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Emergent non-Abelian Thouless pumping induced by the quasiperiodic disorder
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We investigate the non-Abelian Thouless pumping in a disorder tunable Lieb chain with degenerate flat bands.
The results reveal that quasiperiodic disorder will cause a topological phase transition from the trivial (without
non-Abelian Thouless pumping) to the nontrivial (with non-Abelian Thouless pumping) phase. The underlying
mechanism is that the monopole originally outside the topological region can be driven into the topological
region due to the introduction of quasiperiodic disorder. Moreover, since the corresponding monopole will turn
into a nodal line to spread beyond the boundaries of the topological region, the system with large disorder
strength will result in the disappearance of non-Abelian Thouless pumping. Furthermore, we numerically simu-
late the Thouless pumping of non-Abelian systems, and the evolution results of the center-of-mass displacement
are consistent with the Chern number. Finally, we discuss the localization properties of the system and find
that similar to the work of Zhang et al. [W. Zhang et al., Phys. Rev. Lett. 130, 206401 (2023)], the inverse
Anderson transition does not occur in the system with the increase of quasiperiodic strength, while the system
still maintains the coexistence of localized and extended states.

DOI: 10.1103/PhysRevA.109.052213

I. INTRODUCTION

Thouless pumping as the quantized transport of particles
has attracted intensive interest since Thouless proposed it in
1983 [1]. In Thouless pumping, the transport of charge is
related to the Chern numbers and shows the topological equiv-
alence to the integer quantum Hall effect in two dimensions
[2–5]. Thouless pumping have been realized using different
platforms [6–25] and the extension of the Thouless pumping
includes spin pumping [15,26], nonlinear Thouless pumping
[27–31], interacting topological pumping [32–37], high-order
topological pumping [38–40], and non-Hermitian topologi-
cal pumping [41–43]. Recently, Thouless pumping has been
extended to a non-Abelian version [44–49]. With synthetic
non-Abelian gauge fields [50–55], the non-Abelian version of
Thouless pumping has been constructed in theory [45] and
realized in acoustic and photonic waveguides [46,47]. In non-
Abelian Thouless pumping, the quantization of the pumping
is related to the Wilczek and Zee holonomy, which is the
non-Abelian analog of Berry’s phase [56–67].

The competition between topology and disorder is another
important issue [68–75]. Thouless pumping is robust to disor-
ders as long as the energy gap keeps opening [6–8,16,21]. A
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strange disorder-induced topological phase called topological
Anderson insulators (TAIs) [71,72] has been discovered and
experimentally observed [76–78]. In recent years, TAIs have
been extended to various models, such as quasiperiodic Su-
Schrieffer-Heeger (SSH) model chains, Z2 TAIs, long-range
SSH model, and non-Hermitian disordered systems [79–82].
Recently, disorder-induced quantized topological pumping
has been demonstrated in noninteracting and interacting sys-
tems with different disorders, which declares the existence of
the topological Anderson Thouless pump [83]. Based on the
above previous studies, one can easily think of extending the
study of the interplay between topology and disorder to cases
involving non-Abelian gauge fields.

Here we explore the interplay between non-Abelian
Thouless pumping and quasiperiodic disorder. Remarkably, a
disorder-induced quantized non-Abelian topological pumping
is proposed in noninteracting systems with quasiperiodic
disorders. First we show the robustness of non-Abelian
Thouless pumping under disorders, where topological
pumping breaks for large disorder strength. Then we reveal
a quantized non-Abelian topological pumping induced by
quasiperiodic disorders from a trivial pump in the clean
regime and explain the mechanism of the disorder-induced
non-Abelian Thouless pumping as a result of the shift of the
monopole. We further demonstrate that the disorder-induced
non-Abelian Thouless pumping can also be observed in
optical systems, similar to the topological pumping of light
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FIG. 1. (a) The non-Abelian quasiperiodic Lieb chain. The
dashed box is the unit cell. The hopping strength and the lattice
spacing a are marked. (b) The corresponding adiabatic evolution
loop, which reduces to the case without disorder for W = 0. The
red arrows indicate the pumping direction and the blue circle is
the starting point. (c) Chern number C as a function of W for L =
10 and β = 0. (d) The corresponding time evolution of the center
of mass Xc.m.(t ) for the quasiperiodic disorder strengths W = 0,
0.5, 4.5, respectively, and L = 25. The results are averaged over
50 samples with β valued from 0 ∼ 2π uniformly and T = 200.
The four hopping terms are evolving as shown in (b). Throughout,
we set a = 1.

in waveguide arrays [22,27]. Eventually, we give the inverse
participation ratio (IPR) calculation of the disorder-induced
non-Abelian topological pumping system to demonstrate a
strange non-Abelian inverse Anderson transition which shows
huge differences from the Anderson transition [84].

The paper is organized as follows. In Sec. II, we de-
scribe the non-Abelian Lieb chain model with quasiperiodic
disorders. Then we show the robustness of non-Abelian Thou-
less pumping with quasiperiodic disorders, which is similar
to the Abelian case. We present the existence of disorder-
induced non-Abelian Thouless pumping in Sec. III and give
a numerical simulation in optical waveguides to observe the
topological pumping. Then we present numerical results of
the IPR. Finally, in Sec. IV, we present conclusions.

II. MODEL

Let us start at a one-dimensional non-Abelian quasiperi-
odic Lieb chain model, which has four sites per unit cell as
shown in Fig. 1(a) [45]. The corresponding Hamiltonian reads

H =
∑

j

(J̃ ja
†
j b j + J2a†

j b j−1 + J3a†
j c j + J4a†

j d j + H.c.),

(1)

where a†
j (a j ), b†

j (b j ), c†
j (c j ), and d†

j (d j ) denote the fermion
creation (annihilation) operators at sites A, B, C, and D,
respectively. The corresponding intercell hopping J̃ j and in-
tracell hopping J2,3,4 are marked in Fig. 1. The disorder
of the system is reflected in the J̃ j term, i.e., J̃ j = J1 +
W cos(2πα j + β ), where W is the disorder strength and α

is an irrational number denoting the incommensurate modula-
tion. Without loss of generality, we set α = (

√
5 − 1)/2 in the

following computation. β is a phase shift. The Hamiltonian
features two degenerate flat bands which construct a synthetic
non-Abelian gauge field [45]. The corresponding energy spec-
trum is plotted in Appendix B. We consider noninteracting
pumping in the lattice of size 4L with particle number N =
3L; this is to say, we do a 3/4 filling, which guarantees that
the Fermi energy is higher than the degenerate flat bands.

One can use an adiabatic evolving loop to implement
topological pumping in a disorder tunable non-Abelian sys-
tem [see red loop in Fig. 1(b)]. Similar methods have been
used to discuss non-Abelian physics without disorder [45]. To
be more specific, the corresponding analytic expressions for
different hopping terms have been provided in Appendix A.
For convenience, we set the distance between an arbitrary
point of the loop and the origin point equal to 1, i.e.,
max[J1, J2, J3, J4] = 1, as shown in Fig. 1(b). To describe the
topology of the system with Chern number under disorders,
one can impose the twisted periodic boundary condition by
introducing a twisted phase θ ∈ [0, 2π ] to the hopping terms.
Then, one can obtain [3–5,83,85]

Hθ =
∑

j

(
J̃ je

iθ/2La†
j b j + J2e−iθ/2La†

j b j−1 + J3eiθ/2La†
j c j

+ J4eiθ/2La†
j d j + H.c.

)
. (2)

Note that in the thermodynamic limit (L → ∞), the Hamilto-
nian with a twisted phase Hθ is topologically equivalent to H
in Eq. (1), so the two have the same Chern number.

We next discuss the relation between the non-Abelian
Thouless pumping and the Chern number C of Hθ under time-
modulated parameters J̃ j (t ) and J2,3,4(t ). As we know, the
shift of the center of mass of the Wannier state is guaranteed
by the Chern number, i.e., �Xc.m. = Xc.m.(T ) − Xc.m.(0) = C
[8,12–14,16,21,83]. Here the Wannier center for each unit cell
in real space is associated with the Zak phase or polarization,
i.e., Xc.m.(t ) = 1

2π
tr γ (t ), where γ denotes the non-Abelian

Zak phase (or Berry-Wilczek-Zee phase [56]) defined as

γ =
∫ 2π

0
dθAθ , (3)

with the non-Abelian Berry connection Aθ = 〈ψ |i∂θ |ψ〉 and
its component Anm

θ = 〈ψn|i∂θ |ψm〉. Here, |ψm〉 indicates the
eigenstate of the degenerate flat bands with the index ranging
from L + 1 to 3L [86]. Note that only the middle degenerate
flat bands contribute to the nontrivial Chern number in the
non-Abelian Thouless pumping and thus we mainly focus on
the physics of these degenerate flat bands hereafter. One can
also find that the non-Abelian Zak phase is a matrix instead of
being a scalar in the Abelian case.

By modulating the parameters in one loop period T , we
have [8,83]

�Xc.m. = 1

2π
tr[γ (T ) − γ (0)]

= tr

[∫ T

0

dt

2π
∂tγ

]
= C. (4)
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Furthermore, the Chern number C can be expressed through
the non-Abelian Berry curvature Fθt by applying the Stoke’s
theorem in the second line of the above equation, i.e.,

C = tr

[∫ T

0

dt

2π
∂tγ

]
=

∫ 2π

0
dθ

∫ T

0
dt tr[Fθt ], (5)

where Fθt = ∂θAt − ∂t Aθ + i[At , Aθ ], with At and Aθ being the
non-Abelian Berry connections defined below Eq. (3). The
above equation describes an integral over a two-dimensional
torus spanned by (θ, t ). In numerical presentation, the corre-
sponding non-Abelian Chern number reads [87]

C ≡ 1

2π i

∑
l

F (kl ), (6)

where F (kl ) is the field strength. In order to make the nu-
merical process of non-Abelian Chern number (6) readily
understandable, we briefly summarize and give a step-by-step
calculation process here, which is essentially the Wilson loop
method.

In the first step, we discretized the two-dimensional θ -t
plane into Nθ × Nt grid points. Nθ and Nt denote the total
number of grid points on the discrete θ and t axes, respec-
tively. Each grid point is represented by kl = (k jθ , k jt ), where
k jθ = 2π jθ /Nθ , k jt = T jt/Nt . The corresponding subscripts
l = 1, . . . , Nθ × Nt , jθ = 1, . . . , Nθ , and jt = 1, . . . , Nt .

In the second step, in order to compute Eq. (6), one also
needs to know the exact expression of the U (2L)-link vari-
able [87–89]. Let us define the two displacement vectors θ̂ =
(2π/Nθ , 0) and t̂ = (0, T/Nt ). Then, to compute the Chern
number of the degenerate bands, one can consider a mul-
tiplet ϕ(kl ) = [|ϕ1(kl )〉, . . . , |ϕn(kl )〉, . . . , |ϕ2L(kl )〉], where
|ϕn(kl )〉 denotes the (L + n)-th eigenstates of Hamiltonian Hθ

of (2). Then, one can get U (2L)-link variables as

Uθ (kl ) = 1

Nθ (kl )
det[ϕ†(kl )ϕ(kl + θ̂)],

Ut (kl ) = 1

Nt (kl )
det[ϕ†(kl )ϕ(kl + t̂ )], (7)

with Nθ (kl ) = | det[ϕ†(kl )ϕ(kl + θ̂)]| and Nt (kl ) =
| det[ϕ†(kl )ϕ(kl + t̂ )]| being the normalization constants.

In the third step, one can construct F (kl ) in terms of
U (2L)-link variables [87–89], i.e.,

F (kl ) = ln [Uθ (kl )Ut (kl + θ̂)Uθ (kl + t̂ )−1Ut (kl )
−1]. (8)

Then, by performing a straightforward calculation, one can
obtain the non-Abelian Chern number of Eq. (6). We have
provided the code to calculate the non-Abelian Chern number
in the Supplemental Material [90].

To show the competition between the non-Abelian topol-
ogy and the quasiperiodic disorder, one should first confirm
the robustness of the topological pumping. In Fig. 1(b), one
can see that the parameter loop makes a non-Abelian topo-
logical pumping, which reduces to order case for W = 0
[45]. As shown in Fig. 1(c), we numerically compute the
Chern number as a function of disorder strength W . One
can find that the quantized Chern number C = 1 preserves
from the clean limit to weak disorder regime. However, for
strong disorder, the non-Abelian topological pumping breaks

down. This property is similar to the robustness of Abelian
Thouless pumping under quasiperiodic disorders or random
disorders [83].

To further discuss the robustness of non-Abelian topo-
logical pumping under different disorders, we numerically
simulate the corresponding process of adiabatic evolution.
Experimentally, one can consider an excitation in a photonic
waveguide array [45,47]. By modulating their refraction in-
dex and relative parameters, the non-Abelian quasiperiodic
Hamiltonian and the evolution process can be realized. In
numerical simulation, we take |ψ (0)〉 as the initial state,
which is a localized Wannier state of the degenerate band.
This is the excitation at the center of the waveguide arrays.
Over a full pumping loop, one can measure the center-of-
mass (c.m.) shift, i.e., �Xc.m. = Xc.m.(T ) − Xc.m.(0), where
Xc.m.(t ) = ∑

j j|ψ j |2 with |ψ j |2 as the density at site j.
The values of the center of mass Xc.m.(t ) are integer multi-

ple of the unit cell length (d = 2a). In addition to non-Abelian
Chern number, the center-of-mass shift can also reflect the
topological properties of the system [45]. In Fig. 1(d), we
plot the c.m. over three loop periods for W = 0, 0.5, 4.5,
respectively. The results reveal that for W = 0 (order case)
and 0.5 (weak disorder), the c.m. shift after the pumping
loop is �Xc.m./d ≈ 3, while for W = 4.5 (strong disorder),
it is �Xc.m./d ≈ 0. The result demonstrates the robustness of
the non-Abelian topological pumping with a nearly quantized
c.m. shift for weak disorders.

III. DISORDER-INDUCED NON-ABELIAN TOPOLOGICAL
PHASE TRANSITION

Now we discuss how to manipulate the non-Abelian topo-
logical phase transition by tuning quasiperiodic disorders.
First, we define the monopole as the singularity of the non-
Abelian Berry curvature Fθt in the (θ, t ) space at typical
parameters. For the Hamiltonian (2), the monopole is located
at (J1, J2, J3, J4) = (δ, 0, 0, 0). The δ can be obtained by solv-
ing the following self-consistent equation (9). When W = 0,
we have δ = 0, which is the original point in Fig. 1(b). To
have a pumping with C = 0, we translate the parameter loop
of Fig. 1(b) along the J1 axis by −1.1 [see Fig. 2(a)]. The
corresponding analytic expressions for the new hopping terms
are shown in Appendix A. After the shift of the parameter
loop, the monopole is out of the topological areas and then
the system reflects a topological trivial pumping with C = 0
in the clean limit [see Figs. 2(a) and 2(b)]. A quantized non-
Abelian topological pumping requires the monopole to stay
in the topology nontrivial area of Fig. 2(b). It is then natural
to wonder whether quasiperiodic disorder can be used to bring
the monopole back into the topological region and thus induce
topological pumping. The relative results are shown in Fig. 2.

By increasing the disorder strength W , one can find that the
monopole moves along the J1 direction and enters the topol-
ogy nontrivial area, giving rise to a non-Abelian topological
pumping with C = 1. If one continues to increase the disorder
strength, the monopole becomes a nodal line, which is similar
to the Abelian version [83]. When the nodal line crosses the
boundary of the topological area, the non-Abelian topological
pumping breaks down and the corresponding C = 0. The pro-
cess of emergent non-Abelian topological pumping has been
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FIG. 2. (a) A scheme to manipulate non-Abelian topological pumping by quasiperiodic disorders. Red points indicate the monopole’s
position and the dashed line means the monopole becomes a nodal line. Four plots correspond to W = 0, 1.1, 1.5, 2.5, respectively. Blue
circles present the starting points. (b) Phase diagram in the J1 − J2 plane. The corresponding Chern numbers are marked. (c) The plot of Chern
number C with L = 10 (solid line) and the c.m. shift �Xc.m./d with (L = 251) (hollow circle) vs W . (d) The monopole position parameter
δ as a function of W for W < Wl ≈ 1.2. When W > Wl , the monopole becomes a nodal line. (e) One loop time evolutions of Xc.m.(t )/d for
W = 0, 1.5, 2.5. The c.m. shift data in (c) and (e) are averaged over 50 samples, with β valued from 0 ∼ 2π and L = 251. The four hopping
parameters are evolving as shown in (a).

shown in Fig. 2(a). Furthermore, we numerically calculate the
corresponding Chern number as the function of the disorder
strength W [see Fig. 2(c)]. The results illustrate that weak W
can induce the non-Abelian topological pumping. However,
such a disorder-induced non-Abelian topological pumping is
different from the Anderson Thouless pumping, where most
of the adiabatic eigenstates are localized. Later, we will show
the corresponding IPR to prove that during the process of a
non-Abelian topological pumping, localized and delocalized
eigenstates can coexist.

To analyze the mechanism of the emergence of the
disorder-induced non-Abelian Thouless pumping, we calcu-
late the disorder-induced shift of the monopole using the
self-consistent Born approximation [83]. For weak and mod-
erate disorder, it can be considered as the self-energy term
�(W ) to renormalize the Hamiltonian under the clean limit.
Then, one can get the self-consistent equation as

1

E f − H0(k) − �(W)
=

〈
1

E f − Heff (k, W)

〉
q

, (9)

where E f = 0 is the Fermi energy, and

H0(k) =

⎛
⎜⎜⎜⎝

0 J1 + J2eik J3 J4

J1 + J2e−ik 0 0 0
J3 0 0 0
J4 0 0 0

⎞
⎟⎟⎟⎠ (10)

is the Bloch Hamiltonian in the clean limit. Heff denotes the
effective Hamiltonian renormalized by the quasiperiodic dis-
order with index q = 1, 2, . . . , Nq and 〈·〉q denotes averaging

over Nq samples. Heff can be written as

Heff =

⎛
⎜⎜⎜⎝

0 J + J2eik J3 J4

J + J2e−ik 0 0 0
J3 0 0 0
J4 0 0 0

⎞
⎟⎟⎟⎠, (11)

where J = J1 + W cos(2παq). By numerically solving
Eq. (11), one can obtain the corresponding �(W) matrix.
Since the key shift is on J1, the (1, 2) and (2, 1) elements
of the matrix are the principal term. Then, one can get the
position of the monopole by the relation δ = −[�(W )]21,
where [�(W )]21 denotes the (2, 1) element of the matrix [see
Fig. 2(d)]. This proves that the monopole can be gradually
pulled in the topological region to finally become a nodal line
with an ever-increasing disorder.

Then, we show that the disorder-induced non-Abelian
topological pumping can be observed in optical systems. Sim-
ilar to what we have done in Sec. II, we set the localized
Wannier state of the degenerate flat band as the initial state
and again calculate the evolution and corresponding c.m.
shift �Xc.m.. One can find that the disorder-induced non-
Abelian Thouless pumping can be observed from the time
evolution of the center of mass, as shown in Fig. 2(e). For
a topological trivial case [see the W = 0 line in Fig. 2(e)],
the time evolution of the c.m. is around the origin, which
demonstrates that �Xc.m./d ≈ 0. Furthermore, one can find
that �Xc.m./d ≈ 1 for W = 1.5, which is nearly quantized
and similar to the non-Abelian Thouless pumping without
disorders in Fig. 1(d). As the disorder strength continues to
increase, one can find the breakdown of the topological pump-
ing and the corresponding c.m. is again around the origin with
�Xc.m./d ≈ 0 [see the W = 2.5 line in Fig. 2(e)]. The corre-
sponding �Xc.m. as a function of W for the lattice L = 251
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is shown in Fig. 2(c). These phenomena indicate the emer-
gence of the disorder-induced non-Abelian Thouless pumping
in the weak disorder strength area. The deviation of the
quantization mainly comes from the finite-size effect in our
simulations.

Finally, let us explain why such a disorder-induced topo-
logical pumping cannot be dubbed a topological Anderson
Thouless pumping. To study the localization effect, we study
the IPR, which reads

I (n) =
4L∑
j=1

|〈 j | ψ (n)〉|4, (12)

where | j〉 is a j-site localized state and |ψ (n)〉 is the nth
eigenstate. When the system size is large enough (4L → ∞),
one can differentiate between a localized eigenstate and an
extended eigenstate by the value of the IPR. The localization
criterion says that a eigenstate is localized for I (n) ∼ O(1),
while I (n) ∼ (4L)−1 for an extended eigenstate [16,83].

We calculate the IPR for an original C = 0 loop
with an increasing W . Without loss of generality,
in numerical computation, we choose two points in
the parameter loop shown in Fig. 2(a) for the four
hopping terms (J1, J2, J3, J4) = (−1.1,

√
2

2 ,
√

2
2 ,

√
2

2 ) and

(J1, J2, J3, J4) = (
√

2
2 − 1.1,

√
2

2 , 0, 0), respectively. As
shown in Figs. 3(a) and 3(d), with increasing disorder
strength in the zone of flat bands (from L + 1 to 3L), the
corresponding IPR exhibits the coexistence of localized states
and extended states, which originates from the non-Abelian
effect. Specifically, this phenomenon would arise in systems
where degenerate flat bands exist [84]. In Figs. 3(b) and
3(c), we plot the localized and extended eigenstates shown
in Fig. 3(a), where the energy level index corresponds to
n1 = 15

4 L, n2 = L
4 and the disorder strength for the two

eigenstates is W = 1.5, 0, respectively. In Figs. 3(e) and 3(f),
we also plot the localized and extended eigenstates shown
in Fig. 3(d) and the energy level index again corresponds
to n1 = 15

4 L, n2 = L
4 . The disorder strength for the two

eigenstates is W = 1.5, 0, respectively. As the Hamiltonian
has degenerate flat bands, the localization properties between
the eigenstates of the flat bands and of the nonflat bands are
very different. For nonflat bands, the eigenstates change from
fully extended states to localized states with an increasing W .
However, for flat bands, the extended states and the localized
states coexist even with an increasing W . Furthermore, by
comparing Figs. 3(a) and 3(d), one can find the influence
of J3 and J4 on the localization properties. For the case
of J3 = J4 = 0 [see Fig. 3(d)], one can see that the IPR
of the middle part (about 1.5L–2.5L) of the flat bands is
obviously larger than that in Fig. 3(a), which corresponds
to more localized eigenstates. The mechanism behind this
is the following: when J3 and J4 = 0, in a unit cell, the
channel connecting sites A and C as well as that connecting
sites A and D are closed [see Fig. 1(a)]; thus the expansion
ability of the corresponding eigenstates of the flat bands is
reduced. On the other hand, compared with the presence of
AC and AD channels, the closure of J3 and J4 makes hopping
between sites A and B easier. Then, the corresponding IPR
of 1 ∼ L and 3L + 1 ∼ 4L levels in Fig. 3(d) is lower than
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FIG. 3. (a) The IPR I (n) as functions of the eigenstate number and
the quasiperiodic disorder strength W for L = 20. (J1, J2, J3, J4) =
(−1.1,

√
2

2 ,
√

2
2 ,

√
2

2 ) and β = 0. (b),(c) The localized and the ex-
tended eigenstates indicated by the black and the red circles in (a).
ψ (n1 ) and ψ (n2 ) indicate the n1th and n2th eigenstates with n1 =
15
4 L, W = 1.5 and n2 = L

4 , W = 0. (d) The IPR I (n) as functions of
the eigenstate number and the quasiperiodic disorder strength W for
L = 20. (J1, J2, J3, J4) = (

√
2

2 − 1.1,
√

2
2 , 0, 0) and β = 0. (e),(f) The

localized and the extended eigenstates indicated by the black and the
red circles in (d). ψ (n1 ) and ψ (n2 ) again indicate the n1th and n2th
eigenstates with n1 = 15

4 L, W = 1.5 and n2 = L
4 , W = 0.

that in Fig. 3(a). The wave functions of Figs. 3(b), 3(c)
and Figs. 3(e), 3(f) are in complete agreement with those
predicted by IPR.

IV. CONCLUSION

In summary, we study non-Abelian Thouless pumping in
quasiperiodic disordered systems. First, through theoretical
calculation, we show that the non-Abelian Thouless pumping
is robust to quasiperiodic disorder. Then we find an emergent
non-Abelian Thouless pumping caused by quasiperiodic dis-
order and introduce the Chern number of the twisted periodic
boundary to characterize this phenomenon. The mechanism
behind the phenomenon is that the quasiperiodic disorder
causes the monopole to move from the topological trivial
region into the topological nontrivial region. Furthermore, we
numerically simulate such non-Abelian Thouless pumping
and show that the numerical results of centroid evolution are
consistent with the theoretical analysis on the Chern number.
Finally, by calculating the system’s IPR, one can find that
the non-Abelian inverse Anderson transition is very different
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from that in the Abelian case; in other words, instead of a clear
Anderson transition point, the coexistence of the extended
state and the localized state emerges. The understanding
of a non-Abelian topological system with disorder is thus
deepened.
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APPENDIX A: ANALYTIC EXPRESSIONS FOR THE
HOPPING TERMS IN DIFFERENT TIME SLOTS

Since the results obtained by introducing disorder to J1, J2

are similar, only the non-Abelian Thouless pumping with dis-
order by reshaping the terms of J1 (→ J̃ j) is provided in this
paper. In the main text, we constructed two kinds of pumping
loop, as shown in Fig. 1(b) and Fig. 2(a), respectively.

First, let us discuss the case of Fig. 1(b). Analytic ex-
pressions for the hopping terms in Fig. 1(b) can be given as
follows:

J1 = 0, J2 = cos

(
3π

2T
t

)
,

J3 = sin

(
3π

2T
t

)
, J4 = J3, (A1)

for t ∈ [0, T
3 ),

J1 = sin

[
3π

2T

(
t − T

3

)]
, J2 = 0,

J3 = cos

[
3π

2T

(
t − T

3

)]
, J4 = J3, (A2)

for t ∈ [ T
3 , 2T

3 ), and

J1 = cos

[
3π

2T

(
t − 2T

3

)]
,

J2 = sin

[
3π

2T

(
t − 2T

3

)]
,

J3 = 0, J4 = J3, (A3)

for t ∈ [ 2T
3 , T ]. Under such circumstance, W = 0 and W =

0.5, the corresponding monopole falls into the topological
region, so it exhibits quantized topological pumping. How-
ever, for W = 4.5, the nodal line spread across the topological
region, so no topological pumping occurs. The results are
consistent with the conclusions given by the Chern number.

Then, let us turn to discuss the case of Fig. 2(a). The
corresponding analytic expression of the hopping terms in
different time slots reads

J1 = −1.1, J2 = cos

(
3π

2T
t

)
,

J3 = sin

(
3π

2T
t

)
, J4 = J3, (A4)

for t ∈ [0, T
3 ),

J1 = sin

[
3π

2T

(
t − T

3

)]
− 1.1, J2 = 0,

J3 = cos

[
3π

2T

(
t − T

3

)]
, J4 = J3, (A5)

for t ∈ [ T
3 , 2T

3 ), and

J1 = cos

[
3π

2T

(
t − 2T

3

)]
− 1.1,

J2 = sin

[
3π

2T

(
t − 2T

3

)]
,

J3 = 0, J4 = J3, (A6)

for t ∈ [ 2T
3 , T ].

This situation is equivalent to placing the monopole outside
the topology area at the beginning. Then, one can adjust the
value of the disorder (W ) to bring the monopole back into
the topology region. Experimentally, the hopping strength
can be easily controlled by varying the distance between
waveguides, which enables the control of the non-Abelian
Thouless pumping [47].

t/T

E

t/T

E

(c) W=0.3
t/T t/T k

E E

(a) W=0 (b) W=0

(d) W=1.5

FIG. 4. Energy spectrum of Hamiltonian (1). (a) The plot of
the energy spectrum with topological nontrivial phase and without
disorder. The four hopping terms are given in Appendix A, the first
analytic expressions. (b) The bulk energy spectrum as the function of
time t and k without disorder and four hopping terms are the same as
(a). (c) The plot of the energy spectrum with topological nontrivial
phase and the disorder strength W = 0.3. The four hopping terms
are given in Appendix A, the second analytic expressions. (d) The
plot of the energy spectrum with topological trivial phase and the
disorder strength W = 1.5. The four hopping terms are the same as
(c). L = 50, T = 200 and the data in (c) and (d) are averaged over
50 samples with β valued as 0 ∼ 2π .
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APPENDIX B: ENERGY SPECTRUM
OF THE NON-ABELIAN HAMILTONIAN

In order to visualize the band structure containing de-
generate flat bands, here we plot the energy spectrum of
the Hamiltonian in Eq. (1), as shown in Fig. 4. The energy
spectrum of non-Abelian Thouless pumping without disorder
is shown in Fig. 4(a). The corresponding bulk spectrum is
plotted in Fig. 4(b). Both of them tell us that there is a de-
generate flat band here and no bulk-boundary correspondence.
Furthermore, the spectrum with disorder for the topological
trivial case W = 0.3 and nontrivial case W = 1.5 are given in
Figs. 4(c) and 4(d), respectively. This shows that even if dis-
order is introduced, the band structure of the system will not
be broken. In other words, the non-Abelian systems discussed
in this paper, with or without disorder, have no bulk-boundary
correspondence.

APPENDIX C: FINITE-SIZE SCALING

Different from the numerical simulation of the evolu-
tion process of the center of mass, the system size does
not need to be too large to ensure an accurate non-Abelian
Chern number. The condition L = 10 in the main text is

C

L

W=1.5

W=0

FIG. 5. Finite scaling of Chern number C for W = 0, 1.5. The
other parameters are the same as shown in Fig. 2(c), except for L.

enough. Here we conduct a finite-size scaling of Chern
number C and plot the Chern number as a function of
different L in Fig. 5. In the computation process, we fix
W = 0, 1.5, which correspond to C = 0, 1, respectively. One
can find that the corresponding Chern numbers preserve for
various L.
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