tried to apply case I, which would amount to tracing
measurement ‘5’ out, we would have obtained the inequality

ICHSH =
∑

k

Iak � 0,

which is still, in essence, the CHSH inequality on the induced
subscenario with measurement set {0, 1, 2, 3}. This is a valid
but not a facet-defining NC inequality for the scenario in
Fig. 2(b).

The case just described exemplifies what happens in gen-
eral: in situations that fall within the scope of case II, the
construction of case I leads to a valid but non-facet-defining
inequality, which can be written as a linear combination of the
lifted inequalities obtained through case II.

D. Outcome lifting

We now move on to study lifting under outcome exten-
sions. Let S be extended to T by the addition of a new outcome
a0 for an existing measurement A ∈ XS. That is, in S the
measurement A has outcome set OS,A = {a1, . . . , am}, which
is extended in T to OT,A = {a0} ∪ OS,A = {a0, a1, . . . , am}.

The maximal contexts of T are the same as those of S. The
ambient vector space of correlations for T has components
matching those for S and additional ones referring to the new
outcome a0. Namely, for each maximal context containing
A, {A} ∪ U ∈ CS, and each joint outcome for the rest of the
measurements, s ∈ OU , a vector q on the space of correlations
for T has an additional component q(a0 s | AU ).

To exhibit lifting, we must first map an inequality over S
into one over T. For this, we club together the outcome a0

with some other pre-existing outcome ak in OS,A, treating the
new outcome as if it were ak . More explicitly, let

b · p � 0 (31)

be the initial facet-defining inequality for S. By clubbing
together with ak we mean that wherever a probability p(ak s |

AU ) (for some {A} ∪ U ∈ CS and s ∈ OC) appears in the
inequality (31) we replace it by q(a0 s | AU ) + q(ak s | AU )
in the new inequality over T.

Let us carefully define the new inequality by giving its
vector of coefficients. From the vector of coefficients b of the
original inequality over S, we construct two new vectors over
the vector space of correlations for T:

(a) The vector b∗ is equal to the original vector b padded
with zeros on the new components, those that corre-
spond to observing outcome a0 for measurement A (more
precisely, to joint outcome assignments for maximal
contexts containing the measurement A which assign
outcome a0 to A).

(b) The vector bak is nonzero only on the new components
(events assigning outcome a0 to A), taking the same
coefficient as b does on the event obtained by changing
A’s outcome to ak: that is, for each {A} ∪ U a maximal
context and s ∈ OU ,

bak (a0 s | AU ) = b(ak s | AU ),

and bak is zero at every other component.

The new vector of coefficients is b∗ + bak , yielding the
following inequality over the space of correlations for T:

b∗ · q + bak · q � 0. (32)

Much like a case I measurement-lifted inequality could be
understood through the marginalization map that takes each
correlation q on T to the correlation q|S on S, so one way
to understand this inequality is through a coarse-graining
map from correlations on T to correlations on S. Given a
correlation q on T, define a correlation qk≡0 on S by ‘clubbing
together’ outcomes a0 and ak for A, as follows:

qk≡0(ak s | AU ) = q(ak s | AU ) + q(a0 s | AU )

for {A} ∪ U ∈ CS and s ∈ OU , and qk≡0(s | C) = q(s | C) in
all other cases. Then, the lifted inequality (32) effectively tests
for the original inequality (31) on the coarse-grained statistics.
That is, analogously to Eq. (9): for all correlations q on T,

b∗ · q + bak · q = b · qk≡0.

The mapping q 
→ qk≡0 clearly preserves deterministic non-
contextual correlations because it can be seen to work at the
level of global outcome assignments. These correlations are
the vertices of the noncontextual polytopes. The mapping is
therefore a map of polytopes T → S. This observation is the
key to prove the validity of the lifted inequality (32), which we
now explicitly state (cf. Propositions 1 and 2, the analogous
statements for measurement lifting).

Proposition 4. Let the scenario T be an extension of the
scenario S by the addition of a single outcome a0 to an existing
measurement A. If b · p � 0 is a valid inequality for S, then
(b∗ + bak ) · q � 0 is a valid inequality for T .

Proof. Let v be any vertex of the polytope T , corresponding
to a global outcome assignment λ ∈ OX . If it assigns to A
an outcome other than a0, then the second term in b∗ · v +
bak · v vanishes and the first reduces to b · vk≡0, where vk≡0

is the vertex of S with precisely the same underlying global
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outcome assignment λ as v. If it assigns outcome a0 to A,
then the first term in b∗ · v + bak · v vanishes and the second
reduces to b · vk≡0, where now vk≡0 is the vertex of S whose
underlying global outcome assignment is λ[A 
→ ak], i.e., it
assigns outcome ak to A while retaining the same outcomes
as λ for the other measurements. The result then follows from
the validity of b · p � 0. �

While the inequality (32) is always valid for T , it is not
always a lifting of the initial inequality (31), as it may fail
to be facet-defining. We now describe a (general) situation in
which it fails to lift.

Suppose that the initial inequality (31) is such that all
nonzero coefficients in b correspond to joint outcomes that
assign the fixed outcome ak for A, i.e., only components of
the form b(ak s | AU ) may be nonzero. This renders it an
inequality of the form (10), that is, b = c0,ak ,ak for some vector
of coefficients c over the subscenario R obtained from S by
dropping the measurement A. So, the initial inequality over
S is itself a lifting from the smaller scenario R via case
II measurement lifting. If one then chooses to club a0 with
ak , one ends up getting that b∗ = c0,ak ,ak (where now the
right-hand side represents a case II measurement lifting of
the inequality determined by c directly from R to T), and
bak = c0,a0,a0 (where the right-hand side also represents a case
II measurement lifting directly from R to T). Consequently,
the candidate lifted inequality (32) would read

c0,ak ,ak · q + c0,a0,a0 · q � 0.

This is clearly not a facet-defining inequality for T , since by
Theorem 3 each of the two summands is itself a facet-defining
inequality, obtained via case II measurement lifting from R to
T. In our outcome lifting result, we must therefore exclude
such cases. Note that such an inequality determined by b =
c0,ak ,ak (case II measurement lifted from R to S) can be lifted
to T if we choose to club a0 with a different outcome a j �= ak .
In that case, however, the vector baj is equal to zero and the
lifted inequality is simply c0,ak ,ak · q � 0, which can also be
obtained via case II measurement lifting directly from R to T.

With the proviso of excluding the situation discussed in the
previous paragraph, we now prove the facet-defining nature of
the noncontextuality inequality (31) in all other situations (cf.
Theorem 3 for measurement lifting).

Theorem 5. Let the scenario T be an extension of the
scenario S by the addition of a single outcome a0 to an
existing measurement A. If b · p � 0 is a facet-defining NC
inequality for S, then for any pre-existing outcome ak of A
for which b �= c0,ak ,ak , the inequality (b∗ + bak ) · q � 0 is a
facet-defining NC inequality for T.

Remark. The condition that b not be of the form c0,ak ,ak ,
i.e., not be obtainable by case II measurement lifting when
adding measurement A with choice of outcome ak , admits
an equivalent formulation in terms of the properties of the
inequality being lifted (or of the facet it defines). The case
being excluded is when the measurement A is compatible with
all the measurements effectively contributing to the inequality
b · p � 0 and, moreover, all the vertices of S that do not
saturate the inequality assign outcome ak to A (i.e., b · v = 0
for all v not assigning ak to A).

Proof. As in the proof for measurement lifting (Theorem
5), the strategy is to use an affine basis for S to define a set of

vertices spanning T , from which one can affinely eliminate all
but one vertex not saturating the lifted inequality. We start by
picking a set of affinely independent vertices of S,

BS = {v1, . . . , vds+1},
in such a way that the first dS vectors saturate the initial facet-
defining inequality b · p � 0. Recall that the last vertex, vds+1,
may be chosen arbitrarily from among the vertices of S not
saturating the inequality.

We now form two sets of vertices of T from BS:

(a) V ∗ = {v∗
1 , . . . , v

∗
dS+1}, where each v∗

i is the vertex of
T corresponding to the same underlying global outcome
assignment as vi (note that even though vi and v∗

i have the
same underlying outcome assignment, they are different
vectors living in vector spaces with different dimensions:
v∗

i is obtained from vi by padding it with zeros in the new
components).

(b) V ′ = {v′
1, . . . , v

′
dS+1}, where each v′

i is the vertex of T
whose underlying assignment is obtained from that of vi

by substituting the outcome a0 for the outcome ak if the
latter is the outcome that vi assigns to A.

Observe that if vi assigns an outcome other than ak to A,
then v′

i = v∗
i .

The union of these two sets BT = V ∗ ∪ V ′ affinely spans
the whole polytope T , i.e., it is a (potentially over-complete)
affine basis for T . Both v∗

i and v′
i are mapped to vi under the

coarse-graining T → S, i.e., (v∗
i )k≡0 = (v′

i )k≡0 = vi. Conse-
quently, the last vertex in each of V ∗ and V ′ is the only one
that does not saturate the inequality (b∗ + bak ) · q � 0.

We divide the proof into two cases:

(1) The nonsaturating vertex vdS+1 in BS can be picked so
that it does not assign outcome ak to A.

(2) Every vertex of S not saturating the initial inequality
assigns outcome ak to A.

The first case is quickly discharged. We have v∗
dS+1 =

v′
dS+1, i.e., the last vertex within V ∗ and the last vertex within

V ′ are exactly the same. Hence, BT contains only one vertex
not saturating the inequality. It must therefore contain dT

affinely independent points that saturate it, proving that it
defines a facet of T .

In the second case, the last vertices of V ∗ and V ′ are
different, differing only on the outcome each assigns to the
measurement A, respectively ak and a0. We show that v′

dS+1,
the last element of V ′, can be eliminated as an affine combina-
tion of the remaining vertices in BT , using a similar approach
as for measurement lifting.

By the remark below the theorem statement, in this case,
there exists a measurement M which is incompatible with
A and which effectively contributes to the initial inequality.
Let w be a vertex of S obtained from vdS+1 by changing the
outcome of M to a different value. It can be expanded in the
affine basis BS as

w =
dS+1∑
i=1

λivi, (33)
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with
∑dS+1

i=1 λi = 1. For the same reason discussed in
Sec. IV C 7, the vertex w (more precisely, the outcome it
assigns to M) may be chosen so that λdS+1 �= 1. In that case,
we would have

w = vdS+1 +
dS∑

i=1

λivi, (34)

with
∑dS

i=1 λi = 0, and applying b,

b · w = b · vdS+1 +
dS∑

i=1

b · λivi = b · vdS+1, (35)

meaning that b does not distinguish between the different
outcomes that vdS+1 and w assign to M. This can be avoided
because M effectively contributes to the inequality.

Now, let w∗ and w′ be the vertices of T built from w like v∗
i

and v′
i are built from vi, respectively by considering the same

global outcome assignment and the one where A’s outcome is
changed to a0. Analogously to Eq. (13) in the measurement
lifting proof, we have the following equality

w∗ − v∗
dS+1 = w′ − v′

dS+1. (36)

To see this explicitly, divide the maximal contexts in CT into
two mutually exclusive subsets—those without A and those
with A—and consider the corresponding direct sum decom-
position of the vector space into two summands. The vectors
v∗

dS+1 and v′
dS+1 (similarly, w∗ and w′) only differ in the second

summand, as their underlying global assignments differ only
for A. On the other hand, since M is incompatible with A, it
only appears in maximal contexts not containing A, and so
v∗

dS+1 and w∗ (similarly, v′
dS+1 and w′) only differ in the first

summand. In summary, we can write these four vectors as

v∗
dS+1 = [um0 , uak ], w∗ = [um1 , uak ],

v′
dS+1 = [um0 , ua0 ], w′ = [um1 , ua0 ],

for some um0 , um1 in the first summand and ua0 , uak in the
second, where the indices are suggestive of the differing
outcomes for measurements M and A. Equation (36) is now
evident from inspection.

Again as before, the vertices w∗ and w′ are affine com-
binations of those in V ∗ and V ′, respectively, with the same
coefficients as in Eq. (33):

w∗ =
dS+1∑
i=1

λiv
∗
i , w′ =

dS+1∑
i=1

λiv
′
i,

Putting these expansions into Eq. (36) yields

dS∑
i=1

λiv
∗
i + (

λdS+1 − 1
)
v∗

dS+1 =
dS∑

i=1

λiv
′
i + (

λdS+1 − 1
)
v′

dS+1,

and given that λdS+1 �= 1,

v′
dS+1 = v∗

dS+1 −
dS∑

i=1

λiv
∗
i

1 − λdS+1
+

dS∑
i=1

λiv
′
i

1 − λdS+1
.

This exhibits v′
dS+1 as an affine combination of the remain-

ing elements of BT , showing it is redundant in BT . In other
words, the set BT \ {v′

dS+1} still affinely spans T . But it now

FIG. 3. Compatibility graph of the antiheptagon (C̄7) scenario
with bicolored nodes representing dichotomic measurements. A
facet-defining NC inequality is obtained for this scenario via se-
quential measurement lifting of the CHSH inequality from the
subscenario on measurements {0, 1, 2, 3}.

contains only one vertex that does not saturate the inequality
(b∗ + bak ) · q � 0. Necessarily, then, among dT + 1 affinely
independent vertices in this set, dT of them must saturate the
inequality, showing that it supports a facet of T . �

V. APPLICATIONS

To demonstrate its power, we apply our lifting tech-
nique to extract facet-defining noncontextuality inequalities
of scenarios for which no such facet inequalities had been
hitherto described. To do so, we pick two well-known in-
equalities, the Clauser–Horne–Shimony–Holt (CHSH) and
the Klyachko–Can–Binicioğlu–Shumovsky (KCBS) inequal-
ities, as our starting points. In Sec. V A, we sequentially
measurement lift the former to extract a facet-defining NC
inequality for the scenario described by the antiheptagon C̄7,
the complement of the seven-cycle, with binary outcomes. In
Sec. V B, we sequentially outcome lift the latter to obtain a
facet-defining NC inequality for the five-cycle scenario with
three outcomes per measurement.

A. Lifting the CHSH inequality to the two-outcome
anti-heptagon scenario

In our first example, we apply sequential measurement
lifting to the CHSH inequality, defined on the four-cycle sce-
nario, and derive a facet-defining inequality for the scenario
with compatibility graph C̄7, the complement of the seven-
cycle, shown in Fig. 3. All measurements are dichotomic in
this example, taking values in the outcome set {0, 1}.

We start from the subscenario given by the induced sub-
graph of C̄7 with node set {0, 1, 2, 3} as per Fig. 3, a
four-cycle. The initial facet-defining inequality (CHSH) is

p(00|01) + p(11|01) + p(00|12) + p(11|12)

+ p(00|23) + p(11|23) + p(01|30) + p(10|30) � 3.

(37)

We now add measurement ‘4’ to this subscenario, with the
compatibilities induced from C̄7. This leads to a new scenario
with maximal contexts {0, 1, 4}, {1, 2, 4}, {2, 3}, {0, 3}. The
way in which the new measurement is affixed to the initial
scenario, namely, the fact that it is not compatible with mea-
surement ‘3’, means that case I of measurement lifting applies.
Hence, we simply need to trace out the added measurement.
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FIG. 4. (a) Compatibility graph of the initial KCBS five-cycle
scenario with five dichotomic measurements, represented by bicol-
ored nodes. (b) Compatibility graph of the five-cycle scenario with
trichotomic measurements, represented by tricolored nodes. Inequal-
ity (40) is a facet-defining NC inequality for this extended scenario,
obtained via sequential outcome lifting of the KCBS inequality.

Inequality (37) then turns out to be facet-defining for this
scenario as well. Note that the term p(00|01) can be written
as p(000|014) + p(001|014) in terms of probabilities over
maximal contexts of the extended scenario. We then simi-
larly add measurement ‘5’. This yields a new scenario with
maximal contexts {0, 1, 4}, {1, 2, 4}, {2, 3}, {0, 3, 5}, {0, 1, 5}.
Again, case I of measurement lifting applies since the added
‘5’ is incompatible with measurement ‘2’, and the inequality
(37) remains facet-defining for this scenario. Finally, to get
to the antiheptagon, we add measurement ‘6’, arriving at the
scenario with compatibility graph C̄7. Its maximal contexts
are {0, 1, 4}, {1, 2, 4}, {0, 3, 5}, {0, 1, 5}, {2, 3, 6}, {2, 4, 6},
{3, 5, 6}. Once more, case I applies since the added ‘6’ is
incompatible with measurements ‘0’ and ‘1’, and therefore
inequality (37) is facet-defining for the antiheptagon scenario.
Note that the expression in (37) can of course be expanded
in terms of probabilities over maximal contexts of the an-
tiheptagon scenario. We thus identify a facet-defining NC
inequality for this scenario.

Note that it is relatively straightforward to see that (37)
must be a valid inequality for the scenario C̄7, as for any other
scenario that contains the initial four-cycle as a subscenario
(even if not an induced one). The crucial point is that, in this
case, it supports a facet and not a lower-dimensional face.

B. Lifting the KCBS inequality to the three-outcome five-cycle
scenario

In the second example, we apply sequential outcome lifting
to the KCBS inequality, defined on the two-outcome five-
cycle scenario, and obtain a facet-defining NC inequality for
the scenario with the same compatibility graph, C5, but now
with each measurement having three allowed outcomes; see
Fig. 4.

The starting facet-defining inequality (KCBS) is

p(01|01) + p(01|12) + p(01|23)

+ p(01|34) + p(01|40) � 2. (38)

We first add a new outcome, labeled 2, to measurement ‘0’.
We choose to club this new outcome with the pre-existing
outcome labeled 1. Then according to our lifting method,

in the inequality (38), where outcome 1 for measurement
‘0’ appears in the context {0, 4}, the term p(01|40) has to
be replaced by p(01|40) + p(02|40) to obtain the new facet-
defining inequality:

p(01|01) + p(01|12) + p(01|23) + p(01|34)

+ p(01|40) + p(02|40) � 2. (39)

Likewise, we add a new outcome, labeled 2, to measurement
‘1’, and club it with its old outcome labeled 1. Tweaking the
term p(01|01) in the inequality (39) as before, we obtain a
new facet-defining inequality:

p(01|01) + p(02|01) + p(01|12) + p(01|23)

+ p(01|34) + p(01|40) + p(02|40) � 2.

We continue like this by adding a new outcome, labeled 2, to
the remaining measurements ‘2’, ‘3’, and ‘4’, and clubbing it
with the respective outcome labeled 1. In the end, we arrive
at the following facet-defining inequality for the trichotomic
five-cycle scenario:

p(01|01) + p(02|01) + p(01|12) + p(02|12)

+ p(01|23) + p(02|23) + p(01|34) + p(02|34)

+ p(01|40) + p(02|40) � 2, (40)

where the new terms not present in the initial inequality are
bolded.

There was an element of choice in the way the above lifting
of the KCBS inequality was obtained. We could just as well
have chosen to club the new outcome with the outcome la-
beled 0 rather than that labeled 1. Indeed, we could have made
a different choice for each measurement. Each such sequence
of choices determines a different facet-defining inequality for
the final scenario, each corresponding to a different coarse-
graining of outcomes. Thus, our method yields not one but
several new facet-defining inequalities for the three-outcome
five-cycle scenario as sequential outcome liftings of the KCBS
inequality.

C. Further remarks

We conclude this section with some more general remarks
about applying our lifting technique.

Any contextuality-witnessing scenario must contain an n-
cycle (with n � 4) as an induced subscenario. This follows
from Vorob’ev’s theorem [23]. Combining this fact with the
results of Ref. [16], which completely characterizes the facets
for dichotomic cycle scenarios, leads us to conclude that we
can provide via lifting many facet-defining NC inequalities
for any scenario that can witness contextuality. Notice that, in
the two examples detailed above, we did in fact lift two cycle
inequalities, respectively CHSH and KCBS.

We also highlight an observation about applying our tech-
nique to sequentially lift an inequality from an initial scenario
S to a final scenario T. When measurement lifting through
the addition of two measurements, say A and B, the lifted
inequality might depend on whether one first adds A and then
B or vice versa. This means that, in order to obtain all the
facet-defining inequalities of T that are lifted from S, one
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must consider all the possible orderings to reach scenario T
by extending S.

VI. OUTLOOK

We extended the method introduced by Pironio for lifting
facet-defining Bell inequalities to arbitrary contextuality sce-
narios described by compatibility graphs. The method allows
us to produce facet-defining noncontextuality inequalities in
all scenarios that admit contextual correlations. For most of
these scenarios, no such inequalities had been previously de-
scribed.

Our work invites investigations in the spirit of Ref. [22]
to identify new contextuality scenarios whose noncontextual
polytope can be fully characterized via liftings, e.g., where
every facet-defining NC inequality is obtained via lifting from
some particularly simple class of noncontextuality inequali-
ties such as cycle inequalities [16]. Complementarily, one may
focus on identifying facet-defining NC inequalities that cannot
be obtained via lifting from any subscenario. As such, our
work can be seen as a step towards complete characterizations
of noncontextual polytopes beyond the few known scenarios
[16].

Another aspect that is worth clarifying, in the wake of the
comments in Sec. V C, is how the various forms of lifting
compose. This would help avoid redundancy, trimming the
search space for inequalities lifted from subscenarios.

Future applications of our method may include finding
facet-defining inequalities in different kinds of scenarios such
as Bell scenarios with sequential compatible measurements
[35–37], extended Bell scenarios [38], or scenarios incorpo-
rating causality [39–41].

Similarly, this work dealt only with scenarios where mea-
surement compatibility is described by a binary relation,
conforming with Specker’s principle [42] in quantum mechan-
ics; that is, a set of measurements is compatible (and thus
forms a context) if it is pairwise so. However, the general
theory of contextuality, as in, e.g., Refs. [25,26], admits more
general forms of compatibility, described by simplicial com-
plexes (or hypergraphs). One might ask how lifting works in
that more general setup.

Moreover, it seems that the liftings from S to T consid-
ered in this work may be understood through an underlying
classical procedure T → S, a free operation in the resource
theory of contextuality [43–45] which maps correlations on T

to correlations on S in a contextuality nonincreasing fashion.
For outcome lifting, this is a coarse-graining operation; for
case-I measurement lifting, it is restriction or marginalization;
for case-II measurement lifting, it appears to be a subnor-
malized operation performing a form of postselection. There
is scope to further explore and clarify this resource-theoretic
perspective in future.

We conclude on a more practical note, outlining some
relevant potential applications for our lifting technique. As
mentioned, contextuality has been linked to quantum ad-
vantage in a number of information-processing tasks. One
prominent example is that of communication complexity pro-
tocols: it is shown in Ref. [10] that a violation of a NC
inequality witnesses quantum advantage in a suitably de-
signed protocol. New NC inequalities obtained by lifting may
therefore capture quantum advantage in new, suitably related
communication complexity protocols. Similar analyses can be
carried out for other information-processing tasks whose suc-
cess probability is given by a linear functional that determines
a NC inequality. Another aspect that can be explored for newly
derived NC inequalities is self testing. An inequality is self
testing when a maximal quantum violation certifies a unique
quantum realization (up to global isometries). It has been
studied both for state-dependent [46] and state-independent
[47] inequalities. An open question is whether the self-testing
property is preserved under liftings. Furthermore, Ref. [48]
showed that any state-independent violation of a NC inequal-
ity offers quantum advantage in a specific, suitably designed
distributed computing task. Deriving new such inequalities us-
ing our lifting method might therefore provide new distributed
computing protocols exhibiting quantum advantage.
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