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Quantum criticality at the boundary of the non-Hermitian regime of a Floquet system

Wen-Lei Zhao 1,* and Jie Liu 2,3,†

1School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
2Graduate School of China Academy of Engineering Physics, Beijing 100193, China

3CAPT, HEDPS, and IFSA Collaborative Innovation Center of the Ministry of Education, Peking University, Beijing 100871, China

(Received 4 July 2023; accepted 30 April 2024; published 13 May 2024)

We investigate both analytically and numerically the dynamics of quantum scrambling, characterized by
out-of-time ordered correlators (OTOCs), in a non-Hermitian quantum kicked rotor subject to quantum resonance
conditions. Analytical expressions for OTOCs as a function of time are obtained, demonstrating a sudden
transition from linear growth to quadratic growth when the non-Hermitian parameter decays to zero. At this
critical point, the rates of the linear growth are found to diverge to infinity, indicating the existence of quantum
criticality at the boundary of the non-Hermitian regime. The underlying mechanism of this quantum criticality
is uncovered, and possible applications in quantum metrology are discussed.
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I. INTRODUCTION

Uncovering new phases and determining the scaling laws
of phase transitions at critical points are of interest in physics
[1]. Quantum criticality, characterized by nonanalytical be-
havior of observables, arises from the singularity of an energy
band landscape [2]. For instance, Dirac points cause the
quantized growth of conductance in electron gases as the
magnetic field varies [3]. In Floquet systems, critical behav-
ior is determined by the singularity of quasienergy bands
[4–8]. It is found that the saddle points in the quasienergy
landscape lead to a logarithmic divergence in the density of
states, akin to excited-state phase transitions in static systems,
resulting in a magnetization cusp [9–11]. Quantum critical-
ity is rooted in the emergence of large quantum fluctuations
and long-range correlations [1,12,13], whose spatiotemporal
propagation can be well quantified by out-of-time ordered
correlators (OTOCs) [14,15]. Indeed, both theoretical and
experimental investigations demonstrate that OTOCs can be
used as order parameters to detect equilibrium [16–18], dy-
namical [19–21], and topological phase transitions [22,23].

Non-Hermiticity is an essential feature of different sys-
tems [24,25], including cold atoms [26,27], optics [28–30],
and dissipative systems [31–33]. Non-Hermitian degeneracies
in absorbing anisotropic crystals determine the transmission
of polarized light [34–36]. Non-Hermitian random matrix
theory is employed to describe the spontaneous breaking of
chiral symmetry in quantum chromodynamics [37,38]. Both
experimental and theoretical investigations have unveiled fun-
damental concepts, such as the non-Bloch bulk-boundary
correspondence in topological phases [39], non-Hermitian
skin effects [40–42], and nonreciprocal Landau-Zener tunnel-
ing [43]. The quantum critical phenomenon in non-Hermitian
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systems is still an elusive issue and has attracted increasing
interest recently. Interestingly, the dynamics of OTOCs is gov-
erned by the Yang-Lee edge singularity [44] and spontaneous
PT -symmetry breaking [45,46]. Notably, OTOCs exhibit a
quantized phenomenon in PT -symmetric Floquet systems,
indicating the emergence of a novel phase [47].

In this paper, we investigate the quantum critical phe-
nomenon, quantified by OTOCs, via a non-Hermitian quan-
tum kicked rotor (NQKR) model with complex kicking
strength. We analytically obtain the time dependence of vari-
ous OTOCs under the quantum resonance condition, revealing
their linear growth over time for non-Hermitian kicking. In
the Hermitian case, the OTOCs may increase quadratically
or remain constant, depending on their specific form. Thus,
there exists a sudden transition in the dynamics of the OTOCs
at the boundary of the non-Hermitian regime. Interestingly,
the growth rate of the OTOCs diverges towards infinity as the
non-Hermitian parameter decays to zero, providing evidence
of the presence of quantum critical behavior. The finding
of quantum criticality at the boundary of the non-Hermitian
regime has important implications for the foundation of the
non-Hermitian extension of quantum physics. Our results
suggest that the OTOCs can be used to identify the nonequi-
librium dynamical signatures of quantum phase transitions in
non-Hermitian Floquet systems [48–50].

The paper is organized as follows. In Sec. II, we describe
the NQKR model and show the quantum critical behavior
of OTOCs. Section III contains a theoretical analysis of the
dynamics of OTOCs. The conclusion and discussion are pre-
sented in Sec. IV.

II. MODEL AND MAIN RESULTS

The dimensionless Hamiltonian of the NQKR model reads

H = p2

2
+ VK (θ )

∑
n

δ(t − tn), (1)
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with the complex kicking potential

VK (θ ) = (K + iλ) cos(θ ), (2)

where p = −ih̄eff∂/∂θ is the angular momentum operator,
and θ is the angle coordinate, satisfying the commutation
relation [θ, p] = ih̄eff , with h̄eff an effective Planck constant.
Here, the parameters K and λ control the strength of the
real and imaginary parts of the kicking potential, respectively
[51,52]. The complex potential is realizable in the atom-optics
experiments [53]. Ultracold atoms have a ground state E1,
excited states with two hyperfine levels E±

2 , and a nonin-
teracting state Ei. The frequency of resonance laser satisfies
the condition (E+

2 − E1)/h̄, inducing effectively the transition
from E1 to E+

2 . This facilitates the decay from the excited
state E+

2 to a noninteracting energy level Ei, resulting in a
loss of particle numbers that mimics the imaginary component
of the potential. On the other hand, a far-tuned standing light
wave generates a dipole force on the atoms and effectively
plays the role of the real component of the complex potential.
Moreover, the relative phase between the off-resonance and
resonance standing waves can be precisely adjusted [26].

The eigenequation of the angular momentum operator
is p|n〉 = pn|n〉 with eigenvalue pn = nh̄eff and eigenstate
〈θ |n〉 = einθ /

√
2π . With this complete basis, an arbitrary state

can be expanded as |ψ〉 = ∑
n ψn|n〉. The advancement of the

δ-kicking potential is that the corresponding Floquet operator
can be split into two components, namely U = Uf UK , with the
free evolution operator Uf = exp(−ip2/2h̄eff ) and the kicking
term UK = exp[−iVK (θ )/h̄eff ]. The time evolution of a quan-
tum state from tn to tn+1 is governed by |ψ (tn+1)〉 = U |ψ (tn)〉.

The OTOCs are defined as C(t ) = −〈[A(t ), B]2〉, where
both A(t ) = U †(t )AU (t ) and B are operators evaluated in a
Heisenberg picture, and 〈·〉 = 〈ψ (t0)| · |ψ (t0)〉 is the expec-
tation value of the operator with respect to the initial state
[54–58]. Some specific operators have been exploited in the
expression of OTOCs, and the growth rates of these OTOCs
can be used to quantify the quantum chaos, thermalization,
and entanglement [47,59–61]. In the first case, we consider
the combination of a unitary operator A = eiεp and a projec-
tion operator B = |ψ (t0)〉〈ψ (t0)|, which results in the OTOCs
Cf = 1 − |〈ψ (t )|eiεp|ψ (t )〉|2. In the second case, we utilize
the operators A = p and B = θ , yielding Cp = −〈[p(t ), θ ]2〉.

The Cf is closely related to some important physical
quantities, such as the Frobenius norm and quantum Fisher
information (QFI). Specifically, the Frobenius norm is con-
structed by the Fourier spectrum of Cf and has practical
applications in measuring multiple quantum coherence [62].
Moreover, the second moment of the Frobenius norm provides
a lower bound on the QFI [62]. If we choose the angular
momentum operator as a generator of QFI, it is proportionally
related to the mean energy [63,64]. For the Cp, the squared
commutator between the angular momentum and the angle
coordinate at different times diagnoses how the action of the
angular momentum operator on the quantum state at a given
time t affects the measurement of the angle coordinate at the
end of time reversal, i.e., t = t0. The semiclassical approxi-
mation of Cp, i.e., Cp ≈ h̄2

eff〈[∂ p(t )/∂θ (t0)]2〉cl, with 〈· · · 〉cl

indicating the average over an ensemble of classical trajecto-
ries, can effectively quantify the exponentially fast departure
of nearby trajectories in phase space due to chaotic instability

[65,66]. In this context, we adopt these two OTOCs to inves-
tigate the genuine non-Hermitian dynamics in our system.

Quantum resonance arises from the requirement that each
element of the free evolution operator matrix is unity, i.e.,
Uf (n) = exp(−in2h̄eff/2) = 1, leading to the condition h̄eff =
4π . We focus solely on the condition of quantum resonance
h̄eff = 4π . Our main findings can be summarized by the
following relationships:

Cf ≈
⎧⎨
⎩

2πε2(K2+λ2 )
λ

t for λ > 0, t � 1/λ,

ε2K2t2

2 for λ = 0
(3)

and

Cp ≈
{

2π3(K2+λ2 )
λ

t for λ > 0, t � 1/λ,

16π2 for λ = 0.
(4)

These relations clearly demonstrate the non-Hermiticity-
induced linear increase of both Cf (t ) and Cp(t ) with time.
Notably, the growth rates G f = dCf /dt and Gp = dCp/dt
take the form

G f ,p ≈
⎧⎨
⎩

2πε2(K2+λ2 )
λ

for Cf ,

2π3(K2+λ2 )
λ

for Cp,
(5)

which display the remarkable divergence of both G f and Gp

as λ approaches zero, indicating the emergence of an abrupt
transition at the non-Hermitian boundary.

To verify the theoretical predictions mentioned above, we
numerically investigate the time dependence for both Cf and
Cp over a wide range of λ. It is worth noting that our system
does not possess well-defined thermal states, as the tempera-
ture of periodically driven systems tends to increase infinitely
over time [67]. Consequently, there is no need to perform ther-
mal averaging when calculating the OTOCs. Without loss of
generality, we select the ground state of the angular momen-
tum operator as the initial state in numerical simulations, i.e.,
ψ (t0) = 1/

√
2π . Figure 1(a) shows that Cf increases in the

quadratic function of time for the Hermitian case, i.e., λ = 0.
For small values of λ, i.e., 0 < λ � 1, Cf undergoes quadratic
growth with respect to λ = 0 for a finite time interval t < tc,
after which it transitions to linear growth (see Fig. 2). The
critical time tc at which this transition occurs follows an
inverse relationship with λ, i.e., tc ∝ 1/λ. Interestingly, for
sufficiently large λ [e.g., λ = 1 in Fig. 1(a)], Cf exhibits a
linear growth. Both the linear and quadratic behaviors are in
perfect agreement with our theoretical predictions in Eq. (3).
We further investigate the growth rate G f of Cf for different
λ. Figure 1(b) illustrates that, for a specific K (e.g., K = 5),
the G f initially decreases monotonically to a minimum value
with the increase of λ, and then it increases. This behavior
of G f is in good agreement with our theoretical prediction in
Eq. (5), which suggests a divergence of G f as λ approaches
zero. For λ = 0, the Cp remains constant over time, while
for sufficiently large λ [e.g., λ = 1 in Fig. 1(c)], it linearly
increases with time, in accordance with the laws described
in Eq. (4). The corresponding growth Gp demonstrates the
divergence of Gp with λ → 0, confirming the validity of the
theoretical prediction in Eq. (5) [see Fig. 1(d)].
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FIG. 1. Left panels: Time dependence of Cf (a) and Cp (c) with
K = 5 for λ = 0 (squares), 1 (circles), 5 (triangles), 11 (diamonds),
and 15 (pentagram). In (a) and (c), red lines indicate the theoretical
prediction in Eqs. (3) and (4), respectively. Right panels: The growth
rate Gf (b) and Gp (d) vs λ for K = 5 (squares), 10 (circles), and 14
(triangles). In (b) and (d), red lines separately indicate the theoretical
prediction in Eq. (5). The parameters are h̄eff = 4π and ε = 10−5.

Our above investigation indicates that the non-Hermitian
effects make Cf grow slower and Cp grow faster. Interestingly,
for nonzero λ, we find that both Cf and Cp grow linearly
with time even under the quantum resonance condition. Note
that Cf is proportional to the mean energy, as will be shown
in the next section. It is known that, in the Hermitian case,
i.e., λ = 0, the mean energy diffuses ballistically with time

FIG. 2. (In logarithmic scale) Cf vs time for λ = 0 (cyan line),
0.01 (black line), 0.1 (green line), and 0.5 (blue line). The arrow
marks the critical time tc. Dashed and dash-dotted lines indicate our
theoretical predictions Cf ≈ ε2K2t2/2 and Cf ≈ 2πε2(K2 + λ2)t/λ
[see Eq. (3)], respectively. Inset: The critical time tc vs λ. The red
line indicates the inverse law tc ∝ 1/λ. The parameters are K = 5,
ε = 10−5, and h̄eff = 4π .

∝ t2 [68], hence leading to the quadratic growth of Cf . For
a nonzero value of λ, the non-Hermiticity suppresses the bal-
listic energy diffusion, resulting in the slower linear growth
of Cf . For λ = 0, the cancellation between the two-point
correlators and the four-point correlators results in the con-
stant of Cp. In the non-Hermitian case, the contribution of
the two-point correlators dominates the faster linear growth
of Cp.

As is well known, in the traditional Hermitian kicked
rotor system, for the nonresonance case where the quantum-
coherence-induced dynamical localization emerges, external
noises might destroy the quantum correlation and lead to the
linear growth of mean energy (being proportional to Cf ) [69].
In this situation, the quantum system will tend to revert back to
classical uncorrelated diffusion [70]. For the resonance case,
the small noises, however, cannot alter the ballistic energy
diffusion because this situation lacks a classical counterpart
in the limit in which the Planck constant tends to be zero
[68]. Nevertheless, there is a fictitious classical limit in which
the detuning ε of the driving period from the resonance con-
dition plays the role of the effective Planck constant [71].
Robustness against noise is expected, due to the ε-classical
nature of the dynamics [71]. The breakdown of the ballistic
energy diffusion due to the non-Hermiticity unambiguously
indicates that the NQKR cannot be simply equivalent to the
standard kicked rotor with some kinds of noises induced
by particle gain or loss. Thus, the changes of both Cf and
Cp to the usual linear growth should be ascribed to non-
Hermiticity rather than simple destruction of correlations by
noise.

The presence of a new phase is clearly indicated by
the distinct linear growth of OTOCs with time, where the
growth rates, i.e., G f and Gp in Eq. (5), exhibit a nonana-
lytical transition at λ = 0. This suggests that both G f and
Gp can serve as order parameters defining the phase with a
quantum criticality during the abrupt transition at the bound-
ary of the non-Hermitian regime. Note that the threshold
value of the non-Hermitian parameter, determined by the ap-
pearance of complex quasienergies, is usually not identical
to the mathematical boundary of the non-Hermitian regime
[45,50,72,73], while recently, in aPT -symmetric kicked rotor
model under the quantum resonance condition, it was found
numerically that the complex quasienergies emerge exactly
at the boundary of the non-Hermitian regime [74]. Our ana-
lytical deduction explicitly demonstrates that this holds true
for a general non-Hermitian Floquet system under the quan-
tum resonance condition, and the underlying quantum critical
phenomenon can be well depicted by the behaviors of the
time evolution of the OTOCs at the non-Hermitian boundary.
The non-Hermitian extension of the kicked rotor model is
motivated by experimental realizations of this system with
an all-optical setup, where the light transport in lossy me-
dia is governed by the non-Hermitian potential [74]. In fact,
non-Hermitian physics has been recognized as a significant
modification to conventional quantum theory [75], spurring
extensive investigations into fundamental problems such as
a dynamical metric [76] and dissipative quantum chaos [77]
across a broad range of physics. The novel critical phe-
nomenon in the NQKR system might serve as a new element
in the field of non-Hermitian chaos [73].
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III. THEORETICAL ANALYSIS

As an illustration, we provide detailed derivations of Cf

below. (See Appendixes A and B for a detailed derivation of
Cp.) It is straightforward to obtain the relation

Cf (t ) = C1(t ) + C2(t ) − 2Re[C3(t )], (6)

where the two-point correlators are defined as

C1(t ) := 〈A†(t )B2A(t )〉 = 〈ψR(t0)|B2|ψR(t0)〉, (7)

C2(t ) := 〈B†A†(t )A(t )B〉 = 〈ϕR(t0)|ϕR(t0)〉, (8)

and the four-point correlator

C3(t ) := 〈A†(t )BA(t )B〉 = 〈ψR(t0)|B|ϕR(t0)〉. (9)

Here, |ψR(t0)〉 = U †(t )AU (t )|ψ (t0)〉 and |ϕR(t0)〉 =
U †(t )AU (t )B|ψ (t0)〉 represent the states at the end of time
reversal.

Given A = eiεp and B = |ψ (t0)〉〈ψ (t0)|, we obtain
the equivalences C1(t ) = C3(t ) = |〈ψ (t )|eiεp|ψ (t )〉|2 and
C2(t ) = 〈ψ (t )|e−iεpU (t )U †(t )eiεp|ψ (t )〉 = |〈ψ (t )|ψ (t )〉|2.
Consequently, Cf (t ) = |〈ψ (t )|ψ (t )〉|2 − |〈ψ (t )|eiεp|ψ (t )〉|2,
with the latter term referred to as fidelity out-of-time-ordered
correlators (FOTOCs), i.e., Fo = |〈ψ (t )|eiεp|ψ (t )〉|2 [59–61].
It should be noted that the norm N (t ) = 〈ψ (t )|ψ (t )〉
of non-Hermitian systems unboundedly increases for
sufficiently large non-Hermitian parameters. To remove
the influence of the norm, we define the rescaled
FOTOCs as Fo(t ) = |〈ψ (t )|eiεp|ψ (t )〉/N (t )|2, thus
yielding Cf (t ) = 1 − Fo(t ). Considering the approximation
eiεp ≈ 1 + iεp for ε � 1, the FOTOCs can be described
as Fo(t ) ≈ 1 − ε2[〈ψ (t )|p2|ψ (t )〉 − 〈ψ (t )|p|ψ (t )〉2].
Therefore, we have

Cf (t ) ≈ ε2[〈ψ (t )|p2|ψ (t )〉 − 〈ψ (t )|p|ψ (t )〉2]. (10)

In the main quantum resonance condition h̄eff = 4π ,
each matrix element of Uf equals unity, i.e., Uf (n) =
exp(−in2h̄/2) = 1, rendering it ineffective in the time evo-
lution of quantum states. The quantum state at any given time
t can be obtained by multiplying the initial state with the
kicking evolution operator t times, i.e., |ψ (t )〉 = Ut

K |ψ (t0)〉.
By setting the ground state as the initial state [i.e., ψ (t0) =
1/

√
2π ], the quantum state |ψ (t )〉 in coordinate space takes

the form

ψ (θ, t ) = 1√
2π

exp

{
− it

4π
[(K + iλ) cos(θ )]

}
, (11)

where the norm N (t ) = I0(λt/2π ), and Im(x) denotes the
modified Bessel function of order m (see Appendix B).
It is worth noting that, for λt/2π � 1, the norm N (t ) ≈
exp(λt/2π )/

√
λt increases unboundedly with time even for

arbitrarily small λ, indicating that the quasienergies are com-
plex in the quantum resonance case [74].

The even symmetry of the state in Eq. (11) results in zero
mean momentum, i.e., 〈p(t )〉 = 0. Lengthy but straightfor-
ward derivations yield the rescaled mean square of momentum
by dividing the norm

〈p2(t )〉 = 2πt
I1

(
λt
2π

)
I0

(
λt
2π

) K2 + λ2

λ
. (12)

Combining Eqs. (12) and (10), we obtain the relation

Cf (t ) ≈ 2πε2t
I1

(
λt
2π

)
I0

(
λt
2π

) K2 + λ2

λ
. (13)

Consider two limits: λt/2π � 1 and λt/2π � 1. In the
λt/2π � 1 limit, where λ � 1 and t � 1/λ, we can make
the estimations

I1

(
λt

2π

)
≈ 1

�(2)

λt

4π
= λt

4π
and I0

(
λt

2π

)
≈ 1

�(1)
= 1,

(14)
where �(x) is the Gamma function, with �(2) = 1 and
�(1) = 1. Thus, Cf can be approximated as

Cf (t ) ≈ ε2K2t2

2
with λ = 0. (15)

For λt
2π

� 1, the relation I0( λt
2π

) ≈ I1( λt
2π

) yields

Cf (t ) ≈ 2πε2t
K2 + λ2

λ
. (16)

Both Eqs. (15) and (16) have been summarized in Eq. (3).

IV. CONCLUSION AND DISCUSSIONS

In this work, we investigate the dynamics of various
OTOCs, including the FOTOCs, via a NQKR model with
the quantum resonance condition. Analytical functions of
the OTOCs on both the system parameters and time are
achieved and confirmed by our numerical results as well.
They demonstrate the linear growth of various OTOCs with
time in the non-Hermitian regime, with a remarkable diver-
gence of the growth rate at the zero value of the imaginary
part of the kicking potential. This unveils the existence of
a Floquet-driving-induced quantum criticality at the bound-
ary between the Hermitian and non-Hermitian regimes. In
recent years, the rich physics exhibited by Floquet systems
has attracted increasing attention, which spurs potential ap-
plications of Floquet engineering, such as manipulating the
Anderson metal-insulator transition [78,79], many-body dy-
namical localization [80–82], and topological phases [83–93].
In this context, our findings represent a significant advance-
ment in exploring novel phases within non-Hermitian Floquet
systems [94]. Given that the FOTOCs is directly proportional
to the QFI [62], the divergence of the FOTOCs at λ = 0 holds
practical significance in enhancing the measurement precision
of quantum sensing [63,95–97].

Based on the mathematical equivalence between the prop-
agation equation of light under paraxial approximations and
the Schrödinger equation [98], quantum simulation using op-
tical setups has become an active field for experimentally
confirming fundamental concepts of quantum mechanics, in-
cluding topologically protected transport [99–102], Anderson
localization [103–105], and Bloch oscillations [106,107]. The
paradigmatic kicked rotor model has been realized using all-
optical systems, where the periodically modulated refractive
index of optical fibers [108,109] or the periodically arranged
phase gratings with equal distance [110,111] mimic the delta-
kicking potential for a quantum particle. The well-known
dynamical localization of light in the frequency domain has
been observed. Notably, the quantum resonance condition can
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be achieved by tuning the distance between phase gratings, al-
lowing for experimental realizations of both ballistic diffusion
and ratchet transport in momentum space [112]. It is worth
noting that the loss feature of phase gratings has been utilized
to emulate thePT -symmetric kicked rotor model [74]. There-
fore, the NQKR model is achievable in state-of-the-art optical
experiments, in which the FOTOCs, proportional to the mean
energy, can be measured in the frequency domain.
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APPENDIX A: NUMERICAL METHOD
FOR CALCULATING OTOCs

The OTOCs are defined as C(t ) = −〈|[A(t ), B]|2〉 with
A(t ) = U †(t )AU (t ) [54–57]. The decomposition of OTOCs
can be expressed as

C(t ) = C1(t ) + C2(t ) − 2Re[C3(t )], (A1)

with

C1(t ) := 〈A†(t )B2A(t )〉 = 〈ψR(t0)|B2|ψR(t0)〉, (A2)

C2(t ) := 〈B†A†(t )A(t )B〉 = 〈ϕR(t0)|ϕR(t0)〉, (A3)

and

C3(t ) := 〈A†(t )BA(t )B〉 = 〈ψR(t0)|B|ϕR(t0)〉, (A4)

where |ψR(t0)〉 = U †(t )AU (t )|ψ (t0)〉 and |ϕR(t0)〉 =
U †(t )AU (t )B|ψ (t0)〉 represent the states at the end of time
reversal [58].

There are four steps for calculating C1 for a specific time
t = tn:

(i) At the initial time t = t0, we choose an initial state
|ψ (t0)〉 with a unity norm Nψ (t0) = 〈ψ (t0)|ψ (t0)〉 = 1.

(ii) From t = t0 to t = tn, forward time evolution yields the
state

|ψ (tn)〉 = U (tn)|ψ (t0)〉, (A5)

with the norm Nψ (tn) = 〈ψ (tn)|ψ (tn)〉. Nonunitary evolution
of non-Hermitian systems leads to the growth of the norm,
i.e., Nψ (tn) > Nψ (t0). Accordingly, we use the ratio Fψ =
Nψ (tn)/Nψ (t0) to measure the increase in the norm.

(iii) At time t = tn, we apply the operator A to the state
|ψ (tn)〉,

|ψ̃ (tn)〉 = A|ψ (tn)〉, (A6)

with the norm Ñψ (tn) = 〈ψ̃ (tn)|ψ̃ (tn)〉 = 〈ψ (tn)|A2|ψ (tn)〉,
which is the expectation value of the operator A2.

(iv) From t = tn to t = t0, backward evolution (i.e., time
reversal) starting from the state |ψ̃ (tn)〉 yields

|ψR(t0)〉 = U †(tn)|ψ̃ (tn)〉, (A7)

with the norm NψR (t0) = 〈ψR(t0)|ψR(t0)〉. Similar to step (ii),
we define the factor FψR = NψR (t0)/Ñψ (tn) to quantify the
growth of the norm.

Since the contribution of the norm to OTOCs is physically
meaningless, we define the scaled C1(tn) as

C1(tn) = C1(tn)

FψFψR

= 〈ψR(t0)|B2|ψR(t0)〉Ñψ (tn)

Nψ (tn)NψR (t0)
. (A8)

This scaling eliminates the growth of the norm during both
the forward and backward evolution. In the above equation,
we used the relations Nψ (t0) = 1.

Four steps are involved in calculating C2 at a specific time
t = tn:

(i) At t = t0, the initial state |ϕ(t0)〉 = B|ψ (t0)〉 is obtained,
with a normNϕ (t0) = 〈ψ (t0)|B2|ψ (t0)〉, which is the expecta-
tion value of B2 over |ψ (t0)〉.

(ii) From t0 to tn, forward time evolution yields |ϕ(tn)〉 =
U (tn)|ϕ(t0)〉 with a norm Nϕ (tn) = 〈ϕ(tn)|ϕ(tn)〉. Similar to
step (ii) of C1(tn), we define a factor Fϕ = Nϕ (tn)/Nϕ (t0) to
measure the norm increase.

(iii) At t = tn, we apply the operator A to |ϕ(tn)〉,

|ϕ̃(tn)〉 = A|ϕ(tn)〉, (A9)

with the norm Ñϕ (tn) = 〈ϕ̃(tn)|ϕ̃(tn)〉 = 〈ϕ(tn)|A2|ϕ(tn)〉.
(iv) For tn → t0, the backward evolution is performed by

|ϕR(t0)〉 = U †(tn)|ϕ̃(tn)〉, (A10)

with a norm NϕR (t0) = 〈ϕR(t0)|ϕR(t0)〉. We use the ratio FϕR =
NϕR (t0)/Ñϕ (tn) to quantify the norm growth during time
reversal.

Similar to the scaling of C1(tn), we define the rescaled
C2(tn) as

C2(tn) = C2(tn)

FϕFϕR

= 〈ϕR(t0)|ϕR(t0)〉 Nϕ (t0)Ñϕ (tn)

Nϕ (tn)NϕR (t0)

= Nϕ (t0)

Nϕ (tn)
Ñϕ (tn). (A11)

Given the availability of both |ψR(t0)〉 and |ϕR(t0)〉, we can
define the rescaled C3(tn) as

C3(tn) = C3(tn)√
FψFψRFϕFϕR

= 〈ψR(t0)|B|ϕR(t0)〉
√

Ñψ (tn)

Nψ (tn)NψR (t0)

×
√
Nϕ (t0)Ñϕ (tn)

Nϕ (tn)NϕR (t0)
, (A12)

where we have used the relation Nψ (t0) = 1.
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APPENDIX B: THE OTOCs OF A NON-HERMITIAN
KICKED ROTOR WITH RESONANCE

The Hamiltonian of NQKR reads

H = p2

2
+ (K + iλ) cos(θ )

∑
n

δ(t − tn) , (B1)

where p = −ih̄eff∂/∂θ is the angular momentum operator, θ

is the angle coordinate, h̄eff is the effective Planck constant, K
denotes the strength of the real part of the kicking potential,
and λ indicates the strength of its imaginary part [51,52]. All
variables are properly scaled, hence in dimensionless units. In
the quantum resonance condition h̄eff = 4π , the free evolution
operator has no effect on the quantum states, as its matrix el-
ements are equal to unity, i.e., Uf (n) = exp(−in2h̄eff/2) = 1.
Therefore, only the kicking evolution, governed by the Flo-
quet operator UK (θ ) = exp[− i

4π
(K + iλ) cos(θ )], needs to be

considered. At an arbitrary time t = tn, the quantum state in
coordinate space can be precisely expressed as

ψ (θ, tn) = Utn
K (θ )ψ (θ, t0)

= exp

[
− i

4π
(K + iλ)tn cos(θ )

]
ψ (θ, t0). (B2)

The OTOCs, constructed using operators A = p and B = θ ,
take the form

Cp(tn) = −〈[p(tn), θ ]2〉 = C1(tn) + C2(tn) − 2Re[C3(tn)],
(B3)

with

C1(tn) = 〈ψR(t0)|θ2|ψR(t0)〉, (B4)

C2(tn) = 〈ϕR(t0)|ϕR(t0)〉, (B5)

and

C3(tn) = 〈ψR(t0)|θ |ϕR(t0)〉. (B6)

Both |ψR(t0)〉 = U †(tn)pU (tn)|ψ (t0)〉 and |ϕR(t0)〉 =
U †(tn)pU (tn)θ |ψ (t0)〉 represent the states at the end of
time reversal.

1. Detailed derivation of C1(tn)

For convenience in analytical derivation, we adopt the
uniform ground state ψ (θ, t0) = 1/

√
2π as the initial state.

Based on Eq. (B2), the quantum state can be expressed as

ψ (θ, tn) = 1√
2π

exp

[
− i

4π
(K + iλ)tn cos(θ )

]
. (B7)

The norm of this state is given by

Nψ (tn) =
∫ π

−π

dθ |ψ (θ, tn)|2 = I0

(
λtn
2π

)
, (B8)

where I0 represents the modified Bessel function of zeroth
order. When λtn/2π � 1, we can approximate the norm as
Nψ (tn) ≈ exp (λtn/2π )/

√
λtn. At time t = tn, applying the

operator p to the state ψ (θ, tn) gives

ψ̃ (θ, tn) = pψ (θ, tn) = (K + iλ)tn sin(θ )ψ (θ, tn), (B9)

with the norm

Ñψ (tn) = 〈ψ (tn)|p2|ψ (tn)〉 = 2π (K2 + λ2)2tn
λ

I1

(
λtn
2π

)
.

(B10)

Performing time reversal for tn → t0 starting from ψ̃ (θ, tn)
yields

ψR(θ, t0) = [
Utn

K (θ )
]†

ψ̃ (θ, tn)

= (K + iλ)tn√
2π

sin(θ ) exp

[
λtn
2π

cos(θ )

]
. (B11)

By straightforward calculations, the norm can be obtained as

NψR (t0) =
∫ π

−π

dθ |ψR(θ, t0)|2 = (K2 + λ2)πtn
λ

I1

(
λtn
π

)
.

(B12)

Based on Eqs. (B4) and (B11), we can derive the expres-
sion for C1(tn) as follows:

C1(tn) =
∫ π

−π

θ2|ψR(θ, t0)|2dθ

= |Kλ|2t2
n

2π

∫ π

−π

θ2 sin2(θ ) exp

[
λtn
π

cos(θ )

]
dθ

≈ 3π2 (K2 + λ2)

λ2
I0

(
λtn
π

)
, (B13)

where we have used the approximations cos(θ ) ≈ 1 − θ2/2
and sin2(θ ) ≈ θ2 for λtn/π � 1. By substituting Eqs. (B8),
(B10), (B12), and (B13) into Eq. (A8), we obtain the relation

C1(tn) = C1(tn)
Ñψ (tn)

Nψ (tn)NψR (t0)
= 6π2 (K2 + λ2)

λ2
. (B14)

In the Hermitian case λ = 0, it is straightforward to achieve

C1(tn) =
∫ π

−π

θ2|ψR(θ, t0)|2dθ

= K2t2
n

2π

∫ π

−π

θ2 sin2(θ )dθ = π2K2t2
n

6
. (B15)

2. Detailed derivation of C2(tn)

The initial state is given by |ϕ(t0)〉 = θ |ψ (t0)〉 = θ/
√

2π ,
with a norm

Nϕ (t0) =
∫ π

−π

dθ |ϕ(θ, t0)|2 = π2

3
. (B16)

The forward evolution from t0 to tn yields the state

|ϕ(tn)〉 = Utn
K (θ )|ϕ(t0)〉 = Utn

K (θ )θ |ψ (t0)〉 = θ |ψ (tn)〉.
(B17)

The corresponding norm can be approximated as

Nϕ (tn) =
∫ π

−π

dθ |ϕ(θ, tn)|2

=
∫ π

−π

θ2|ψ (θ, tn)|2dθ ≈ 2π

λtn
I0

(
λtn
2π

)
, (B18)

where we have used the relation cos(θ ) ≈ 1 − θ2/2 for
2λtn/h̄eff � 1. At time tn, applying the operator p to ϕ(θ, tn)
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gives the state

|ϕ̃(tn)〉 = p|ϕ(tn)〉 = θ |ψ̃ (tn)〉 − i4π |ψ (tn)〉. (B19)

In the condition that λtn/2π � 1, its norm can be described
as

Ñϕ (tn) = 〈ϕ̃(tn)|ϕ̃(tn)〉 ≈ 12π2 (K2 + λ2)

λ2
I0

(
λtn
2π

)
. (B20)

For backward evolution from tn to t0, starting from the state
|ϕ̃(tn)〉 in Eq. (B19), we obtain

|ϕR(t0)〉 = U †(tn)|ϕ̃(tn)〉 = θ |ψR(t0)〉 − i4π |ψ f (t0)〉, (B21)

with |ψ f (t0)〉 = [Utn
K (θ )]†|ψ (tn)〉. Straightforward derivation

yields the norm

NϕR (t0) = 〈ψR(t0)|θ2|ψR(t0)〉 + 16π2〈ψ f (t0)|ψ f (t0)〉
− 8π Im[〈ψ f (t0)|θ |ψR(t0)〉], (B22)

where the Im[·] indicates the imaginary part of a complex
variable.

The first term in the right side of Eq. (B22) can be approx-
imated as

〈ψR(t0)|θ2|ψR(t0)〉 = (K2 + λ2)t2
n

∫ π

−π

θ2 sin2(θ )

× exp

[
λtn
2π

cos(θ )

]
|ψ (θ, tn)|2dθ

≈ 3π2 (K2 + λ2)

λ2
I0

(
λtn
π

)
. (B23)

The second term is

16π2〈ψ f (t0)|ψ f (t0)〉

= 16π2
∫ π

−π

exp

[
λtn
2π

cos(θ )

]
|ψ (θ, tn)|2dθ

= 16π2I0

(
λtn
π

)
. (B24)

The third term is

8π Im[〈ψ f (t0)|θ |ψR(t0)〉]

= 4λtn

∫ π

−π

exp

[
λtn
π

cos(θ )

]
θ sin(θ )dθ

≈ 8π2I0

(
λtn
π

)
. (B25)

Combing Eqs. (B23)–(B25), we obtain the expression of the
norm

NϕR (t0) = π2 3K2 + 11λ2

λ2
I0

(
λtn
π

)
. (B26)

Plugging Eqs. (B16), (B18), and (B20) into Eq. (A11)
yields C2(tn),

C2(tn) = Ñϕ (tn)
Nϕ (t0)

Nϕ (tn)
≈ 2π3 (K2 + λ2)

λ
tn. (B27)

FIG. 3. Time dependence of C1 (a), C2 (b), Re[C3] (c), and Cp

(d) with λ = 1 (squares), 5 (circles), 8.66 (triangles), 11 (diamonds),
and 15 (pentagrams). The red lines in (a), (b), (c), and (d) indicate
our theoretical prediction in Eqs. (B14), (B27), (B31), and (B33),
respectively. The parameters are K = 5 and h̄eff = 4π .

In the Hermitian case, i.e., λ = 0, both ψ f (θ, t0) and
ψR(θ, t0) are real. Therefore, the C2(tn) has the expression

C2(tn) = 〈ψR(t0)|θ2|ψR(t0)〉 + 16π2〈ψ f (t0)|ψ f (t0)〉

= π2K2

6
t2
n + 16π2. (B28)

3. Detailed derivation of C3(tn)

The C3(tn) is defined as

C3(tn) = 〈ψR(t0)|θ |ϕR(t0)〉
= 〈ψR(t0)|θ2|ψR(t0)〉 − i4π〈ψR(t0)|θ |ψ f (t0)〉. (B29)

By using Eqs. (B23) and (B25), we can derive its real part,

Re[C3(tn)] = 〈ψR(t0)|θ2|ψR(t0)〉 − 4π Im[〈ψ f (t0)|θ |ψR(t0)〉]

≈ π2 3K2 − λ2

λ2
I0

(
λtn
π

)
. (B30)

Applying Eq. (A12), the rescaled Re[C3(tn)] can be written as

Re[C3(tn)] = Re[C3(tn)]

√
Nψ (t0)Ñψ (tn)

Nψ (tn)NψR (t0)

√
Nϕ (t0)Ñϕ (tn)

Nϕ (tn)NϕR (t0)

= π2(3K2 − λ2)

λ2

√
4πλ(K2 + λ2)

3K2 + 11λ2

√
tn. (B31)

In the Hermitian case, C3(tn) has the expression

Re[C3(tn)] = 〈ψR(t0)|θ2|ψR(t0)〉

= K2

2π
t2
n

∫ π

−π

θ2 sin2(θ )dθ = π2K2t2
n

6
. (B32)
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Combining Eqs. (B14), (B27), and (B31) yields the expres-
sion of the OTOCs for λtn � 1,

Cp(tn) = C1(tn) + C2(tn) − 2 Re[C3(tn)]

≈ 2π3 (K2 + λ2)

λ
tn, (B33)

where we neglect the contributions from both the constant
term C1 and the square root of the tn term of C3, as they are
significantly smaller than C2 for tn � 1. Based on the relations
in Eqs. (B15), (B28), and (B32) in the Hermitian case (λ = 0),
we can conclude that

Cp(tn) = 16π2. (B34)

To verify the theoretical analysis above, we numeri-
cally investigate the time dependence of C1, C2, Re[C3],

and Cp for different λ. Figure 3(a) demonstrates that C1

rapidly increases to saturation over time for a nonzero λ

(e.g., λ = 1). Furthermore, the saturation value agrees well
with Eq. (B14). In the non-Hermitian case [e.g., λ = 1 in
Fig. 3(b)], C2 linearly increases with time, following the law
described by Eq. (B27) perfectly. Interestingly, our numer-
ical results in Fig. 3(c) demonstrate that Re[C3] increases
(or decreases) as the square root of t for λ smaller (or
larger) than a threshold value of λc ≈ 8.66, and it is al-
most zero when λ = λc. The threshold value is determined
by Eq. (B31), specifically 3K2 − λ2 = 0, which confirms
the validity of our theoretical prediction. Additionally, the
Cp exhibits linear growth with time for nonzero λ and is
approximately equal to C2, as predicted by Eq. (B33) [see
Fig. 3(d)].
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