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Strong quantum nonlocality: Unextendible biseparability beyond unextendible product basis
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An unextendible biseparable basis (UBB) is a set of orthogonal pure biseparable states which span a subspace
of a given Hilbert space while the complementary subspace contains only genuinely entangled states. These
biseparable bases are useful to produce genuinely entangled subspace in a multipartite system. Such a subspace
could be more beneficial for information theoretic applications if we were able to extract distillable entanglement
across every bipartition from each state of this subspace. In this paper, we have derived a rule for constructing
such a class of UBB which exhibits the phenomenon of strong quantum nonlocality. This result positively
answers the open problem raised by Agrawal et al. [Agrawal, Halder, and Banik, Genuinely entangled subspace
with all-encompassing distillable entanglement across every bipartition, Phys. Rev. A 99, 032335 (2019)], that
there exists a UBB which can demonstrate the phenomenon of strong quantum nonlocality in the perspective of
the local irreducibility paradigm.
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I. INTRODUCTION

The correlation between quantum entanglement and quan-
tum nonlocality has always been a fundamental area of study
in quantum information and foundation theory [1]. Apart
from “Bell nonlocality” [2,3], the term “nonlocality” also
gained much attraction in the last two decades with the
discovery of quantum “nonlocality without entanglement”
[4]. A set of orthogonal product states, which were initially
conjectured to be states with classical features, has been
proven to exhibit a purely nonclassical phenomenon known
as “nonlocality without entanglement” [4]. Data hiding [5–8],
secret sharing [9], etc., are some of the applications of this
phenomenon.

Classical information encoded in states of a composite
quantum system involving spatially separated subsystems
may not always be decodable under the well-known class of
operations known as local operations and classical commu-
nication (LOCC). Such sets of states are called nonlocal due
to their indistinguishable nature under LOCC [4,10–41]. To
elaborate a little, suppose a state is secretly chosen from a
well-known set of states of a bipartite system shared between
two distant parties, say, Alice and Bob. Their goal is to locally
figure out the exact identity of the chosen state. The local
quantum state discrimination process plays a prominent role
in exploring the restrictions put forward by LOCC [10] on
quantum systems with spatially separated subsystems. More-
over, contrary to our general intuition, it has been shown that
the presence of entanglement in the system in some instances
is detrimental to the aforementioned feature of nonlocality of
a set of orthogonal states.
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In 1999, Bennet et al. in their seminal paper [4] first
constructed a set of orthogonal product states in a 3 ⊗ 3 sys-
tem called an unextendible product basis (UPB) that are not
perfectly distinguishable under LOCC. The construction was
quite striking due to the absence of entanglement and thus
providing the fact that entanglement is not an essential feature
for the nonlocality of a set of states [4,42–65]. In a 3 ⊗ 3
system, a five-dimensional product basis constitutes a UPB
such that no product state lies in the orthogonal complement
of the subspace generated by the UPB [4,21], i.e., the set of
states cannot be extended by adding product states to it while
preserving orthogonality. Furthermore, the projector onto the
orthogonal complement of the UPB is a bound entangled state
and hence prescribes a generic rule to construct such states in
higher dimensions [11,12].

Ever since the discovery of UPBs, an interest to study
such “incomplete bases” is on the rise. Recently, Halder et al.
[50] came up with the notion of a locally irreducible set. It
is a set of orthogonal quantum states from which it is not
possible to eliminate one or more states by orthogonality
preserving local measurements (OPLMs). Local irreducibil-
ity sufficiently ensures local indistinguishability although the
converse is not true. In 3 ⊗ 3 ⊗ 3 and 4 ⊗ 4 ⊗ 4 systems,
the authors constructed two orthogonal product bases that
are locally irreducible in all bipartitions and established the
phenomenon of strong quantum nonlocality without entan-
glement. The authors in Ref. [60] constructed the strongly
nonlocal orthogonal product sets of size 6(d2 − 1) in d ⊗
d ⊗ d for d � 3 and a strongly nonlocal orthogonal product
basis in a 3 ⊗ 3 ⊗ 3 ⊗ 3 system. In a seminal paper [56],
the authors generalized the definition of strong nonlocality
based on the local irreducibility in some multipartitions and
provided some examples in 3 ⊗ 3 ⊗ 3 and 3 ⊗ 3 ⊗ 3 ⊗ 3
systems.

UPBs are very useful to detect entangled states. The
UPB’s complement set does not contain any product state
and thus any state from the complementary subspace is essen-
tially entangled. The complement set generates a completely
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entangled subspace. However, for a multiparty system the
definition of entangled states is layered. For example, in a
tripartite system there exists a biseparable state which con-
tains entanglement only between some specific pair of parties
(for pure states) or combination thereof. The most useful
structure of a tripartite system is the set from genuinely
entangled subspace (GES) which contains all states having
entanglement among all of the three parties. Such genuinely
entangled states have been proven to be useful in quan-
tum metrology [66–68], quantum key distribution [69,70],
quantum secret sharing [44,71–73], quantum conference key
agreement [74,75], measurement based quantum computation
[76], quantum enhanced measurements [77], fault tolerant
quantum computing [78], etc. Thus construction of an un-
extendible biseparable base (UBB) is very important in such
scenarios because its complement contains only states with
genuine entanglement for tripartite systems.

In Ref. [79] the authors first introduce the notion of a
UBB that provides an adequate method to construct GESs.
Furthermore, they showed that the GES resulting from the
symmetric construction is indeed a bidistillable subspace, i.e.,
all the states supported on it contain distillable entanglement
across every bipartition. In their work, the construction of
UBB stems from the structure of the UPB and in fact contains
the UPB as a subset. But this UBB does not exhibit the
phenomenon of strong quantum nonlocality since the corre-
sponding UPB does not exhibit the same. Nevertheless, in
a recent paper [80], a UPB has been shown to be strongly
nonlocal. The corresponding UBB containing it must also
be strongly nonlocal due to the inherited UPB substructure.
These motivate us to construct a class of UBB without having
a UPB as a subset of it and which is strongly nonlocal also.

In this paper, we have managed to construct such a UBB
in a 3 ⊗ 3 ⊗ 3 system and generalized the result for arbitrary
higher-dimensional cases. The UBB subspace also gives rise
to a GES. We have proved that this GES is bidistillable, i.e.,
distillable across every bipartition, and thus characterized the
GES to some extent. The paper is organized as follows: in
Sec. II necessary definitions and other preliminary concepts
are presented. In Sec. III we construct a UBBII in C3 ⊗ C3 ⊗
C3 which is strongly nonlocal. In Sec. IV we have succeeded
to generalize the result for higher-dimensional cases. Finally,
the conclusion is drawn in Sec. VIII with some open problems
for further studies.

II. PRELIMINARIES

Every bipartite pure state can be written as |ψ〉 =∑
i, j xi, j |i〉| j〉 ∈ Cm ⊗ Cn, where |i〉 and | j〉 are the compu-

tational bases of Cm and Cn respectively. There exists a one
to one correspondence between the state |ψ〉 and the m × n
matrix X = (xi, j ). If rank(X ) = 1, then |ψ〉 is a product state
and if rank(X ) > 1 then |ψ〉 is an entangled state. Also,
〈ψ1 | ψ2〉 = Tr(X †

1 X2), where 〈ψ1 | ψ2〉 is the inner product of
|ψ1〉 and |ψ2〉. In a similar manner for a tripartite state |φ〉 =∑

i, j,k yi, j,k|i〉| j〉|k〉 ∈ Cm ⊗ Cn ⊗ Cl , where |i〉, | j〉, and |k〉
are the computational bases of Cm, Cn, and Cl respectively;
|φ〉 is biseparable if and only if rank(Y ) = 1 where the ma-
trix Y = (yi, j,k ) is written in at least one bipartition; and |φ〉
is genuinely entangled if and only if rank(Y ) > 1 in every

bipartition. In this section, we will review first some of the
definitions which are used throughout the following sections.

Definition 1. [59] If all the positive operator-valued
measure (POVM) elements of a measurement structure cor-
responding to a discrimination task of a given set of states are
proportional to the identity matrix, then such a measurement
is not useful to extract information for this task and is called
trivial measurement. On the other hand, if not all POVM ele-
ments of a measurement are proportional to the identity matrix
then the measurement is said to be a nontrivial measurement .

Definition 2. [59] Consider a local measurement to dis-
tinguish a fixed set of pairwise orthogonal quantum states.
After performing that measurement, if the postmeasurement
states are also pairwise orthogonal to each other then such a
measurement is said to be an OPLM.

Definition 3. [50] A set of orthogonal quantum states is
locally irreducible if it is not possible to eliminate one or
more quantum states from the set by nontrivial orthogonality-
preserving local measurements.

Definition 4. A set of orthogonal quantum states is
locally indist inguishible if it is possible to eliminate one
or more states from the set by OPLM but not possible to
distinguish completely the whole set by nontrivial OPLM.
Therefore it is by definition implied that all locally irreducible
states are locally indistinguishable but the converse is not
true. Consider an m-partite quantum system H =⊗n

i=1 Hi and
consider the set S ∈ H of pure orthogonal product states. The
set S constitutes a complete orthogonal product basis (COPB)
if it spans H while the set S is said to be an incomplete
orthogonal product basis (ICOPB) if it spans a subspace Hs

of H [59].
A set of pairwise orthogonal product vectors {|ψ〉i}n

i=1
spanning a proper subspace of ⊗m

j=1C
d j is called a UPB if

its complementary subspace contains no product state [4],
whereas a set of pairwise orthogonal states {|ψ〉i}n

i=1 spanning
a proper subspace of ⊗m

j=1C
d j is called a UBB if all the

states |ψ〉i are biseparable and its complementary subspace
contains no biseparable state. As all product states are trivially
biseparable it is quite possible to extend a set from UPB to
UBB but the converse is not always true, i.e., it is not always
possible to construct a UPB by reducing some states from a
UBB.

Definition 5. A UBB is called UBBI if it contains a UPB as
a subset of it and a UBB is called UBBII if it does not contain
any UPB as a subset of it.

Definition 6. [50] A set of quantum states in a tripartite
system is said to be strong nonlocal if it is locally irreducible
in a tripartition also locally irreducible in every bipartition.

III. CONSTRUCTION OF STRONG NONLOCAL UBBII

Here we provide a rule to construct a complete orthog-
onal basis of a composite Hilbert space Cn ⊗ Cn ⊗ Cn by
using an n ⊗ n matrix. For simplicity we provide an exam-
ple for C3 ⊗ C3 ⊗ C3. Let us choose a 3 ⊗ 3 matrix � =
(
0, 0 0, 1 0, 2
1, 0 1, 1 1, 2
2, 0 2, 1 2, 2

) and consider any two conjugate elements δmn

and δnm, (m �= n and m, n ∈ {0, 1, 2}). Suppose the matrix
remaining after removing the row and the column containing
the element δmn is (m′, n′ s′, t ′

q′, r′ o′, p′) and the matrix remaining after
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removing the row and the column containing the element δnm

is (m′′, n′′ s′′, t ′′
q′′, r′′ o′′, p′′). Now we define states∣∣↓κ (i)

m,n

〉± = |n〉Ai
|m′n′ ± o′ p′〉Ai+1Ai+2

,∣∣↑κ (i)
m,n

〉± = |n〉Ai
|q′r′ ± s′t ′〉Ai+1Ai+2

,∣∣↓κ (i)
n,m

〉± = |m〉Ai
|m′′n′′ ± o′′ p′′〉Ai+1Ai+2

,∣∣↑κ (i)
n,m

〉± = |m〉Ai
|q′′r′′ ± s′′t ′′〉Ai+1Ai+2

,

where i ∈ {0, 1, 2} and k defines k mod 3. As example if
i = 2, then i + 1 = 0 and i + 2 = 1. So in C3 ⊗ C3 ⊗ C3 we
define a complete orthogonal basis as follows, denoting it by
B3: ∣∣↓κ (i)

m,n

〉−
,
∣∣↑κ (i)

m,n

〉−
,∣∣�κ (i)

m,n

〉− = ∣∣↓κ (i)
m,n

〉+ − ∣∣↑κ (i)
m,n

〉+
,∣∣↓κ (i)

n,m

〉−
,
∣∣↑κ (i)

n,m

〉−
,∣∣�κ (i)

n,m

〉− = ∣∣↓κ (i)
n,m

〉+ − ∣∣↑κ (i)
n,m

〉+
,∣∣κ (i)

m,n

〉± = ∣∣�κ (i+1)
m,n

〉+ ± ∣∣�κ (i+2)
n,m

〉+
,

{|κk〉 = |k〉A0 |k〉A1 |k〉A2 , k = 0, 1, 2}.
Now if we replace the six states |κ (i)

m,n〉± in B3 by |κ (i)
n,m〉±,

we can get another complete basis B′
3 of C3 ⊗ C3 ⊗ C3.

Therefore every conjugate pair defines two complete orthog-
onal bases for the corresponding composite Hilbert space.
Except for the diagonal elements (self-conjugate), the matrix
A contains three distinct pairs of conjugate elements. Then
by this rule, we can define six orthogonal complete bases in
C3 ⊗ C3 ⊗ C3. Now for a particular choice {m = 0, n = 2}
we define the complete basis B0,2

3 as follows:∣∣↓κ
(0)
0,2

〉− = |2〉A0 |10 − 21〉A1A2 ,∣∣↓κ
(1)
0,2

〉− = |2〉A1 |10 − 21〉A2A0 ,∣∣↓κ
(2)
0,2

〉− = |2〉A2 |10 − 21〉A0A1 ,∣∣↑κ
(0)
0,2

〉− = |2〉A0 |20 − 11〉A1A2 ,∣∣↑κ
(1)
0,2

〉− = |2〉A1 |20 − 11〉A2A0 ,∣∣↑κ
(2)
0,2

〉− = |2〉A2 |20 − 11〉A0A1 ,∣∣↓κ
(0)
2,0

〉− = |0〉A0 |01 − 12〉A1A2 ,∣∣↓κ
(1)
2,0

〉− = |0〉A1 |01 − 12〉A2A0 ,∣∣↓κ
(2)
2,0

〉− = |0〉A2 |01 − 12〉A0A1 ,∣∣↑κ
(0)
2,0

〉− = |0〉A0 |11 − 02〉A1A2 ,∣∣↑κ
(1)
2,0

〉− = |0〉A1 |11 − 02〉A2A0 ,∣∣↑κ
(2)
2,0

〉− = |0〉A2 |11 − 02〉A0A1 ,∣∣�κ
(0)
0,2

〉− = ∣∣↓κ
(0)
0,2

〉+ − ∣∣↑κ
(0)
0,2

〉+
= |2〉A0 |1 − 2〉A1 |0 − 1〉A2 ,∣∣�κ

(1)
0,2

〉− = ∣∣↓κ
(1)
0,2

〉+ − ∣∣↑κ
(1)
0,2

〉+
= |2〉A1 |1 − 2〉A2 |0 − 1〉A0 ,

∣∣�κ
(2)
0,2

〉− = ∣∣↓κ
(2)
0,2

〉+ − ∣∣↑κ
(2)
0,2

〉+
= |2〉A2 |1 − 2〉A0 |0 − 1〉A1 ,∣∣�κ

(0)
2,0

〉− = ∣∣↓κ
(0)
2,0

〉+ − ∣∣↑κ
(0)
2,0

〉+
= |0〉A0 |0 − 1〉A1 |1 − 2〉A2 ,∣∣�κ

(1)
2,0

〉− = ∣∣↓κ
(1)
2,0

〉+ − ∣∣↑κ
(1)
2,0

〉+
= |0〉A1 |0 − 1〉A2 |1 − 2〉A0 ,∣∣�κ

(2)
2,0

〉− = ∣∣↓κ
(2)
2,0

〉+ − ∣∣↑κ
(2)
2,0

〉+
= |0〉A2 |0 − 1〉A0 |1 − 2〉A1 ,∣∣κ (0)

0,2

〉± = ∣∣�κ
(1)
0,2

〉+ ± ∣∣�κ
(2)
2,0

〉+
= |0 + 1〉A0 |21 + 22 ± (10 + 20)〉A1A2∣∣κ (1)

0,2

〉± = ∣∣�κ
(2)
0,2

〉+ ± ∣∣�κ
(0)
2,0

〉+
= |0 + 1〉A1 |21 + 22 ± (10 + 20)〉A2A0∣∣κ (2)

0,2

〉± = ∣∣�κ
(0)
0,2

〉+ ± ∣∣�κ
(1)
2,0

〉+
= |0 + 1〉A2 |21 + 22 ± (10 + 20)〉A0A1

{|κk〉 = |k〉A0 |k〉A1 |k〉A2 , k = 0, 1, 2}.
Also we define a stopper state |S〉 = (|0〉 + |1〉 +

|2〉)A(|0〉 + |1〉 + |2〉)B(|0〉 + |1〉 + |2〉)C . We claim that the
set

U0,2
3 = B3 ∪ {|S〉}∖{{∣∣κ (0)

0,2

〉+
,
∣∣κ (1)

0,2

〉+
,
∣∣κ (2)

0,2

〉+} ∪ {|κk〉}2
k=0

}
(1)

is a UBB in C3 ⊗ C3 ⊗ C3. First one can verify that U0,2
3 is an

ICOPB. Next the missing states {{|κ (0)
0,2〉+, |κ (1)

0,2〉+, |κ (2)
0,2〉+} ∪

{|κk〉}2
k=0} are not orthogonal to |S〉 but are orthogonal to all

states in U0,2
3 \ {|S〉}. Then any state in H⊥

U0,2
3

is a linear combi-

nation of at least two of the missing states, and is orthogonal to
|S〉. Assume |ψ〉 = a|κ (0)

0,2〉+ + b|κ (1)
0,2〉+ + c|κ (2)

0,2〉+ + h|κ0〉 +
g|κ1〉 + f |κ2〉 ∈ H⊥

U0,2
3

is a biseparable state, where at least

two coefficients are nonzero. As |ψ〉 is a biseparable state,
it is a product in at least one bipartition, say AB|C. By
the correspondence between pure states and matrices, |S〉
(considering the AB|C cut) corresponds to the all 1 matrix

J = (
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

). Suppose that |ψ〉 cor-

responds to a matrix M = (
h c c a c c a a a
b b c a g c a a a
b b c b b c b b f

).

Since rank(M ) = 1, we have a = b = c = h = g = f �= 0.
However |ψ〉 (resp. M) cannot be orthogonal to |S〉 (resp.
J), and we have a contradiction. We have proved that U0,2

3
is a UBB of size 22 in C3 ⊗ C3 ⊗ C3. The color outline for
the method of construction is given in Fig. 1. As the UBB
U0,2

3 does not contain any UPB as a proper subset of it (it
forms a UBBII) we cannot assure its nonlocal property (local
indistinguishability). Next, we will show that U0,2

3 is nonlocal
as well as strongly nonlocal.

Theorem 1. The set of quantum states (1) is locally irre-
ducible in A0|A1|A2.

Proof . We only need to show that any party cannot start
a nontrivial OPLM. As we see that the states in (1) follow
the cyclic property, therefore if any one party (say party A0)
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FIG. 1. Color outline for the construction of UBBII in C3 ⊗
C3 ⊗ C3 as described above. The green arrow relates with |↓κ (i)

m,n〉−

whereas the red one relates with |↑κ (i)
m,n〉−.

goes first and cannot start a nontrivial measurement then A1

and A2 also cannot start nontrivial OPLM. So it is sufficient to
prove A0 can only perform the measurement proportional to
the identity.

Suppose EA0
α = M†

αMα denotes such measurements that A0

starts. As A0’s system is defined in three-dimensional Hilbert
space HA0 in the {|0〉, |1〉, |2〉}A0 basis, we can write Eα as a
3 × 3 square matrix, as follows:

EA0
α =

⎛
⎜⎜⎝

〈0| 〈1| 〈2|
|0〉 α00 α01 α02

|1〉 α10 α11 α12

|2〉 α20 α21 α22

⎞
⎟⎟⎠. (2)

After measurement, all the states either eliminate or remain
orthogonal. In both cases 〈φ|EA0

α ⊗ IA1
3 ⊗ IA2

3 |ψ〉 = 0, φ �=
ψ, φ,ψ ∈ U0,2

3 and for every outcome α. Then considering
the pairs |↓κ

(0)
2,0〉−, |↑κ

(2)
0,2〉− we get

−〈↓ κ
(0)
2,0

∣∣EA0
α ⊗ I (1)

3 ⊗ I (2)
3

∣∣↑κ
(2)
0,2

〉− = 0,

−〈↑ κ
(2)
0,2

∣∣EA0
α ⊗ I (1)

3 ⊗ I (2)
3

∣∣↓κ
(0)
2,0

〉− = 0,

i.e.,

〈0|Eα|1〉A0
〈1|1〉A1

〈2|2〉A2
= 0,

〈1|Eα|0〉A0
〈1|1〉A1

〈2|2〉A2
= 0,

i.e.,

α01 = α10 = 0. (3)

The complete analysis of the proof is given in
Appendix A. �

In a bipartite quantum system if a set of quantum states is
locally irreducible, it means that these states have the strongest
nonlocality. But in case of multipartite quantum systems, the
presence of entanglement can lead to different strengths of
nonlocality among the parties.

Now our intention is to show whether the set of states
in (1) is strongly nonlocal or not, depending on the local
irreducibility of the states in every bipartition.

Theorem 2. The set of quantum states (1) is irreducible in
every bipartition.

Proof . Similar to the previous theorem, as the set of states
given in (1) is cyclic in every tripartition, it is also cyclic

in every bipartition. So we only need to prove the states are
irreducible in A0A1|A2, i.e., parties A0 and A1 can apply joint
measurement on the subsystem A0A1.

For that, we rewrite the states in (1) in the basis {|0〉,
|1〉, |2〉, |3〉, |4〉, |5〉, |6〉, |7〉, |8〉}A0A1 instead of {|00〉, |01〉,
|10〉, |20〉, |11〉, |02〉, |12〉, |21〉, |22〉}A0A1 respectively, as fol-
lows:∣∣↓κ

(0)
0,2

〉− = |7〉A0A1
|0〉A2

− |8〉A0A1
|1〉A2

,∣∣↓κ
(1)
0,2

〉− = |51〉A0A1A2
− |62〉A0A1A2

,∣∣↓κ
(2)
0,2

〉− = |22〉 − |72〉,∣∣↑κ
(0)
0,2

〉− = |80〉 − |71〉,∣∣↑κ
(1)
0,2

〉− = |52〉 − |61〉,∣∣↑κ
(2)
0,2

〉− = |32〉 − |42〉,∣∣↓κ
(0)
2,0

〉− = |01〉 − |12〉,∣∣↓κ
(1)
2,0

〉− = |20〉 − |31〉,∣∣↓κ
(2)
2,0

〉− = |10〉 − |60〉,∣∣↑κ
(0)
2,0

〉− = |11〉 − |02〉,∣∣↑κ
(1)
2,0

〉− = |21〉 − |30〉,∣∣↑κ
(2)
2,0

〉− = |40〉 − |50〉,∣∣�κ
(0)
0,2

〉− = |7 − 8〉|0 − 1〉,∣∣�κ
(1)
0,2

〉− = |5 − 6〉|1 − 2〉,∣∣�κ
(2)
0,2

〉− = |2 − 3 − 4 + 7〉|2〉,∣∣�κ
(0)
2,0

〉− = |0 − 1〉|1 − 2〉,∣∣�κ
(1)
2,0

〉− = |2 − 3〉|0 − 1〉,∣∣�κ
(2)
2,0

〉− = |1 − 4 − 5 + 6〉|0〉,∣∣κ (0)
0,2

〉− = |5 + 6〉|1 + 2〉 − |1 + 4 + 5 + 6〉|0〉,∣∣κ (1)
0,2

〉− = |2 + 3 + 4 + 7〉|2〉 − |0 + 1〉|1 + 2〉,∣∣κ (2)
0,2

〉− = |7 + 8 − 2 − 3〉|0 + 1〉,
|S〉 = |0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8〉|0 + 1 + 2〉.

The proof is quite similar to the previous one. A0A1 starts an
OPLM EA0A1

α = M†
αMα which is nothing but a square matrix

of order 9:

EA0A1
α =

⎛
⎜⎜⎝

〈0| 〈1| · · · 〈8|
|0〉 α00 α01 · · · α08

|1〉 α10 α11 · · · α18
...

...
...

. . .
...

|8〉 α80 α81 · · · α88

⎞
⎟⎟⎠. (4)

As we know Mα ⊗ IA2 |φ〉’s for |φ〉 ∈ U are mutually
orthogonal, for every order of pairs {|ψ〉, |φ〉}, |φ〉 �= |ψ〉 ∈ U
and for every outcome α, 〈ψ |EA0A1

α ⊗ I (2)
3 |φ〉 = 0.

Now considering the order pairs {|ψ〉, |φ〉} for
|ψ〉 ∈ {|↓κ

(1)
2,0〉−, |↑κ

(1)
2,0〉−, |↓κ

(0)
0,2〉−, |↑κ

(0)
0,2〉−} and |φ〉 ∈

{|↓κ
(1)
0,2〉−, |↑κ

(1)
0,2〉−, |↓κ

(0)
2,0〉−, |↑κ

(0)
2,0〉−}, we get αi j = 0
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(and hence, α ji = 0) for i = 3, 2, 8, 7 and j = 5, 6, 0, 1 respectively:

∴, EA0A1
α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α00 α01 0 0 α04 α05 α06 0 0
α10 α11 0 0 α14 α15 α16 0 0
0 0 α22 α23 α24 0 0 α27 α28

0 0 α32 α33 α34 0 0 α37 α38

α40 α41 α42 α43 α44 α45 α46 α47 α48

α50 α51 0 0 α54 α55 α56 0 0
α60 α61 0 0 α64 α65 α66 0 0
0 0 α72 α73 α74 0 0 α77 α78

0 0 α82 α83 α84 0 0 α87 α88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

The complete analysis of the proof is given in Appendix B. �

A UBB can be constructed in different ways; our construc-
tion stems without multipartite UPBs. The unextendibility
feature of a multipartite UPB is generally not preserved under
different spatial configurations, i.e., when you change the way
of distribution of quantum states among different parties the
unextendibility property may no longer hold. Such a multipar-
tite UPB can be converted into a complete orthogonal base by
allowing entanglement among a subset of parties only. When
unextendibility is guaranteed across various arrangements, it
leads to different classes of entangled subspaces and the most
constrained one among these is the GES.

Using the structural elegance we generalize the above
constructions in (Cn)⊗3, with n � 3. In the next section we
provide the explicit construction for n = 5 and then provide
the generalization for arbitrary dimension.

IV. CONSTRUCTIONS IN (C5)⊗3

In this section, we consider the UBBII in higher-
dimensional cases. In a similar manner we can construct
the UBBII in C5 ⊗ C5 ⊗ C5. Now for a particular choice
m, n ∈ {0, 4} we define the complete basis B0,4

5 as follows (for
i = 0, 1, 2): ∣∣↓φ

(i)
0,4

〉− = |4〉Ai (|10〉 − |21〉)Ai+1Ai+2
,∣∣↑φ

(i)
0,4

〉− = |4〉Ai (|20〉 − |11〉)Ai+1Ai+2
,∣∣�φ

(i)
0,4

〉− = ∣∣↓φ
(i)
0,4

〉+ − ∣∣↑φ
(i)
0,4

〉+
,∣∣↓ψ

(i)
0,4

〉− = |4〉Ai (|12〉 − |23〉)Ai+1Ai+2
,∣∣↑ψ

(i)
0,4

〉− = |4〉Ai (|22〉 − |13〉)Ai+1Ai+2
,∣∣�ψ

(i)
0,4

〉− = ∣∣↓ψ
(i)
0,4

〉+ − |↑ψ
(i)
0,4

〉+
,∣∣↓ξ

(i)
0,4

〉− = |4〉Ai (|30〉 − |41〉)Ai+1Ai+2
,∣∣↑ξ

(i)
0,4

〉− = |4〉Ai (|40〉 − |31〉)Ai+1Ai+2
,∣∣�ξ

(i)
0,4

〉− = ∣∣↓ξ
(i)
0,4

〉+ − |↑ξ
(i)
0,4

〉+
,∣∣↓η

(i)
0,4

〉− = |4〉Ai (|32〉 − |43〉)Ai+1Ai+2
,∣∣↑η

(i)
0,4

〉− = |4〉Ai (|42〉 − |33〉)Ai+1Ai+2
,∣∣�η

(i)
0,4

〉− = ∣∣↓η
(i)
0,4

〉+ − |↑η
(i)
0,4

〉+
,

∣∣↓κ
(i)
0,4

〉− = ∣∣�φ
(i)
0,4

〉+ − |�η
(i)
0,4

〉+
,∣∣↑κ

(i)
0,4

〉− = ∣∣�ξ
(i)
0,4

〉+ − |�ψ
(i)
0,4

〉+
,∣∣�κ

(i)
0,4

〉− = ∣∣↓κ
(i)
0,4

〉+ − |↑κ
(i)
0,4

〉+
,∣∣↓φ

(i)
4,0

〉− = |0〉Ai (|01〉 − |12〉)Ai+1Ai+2
,∣∣↑φ

(i)
4,0

〉− = |0〉Ai (|11〉 − |02〉)Ai+1Ai+2
,∣∣�φ

(i)
4,0

〉− = ∣∣↓φ
(i)
4,0

〉+ − ∣∣↑φ
(i)
4,0

〉+
,∣∣↓ξ

(i)
4,0

〉− = |0〉Ai (|03〉 − |14〉)Ai+1Ai+2
,∣∣↑ξ

(i)
4,0

〉− = |0〉Ai (|13〉 − |04〉)Ai+1Ai+2
,∣∣�ξ

(i)
4,0

〉− = ∣∣↓ξ
(i)
4,0

〉+ − ∣∣↑ξ
(i)
4,0

〉+
,∣∣↓ψ

(i)
4,0

〉− = |0〉Ai (|21〉 − |32〉)Ai+1Ai+2
,∣∣↑ψ

(i)
4,0

〉− = |0〉Ai (|31〉 − |22〉)Ai+1Ai+2
,∣∣�ψ

(i)
4,0

〉− = ∣∣↓ψ
(i)
4,0

〉+ − ∣∣↑ψ
(i)
4,0

〉+
,∣∣↓η

(i)
4,0

〉− = |0〉Ai (|23〉 − |34〉)Ai+1Ai+2
,∣∣↑η

(i)
4,0

〉− = |0〉Ai (|33〉 − |24〉)Ai+1Ai+2
,∣∣�η

(i)
4,0

〉− = ∣∣↓η
(i)
4,0

〉+ − ∣∣↑η
(i)
4,0

〉+
,∣∣↓κ

(i)
4,0

〉− = ∣∣�φ
(i)
4,0

〉+ − ∣∣�η
(i)
4,0

〉+
,∣∣↑κ

(i)
4,0

〉− = ∣∣�ψ
(i)
4,0

〉+ − ∣∣�ξ
(i)
4,0

〉+
,∣∣�κ

(i)
4,0

〉− = ∣∣↓κ
(i)
4,0

〉+ − ∣∣↑κ
(i)
4,0

〉+
,∣∣κ (i)

0,4

〉− = ∣∣�κ
(i+1)
0,4

〉+ − ∣∣�κ
(i+2)
4,0

〉+
,∣∣κ (i)

0,4

〉+ = ∣∣�κ
(i+1)
0,4

〉+ + ∣∣�κ
(i+2)
4,0

〉+
.

The above 98 states along with the basis B1,3
3 (considering

{|1〉, |2〉, |3〉} are the ordered bases of Alice, Bob, and
Charlie) form a complete basis in C5 ⊗ C5 ⊗ C5 and we
denote it as B0,4

5 . Therefore every conjugate pair defines
two complete orthogonal bases for the corresponding
composite Hilbert space. Except for the diagonal elements
(self-conjugate) a 5 ⊗ 5 matrix contains ten distinct pairs
of conjugate elements. Then by this rule we can define
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FIG. 2. Color outline for the construction of UBBII in C5 ⊗
C5 ⊗ C5 as described above. The method is like peeling an onion.
The upper two dominoes [panels (a) and (b)] represent the outer
part whereas the lower two [panel (c)] represent the inner part of
the Rubik cube representation for C5 ⊗ C5 ⊗ C5. For each element
of the corresponding dominoes we can get a different UBBII in
C5 ⊗ C5 ⊗ C5. Here we choose the elements 40 and 04 for the outer
part whereas 13 and 31 are chosen for the inner part.

20 × 6 = 120 (for B1,3
3 ) orthogonal complete bases in

C5 ⊗ C5 ⊗ C5. |S〉 = (|0〉 + |1〉 + |2〉 + |3〉 + |4〉)A(|0〉 +
|1〉 + |2〉 + |3〉 + |4〉)B(|0〉 + |1〉 + |2〉 + |3〉 + |4〉)C is a
stopper state. We claim that the set

U0,4
5 = B0,4

5 ∪ B1,3
3 ∪ {|S〉}∖{{∣∣κ (0)

0,4

〉+
,
∣∣κ (1)

0,4

〉+
,
∣∣κ (2)

0,4

〉+}
∪ {∣∣κ (0)

1,3

〉+
,
∣∣κ (1)

1,3

〉+
,
∣∣κ (2)

1,3

〉+} ∪ {|κk〉}4
k=0

}
(6)

is a UBBII in C5 ⊗ C5 ⊗ C5. The color outline for the method
of construction is given in Fig. 2. Generalization of the con-
struction for arbitrary local dimensions is presented next. �

A distillable subspace must be with a negative partial trans-
pose (NPT) subspace. In Ref. [64] the authors showed that for
a Cn1 ⊗ Cn2 system, the dimension of distillable subspaces is
upper bounded by (n1− 1) (n2 − 1). Since any rank-4 bipartite
NPT states are distillable [65], therefore when the composite
system dimension is not more than 9, the NPT subspace is
indeed a distillable subspace and the explicit construction
follows from Ref. [18]. Even if the construction of NPT
subspaces is known for arbitrary large-dimensional systems
[64], but the distillability of those subspaces remains unclear.
In fact, in Ref. [65] the authors have conjectured a bound
NPT state of rank 5. With the further continuation of the
works mentioned above, the authors in Ref. [79] constructed a
five-dimensional subspace in a tripartite system which is dis-
tillable across every bipartition. The next section will provide
a detailed discussion of these specific types of subspaces.

V. CONSTRUCTIONS IN (C4)⊗3

So in C4 ⊗ C4 ⊗ C4 we define a complete orthogonal
basis as follows, denoting it by B0,3

4 (for i = 0, 1, 2 and w

being the cube root of unity):∣∣↓φ
(i)
0,3

〉w = |3〉Ai (|10〉 + ω|21〉 + ω2|32〉)Ai+1Ai+2
,∣∣↓φ

(i)
0,3

〉w2 = |3〉Ai (|10〉 + ω2|21〉 + ω|32〉)Ai+1Ai+2
,∣∣↓φ

(i)
0,3

〉w = |3〉Ai (|20〉 + ω|31〉 + ω2|12〉)Ai+1Ai+2
,∣∣

↪→ φ(i)
0,3

〉w2 = |3〉Ai (|20〉 + ω2|31〉 + ω|12〉)Ai+1Ai+2
,∣∣ � φ

(i)
0,3

〉w = |3〉Ai (|30〉 + ω|11〉 + ω2|22〉)Ai+1Ai+2
,∣∣ � φ

(i)
0,3

〉w2 = |3〉Ai (|30〉 + ω2|11〉 + ω|22〉)Ai+1Ai+2
,∣∣�φ

(i)
0,3

〉w = ∣∣↓φ
(i)
0,3

〉+ + ω
∣∣

↪→ φ(i)
0,3

〉+ + ω2
∣∣ � φ

(i)
0,3

〉+
,∣∣�φ

(i)
0,3

〉w2 = ∣∣↓φ
(i)
0,3

〉+ + ω2
∣∣

↪→ φ(i)
0,3

〉+ + ω
∣∣ � φ

(i)
0,3

〉+
,

where∣∣↓φ
(i)
0,3

〉+ = |3〉Ai (|10〉 + |21〉 + |32〉)Ai+1Ai+2
,∣∣

↪→ φ(i)
0,3

〉+ = |3〉Ai (|20〉 + |31〉 + |12〉)Ai+1Ai+2
,∣∣ � φ

(i)
0,3

〉+ = |3〉Ai (|30〉 + |11〉 + |22〉)Ai+1Ai+2
,∣∣↓φ

(i)
3,0

〉w = |0〉Ai (|01〉 + ω|12〉 + ω2|23〉)Ai+1Ai+2
,∣∣↓φ

(i)
3,0

〉w2 = |0〉Ai (|01〉 + ω2|12〉 + ω|23〉)Ai+1Ai+2
,∣∣

↪→ φ(i)
3,0

〉w = |0〉Ai (|02〉 + ω|13〉 + ω2|21〉)Ai+1Ai+2
,∣∣

↪→ φ(i)
3,0

〉w2 = |0〉Ai (|02〉 + ω2|13〉 + ω|21〉)Ai+1Ai+2
,∣∣ � φ

(i)
3,0

〉w = |0〉Ai (|03〉 + ω|11〉 + ω2|22〉)Ai+1Ai+2
,∣∣ � φ

(i)
3,0

〉w2 = |0〉Ai (|03〉 + ω2|11〉 + ω|22〉)Ai+1Ai+2
,∣∣�φ

(i)
3,0

〉w = ∣∣↓φ
(i)
3,0

〉+ + ω
∣∣

↪→ φ(i)
3,0

〉+ + ω2
∣∣ � φ

(i)
3,0

〉+
,∣∣�φ

(i)
3,0

〉w2 = ∣∣↓φ
(i)
3,0

〉+ + ω2
∣∣

↪→ φ(i)
3,0

〉+ + ω
∣∣ � φ

(i)
3,0

〉+
,
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FIG. 3. Color outline for the construction of UBBII in C4 ⊗
C4 ⊗ C4 as described above. The green down arrow relates with
|↓φ

(i)
0,3〉, whereas the sky hook arrow and the red shift arrow relate

with | ↪→ φ (i)
0,3〉 and | � φ

(i)
0,3〉 respectively.

where ∣∣↓φ
(i)
3,0

〉+ = |0〉Ai (|01〉 + |12〉 + |23〉)Ai+1Ai+2
,∣∣

↪→ φ(i)
3,0

〉+ = |0〉Ai (|02〉 + |13〉 + |21〉)Ai+1Ai+2
,∣∣ � φ

(i)
3,0

〉+ = |0〉Ai (|03〉 + |11〉 + |22〉)Ai+1Ai+2
,∣∣φ(i)

0,3

〉± = ∣∣�φ
(i)
0,3

〉+ ± ∣∣�φ
(i)
3,0

〉+
,

where ∣∣�φ
(i)
0,3

〉+ = ∣∣↓φ
(i)
0,3

〉+ + ∣∣ ↪→ φ(i)
0,3

〉+ + ∣∣ � φ
(i)
0,3

〉+
,∣∣�φ

(i)
3,0

〉+ = ∣∣↓φ
(i)
3,0

〉+ + ∣∣ ↪→ φ(i)
3,0

〉+ + ∣∣ � φ
(i)
3,0

〉+
,

|ψ0〉 = |1 − 2〉A0 |1 − 2〉A1 |1 − 2〉A2 ,

|ψ1〉 = |1 + 2〉A0 |1 − 2〉A1 |1 − 2〉A2 ,

|ψ2〉 = |1 − 2〉A0 |1 + 2〉A1 |1 − 2〉A2 ,

|ψ3〉 = |1 − 2〉A0 |1 − 2〉A1 |1 + 2〉A2 ,

|ψ4〉 = |1 + 2〉A0 |1 + 2〉A1 |1 − 2〉A2 ,

|ψ5〉 = |1 + 2〉A0 |1 − 2〉A1 |1 + 2〉A2 ,

|ψ6〉 = |1 − 2〉A0 |1 + 2〉A1 |1 + 2〉A2 ,

|ψ7〉 = |1 + 2〉A0 |1 + 2〉A1 |1 + 2〉A2 ,

{|κk〉 = |k〉A0 |k〉A1 |k〉A2 , k = 0, 3}.
The 64 states described above form a complete basis

of C4 ⊗ C4 ⊗ C4. Let |S〉 = (|0〉 + |1〉 + |2〉 + |2〉)A(|0〉 +
|1〉 + |2〉 + |2〉)B(|0〉 + |1〉 + |2〉 + |2〉)C be a stopper state.
We claim that the set

U0,3
4 = B0,3

4 ∪ {|S〉}∖{{∣∣φ(0)
0,3

〉+
,
∣∣φ(1)

0,3

〉+
,
∣∣φ(2)

0,3

〉+
, |ψ7〉

}
∪ {|κk〉}k=0,3

}
(7)

is a UBBII in C4 ⊗ C4 ⊗ C4. The color outline for the method
of construction is given in Fig. 3. Generalization of the con-
struction for arbitrary local dimensions is presented in the next
section. �

VI. CONSTRUCTION OF UBBII IN ARBITRARY
LARGE DIMENSION

In this section our aim is to generalize the whole structure
discussed earlier in n ⊗ n ⊗ n, n � 3. The stopper state for

this dimension is

3⊗
i=1

[
n−1∑
k=0

|k〉
]

Ai

. (8)

We will choose the remaining biseparable states from the
outer part of the cube. Then we will go for the inner part,
which is nothing but another n − 2 ⊗ n − 2 ⊗ n − 2 cube, and
we will choose states from the outer part of the recent cube
and so on. And the innermost cube is of 3 ⊗ 3 ⊗ 3 (odd n) and
4 ⊗ 4 ⊗ 4 (even n). To define it mathematically we choose a
variable, say sn = 0(1)(� n

2� − 1). sn = 0 corresponds to the
outermost part whereas sn = � n

2� − 1 corresponds to the in-
nermost part of the n ⊗ n ⊗ n cube.

Now we fix sn = s. The states are⎡
⎣(n−2)−s∑

k=s

|k〉
⎤
⎦

Ai

⊗
⎡
⎣|(n − 1) − s〉 ⊗

⎧⎨
⎩

(n−2)−s∑
k=s+1

|k〉
⎫⎬
⎭

−
⎧⎨
⎩

(n−2)−s∑
k=s+1

|k〉
⎫⎬
⎭⊗ |s〉

⎤
⎦

Ai+1Ai+2

. (9)

Now (n − 1) − 2sn can be factorized in r prime fac-
tors p1, p2, · · · , pr with 2 � p1 � p1 � · · · � pr i.e., (n −
1) − 2s = p1 p2 · · · pr . We now define ρl =∏l

i=0 pi and αl =
(n−1)−2s

ρ(l ) . Then we introduce another variable ls = 0(1)(r −
1).

Fix ls = l . Now introduce new four variables dl =
0(1)(αl+1 − 1), hl = 0(1)(αl+1 − 1), jl = 1(1)(pl+1 − 1),
and tl = 0(1)(pl+1 − 1).

For dl = d, hl = h, jl = j and tl = t we define∣∣κn,s,l
d,h, j,t

〉
BC

=
pl+1−t−1∑

k=0

w
pl+1

j,k

⎧⎨
⎩

ρl −1∑
m=0

|(s + 1) + dρl+1 + kρl + m〉
⎫⎬
⎭

B

⊗
⎧⎨
⎩

ρl −1∑
m=0

|s + hρl+1 + (k + t )ρl + m〉
⎫⎬
⎭

C

+
t−1∑
k=0

w
pl+1

j,pl+1−t+k

⎧⎨
⎩

ρl −1∑
m=0

|(s + 1) + (d + 1)ρl+1

+(k − t )ρl + m〉
⎫⎬
⎭

B

⊗
⎧⎨
⎩

ρl −1∑
m=0

|s + hρl+1 + kρl + m〉
⎫⎬
⎭

C

.

The states are

|(n − 1) − s〉Ai
⊗ ∣∣κn,s,l

d,h, j,t

〉
Ai+1Ai+2

(10)

and

|s〉Ai
⊗ ∣∣κn,s,l

d,h, j,t

〉
Ai+2Ai+1

. (11)
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For dl = d, hl = h and jl = j, we define

∣∣κn,s,l
d,h, j

〉
BC

=
pl+1−1∑

tl =0

w
pl+1
j,tl

∣∣κn,s,l
d,h,0,tl

〉
BC

.

The states are

|(n − 1) − s〉Ai
⊗ ∣∣κn,s,l

d,h, j

〉
Ai+1Ai+2

(12)

and

|s〉Ai
⊗ ∣∣κn,s,l

d,h, j

〉
Ai+2Ai+1

,

w
p
j,k = e jk 2π

p i
, i = √−1. (13)

Here we generalize the UBBII for arbitrary large composite
Hilbert space Cn ⊗ Cn ⊗ Cn. Using the same method of con-
struction as described above we can get a chain of matrix pairs
with descending dimensions. The color outline for the method
of construction is given in Fig. 4.

VII. CONSTRUCTION OF GENUINELY ENTANGLED
SPACE AND POSSIBLE APPLICATION

The complementary subspace of U0,2
3 contains no bisep-

arable states, thus it becomes a GES. In Ref. [79] the
authors constructed a GES which is distillable across every
bipartition. So it is quite interesting to check whether the com-
plementary subspace of U0,2

3 is bidistillable or not. Suppose

P (n) is the rank-n projector (1 � n � 5) acting on GE(5)
and any state of GE(5) must be expressed as a linear combi-

nation of states from the set K = {{|κ (0)
0,2〉+, |κ (1)

0,2〉+, |κ (2)
0,2〉+} ∪

{|κk〉}2
k=0}}. Now to construct n mutually orthogonal vectors

in GE(5), we need at least (n + 1) states from K and the
bimarginals obtained from the projector of those n states
must be of rank (n + 1). This proves the distillability of the
states proportional to P (n) across every bipartition [79]. It
follows from the fact that for a n-dimensional subspace Sαβ

of Cdα
⊗

Cdβ , if the projector Pαβ on Sαβ satisfies R(Pαβ ) <

max{R(Pα ),R(Pβ )}, then all rank-n states supported on Sαβ

are one-copy distillable where Pα(β ) = Trβ(α)(Pαβ ) and R(.)
denotes the rank of the operator. Tr_((.)) denotes the partial
trace.

The state ρS
GE(5) proportional to the projector on the sub-

space GE(5) is given by

ρS
GE(5) := 1

5

⎛
⎜⎝I3 ⊗ I3 ⊗ I3 −

∑
χ∈U0,2

3

|χ̄〉〈χ̄ |

⎞
⎟⎠.

Here, |χ̄〉 is the normalized state proportional to |χ〉. Since
the construction is party symmetric, all the two-party re-
duced states ρβ := Trα[ρS

GE(5)], with β ∈ {BC,CA, AB} and
α ∈ {A, B,C} respectively, are identical and the corresponding
density matrix takes the following form:

ρβ = 1

360

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

82 10 −8 1 1 −8 1 1 −8

10 19 1 1 10 1 1 1 −8

−8 1 19 −8 1 19 −8 −8 −8

1 1 −8 19 1 −8 19 1 −8

1 10 1 1 82 1 19 1 −8

−8 1 19 −8 1 19 10 −8 −8

1 1 −8 19 19 10 19 19 10

1 1 −8 1 1 −8 19 19 10

−8 −8 −8 −8 −8 −8 10 10 82

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The rank of ρβ is 6. Therefore the state ρS
GE(5) is bidistill-

able across every bipartition.
It is possible to construct strongly nonlocal UBBII in

Cn1 ⊗ Cn2 ⊗ Cn3 by applying the same procedure. How-
ever, in that case we need to face several difficulties.
First we need to construct UBBII in Cn1 ⊗ Cn2 ⊗ Cn3 . Sec-
ond, for the strong quantum nonlocality of the UBBII,
we require that it has a similar structure under cyclic
permutation of the subsystems. Otherwise, we need to
show that any two subsystems can only perform a triv-
ial orthogonality-preserving POVM, and it requires a lot of
calculations.

It is known that the UPB is locally indistinguishable and
so is UBBI. It is quite interesting to know whether there
exists a UBBII which is locally indistinguishable. In Ref. [43]
the authors constructed a strong nonlocal UPB which can
be trivially extended to a strongly nonlocal UBBI. One may

ask whether there exists a UBBII which is strongly nonlocal.
In this paper, we solve this problem in a different way. The
application of the strong nonlocal UBBII in secret sharing
could be as follows.

Suppose that some secret information encoded by a bunch
of orthogonal quantum states (some of which contain bipartite
entanglement also) is shared between three parties Alice, Bob,
and Charlie. So for any pair of parties, the average correlation
between them is not exactly equal to zero. The task is to
decode the information together at some future stage. It is also
restricted that any operation which gives the final failure for
future decoding of information might not be allowed. So it
is assumed that every participant only can perform OPLM.
Otherwise, even the global measurement would not be able to
decode the information in the future. The concept of strong
quantum nonlocality guarantees the security of the encoded
information; e.g., no one of Alice, Bob, and Charlie can reveal
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FIG. 4. Color outline for the construction of UBBII in Cn ⊗
Cn ⊗ Cn as described above. The method is like peeling an onion.
Panel (a) defines the outermost layer. Panels (b) and (c) define the
next inner layers. By continuing this, panel (d) represents the inner-
most layer. For each element of the corresponding dominoes we can
get a different UBBII in C5 ⊗ C5 ⊗ C5. Here we choose the elements
(n − 1)0 and 0(n − 1) for the outer part.

the information by OPLM, and even if any two of them come
close the security of the information remains the same.

VIII. DISCUSSION

Multipartite entanglement is a fundamental concept
in quantum physics that describes the intricate correla-
tions among multiple quantum particles. It has practical

applications in quantum technologies and plays a vital role in
understanding complex quantum systems [71,81,82]. A UBB
is a set of orthogonal pure biseparable states which span a
subspace of a given Hilbert space while the complementary
subspace contains only genuinely entangled states. The im-
portance of the UBB lies in its ability to define a subspace
of the Hilbert space that contains only genuinely entangled
states. Genuine entanglement is crucial in quantum informa-
tion processing because it signifies strong correlations that are
not reducible to classical probabilistic models. Here we have
established connections between the concept of unextendible
biseparable bases and the phenomenon of strong quantum
nonlocality in an extensive tripartite scenario. In fact, we are
able to set up a wide class of UBB in Cn ⊗ Cn ⊗ Cn, d �
3 that does not contain any UPB as a proper subset of it.
Specifically, we have shown that the above class of UBB
satisfies the phenomenon of strong quantum nonlocality from
the perspective of local elimination. The notion of UBB stud-
ied here is significant as it sufficiently leads to a subspace
containing only genuinely entangled states. Our symmetric
class UBBII leads to a subspace that is not only a GES but also
distillable across every bipartition. Our paper also motivates
some interesting questions for further research. First of all,
the construction of a multipartite subspace is possible where
the subspace is not only distillable across all bipartitions but
also distillable in partitions across multiple parties. Another
important question is the relationship between strong quantum
nonlocality and UBB in multipartite cases. From our knowl-
edge, most of the references focus on the smallest number of
states to show strong nonlocality, but generally speaking, we
need enough states to show strong quantum nonlocality. So it
is better to search for other methods to explain the relationship
between strong quantum nonlocality and UBB in the future.
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APPENDIX A: PROOF OF THEOREM 1

We only need to show that any party cannot start a non-
trivial OPLM. As we see that the states in (1) follow the
cyclic property, then if any one party (say party A0) goes first
and cannot start a nontrivial measurement then parties A1 and
A2 also cannot start nontrivial OPLM. So, it is sufficient to
prove A0 can only perform the measurement proportional to
the identity.

Suppose E (0)
α = M†

αMα denotes such measurements that A0

starts. As A0’s system is defined in three-dimensional Hilbert
space H(0) in the {|0〉, |1〉, |2〉}A0 basis, we can write Eα as a
3 × 3 square matrix, as follows:

E (0)
α =

⎛
⎝

〈0| 〈1| 〈2|
|0〉 α00 α01 α02

|1〉 α10 α11 α12

|2〉 α20 α21 α22

⎞
⎠. (A1)

After measurement, all the states either eliminate or remain
orthogonal. In both cases 〈φ|E (0)

α ⊗ I (1)
3 ⊗ I (2)

3 |ψ〉 = 0, φ �=

052211-9
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ψ, φ,ψ ∈ U0,2
3 and for every outcome α. Then considering

the pairs |↓κ
(0)
2,0〉−, |↑κ

(2)
0,2〉− we get

−〈↓ κ
(0)
2,0

∣∣E (0)
α ⊗ I (1)

3 ⊗ I (2)
3

∣∣↑κ
(2)
0,2

〉− = 0,

−〈↑ κ
(2)
0,2

∣∣E (0)
α ⊗ I (1)

3 ⊗ I (2)
3

∣∣↓κ
(0)
2,0

〉− = 0,

i.e.,

〈0|Eα|1〉A0
〈1|1〉A1

〈2|2〉A2
= 0,

〈1|Eα|0〉A0
〈1|1〉A1

〈2|2〉A2
= 0,

i.e.,

α01 = α10 = 0. (A2)

Similarly, for pairs |↑κ
(1)
0,2〉−, |↓κ

(0)
0,2〉− and |↓κ

(0)
2,0〉−, |↓κ

(1)
2,0〉−

we get

α12 = α21 = 0, (A3)

α20 = α02 = 0, (A4)

respectively.
Now the matrix Eα reduces to a diagonal matrix:

EA
α =

⎛
⎝α00 0 0

0 α11 0
0 0 α22

⎞
⎠. (A5)

To show it is proportional to identity we only have to prove
α00 = α11 = α22.

Now by choosing the pairs |S〉, |↓κ
(1)
2,0〉− and |S〉, |↓κ

(2)
2,0〉−,

we get 〈
S
∣∣E (0)

α ⊗ I (1)
3 ⊗ I (2)

3

∣∣↓κ
(1)
2,0

〉− = 0,〈
S
∣∣E (0)

α ⊗ I (1)
3 ⊗ I (2)

3

∣∣↓κ
(2)
2,0

〉− = 0,

implying

〈0 + 1 + 2|Eα|1〉A0
〈0|0〉A1

〈0|0〉A2

− 〈0 + 1 + 2|Eα|2〉A0
〈0|0〉A1

〈1|1〉A2
= 0,

〈0 + 1 + 2|Eα|0〉A0
〈1|1〉A1

〈0|0〉A2

− 〈0 + 1 + 2|Eα|1〉A0
〈2|2〉A1

〈0|0〉A2
= 0, (A6)

i.e.,

α01 + α11 + α21 = α02 + α12 + α22,

α00 + α10 + α20 = α01 + α11 + α21. (A7)

Now, from (A2)–(A4) and (A7) we get

α00 = α11 = α22. (A8)

This completes the proof. �

APPENDIX B: PROOF OF THEOREM 2

As the set of states given in (1) is cyclic in every triparti-
tion, it is also cyclic in every bipartition. So we only need to
prove the states are irreducible in A0A1|A2, i.e., parties A0 and
A1 can apply joint measurement on the subsystem A0A1.

For that we rewrite the states in (1) in the basis
{|0〉, |1〉, |2〉, |3〉, |4〉, |5〉, |6〉, |7〉, |0〉}A0A1 instead of

{|00〉, |01〉, |10〉, |20〉, |11〉, |02〉, |12〉, |21〉, |22〉}A0A1

respectively, as follows:∣∣↓κ
(0)
0,2

〉− = |7〉A0A1
|0〉A2

− |8〉A0A1
|1〉A2

,∣∣↓κ
(1)
0,2

〉− = |51〉A0A1A2
− |62〉A0A1A2

,∣∣↓κ
(2)
0,2

〉− = |22〉 − |72〉,∣∣↑κ
(0)
0,2

〉− = |80〉 − |71〉,∣∣↑κ
(1)
0,2

〉− = |52〉 − |61〉,∣∣↑κ
(2)
0,2

〉− = |32〉 − |42〉,∣∣↓κ
(0)
2,0

〉− = |01〉 − |12〉,∣∣↓κ
(1)
2,0

〉− = |20〉 − |31〉,∣∣↓κ
(2)
2,0

〉− = |10〉 − |60〉,∣∣↑κ
(0)
2,0

〉− = |11〉 − |02〉,∣∣↑κ
(1)
2,0

〉− = |21〉 − |30〉,∣∣↑κ
(2)
2,0

〉− = |40〉 − |50〉,∣∣�κ
(0)
0,2

〉− = |7 − 8〉|0 − 1〉,∣∣�κ
(1)
0,2

〉− = |5 − 6〉|1 − 2〉,∣∣�κ
(2)
0,2

〉− = |2 − 3 − 4 + 7〉|2〉,∣∣�κ
(0)
2,0

〉− = |0 − 1〉|1 − 2〉,∣∣�κ
(1)
2,0

〉− = |2 − 3〉|0 − 1〉,∣∣�κ
(2)
2,0

〉− = |1 − 4 − 5 + 6〉|0〉,∣∣κ (0)
0,2

〉− = |5 + 6〉|1 + 2〉 − |1 + 4 + 5 + 6〉|0〉,∣∣κ (1)
0,2

〉− = |2 + 3 + 4 + 7〉|2〉 − |0 + 1〉|1 + 2〉,∣∣κ (2)
0,2

〉− = |7 + 8 − 2 − 3〉|0 + 1〉,
|S〉 = |0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8〉|0 + 1 + 2〉.

The proof is quite similar to the previous one. A0A1 starts an
OPLM EA0A1

α = M†
αMα which is nothing but a square matrix

of order 9:

EA0A1
α =

⎛
⎜⎜⎝

〈0| 〈1| · · · 〈8|
|0〉 α00 α01 · · · α08

|1〉 α10 α11 · · · α18
...

...
...

. . .
...

|8〉 α80 α81 · · · α88

⎞
⎟⎟⎠. (B1)

As we know Mα ⊗ IA2 |φ〉’s for |φ〉 ∈ U are mutually
orthogonal, for all order pairs {|ψ〉, |φ〉}, |φ〉 �= |ψ〉 ∈
U0,2

3 and for every outcome α, 〈ψ |EAB
α ⊗ IC

3 |φ〉 =
0. Now considering the order pairs {|ψ〉, |φ〉} for
|ψ〉 ∈ {|↓κ

(1)
2,0〉−, |↑κ

(1)
2,0〉−, |↓κ

(0)
0,2〉−, |↑κ

(0)
0,2〉−} and |φ〉 ∈

{|↓κ
(1)
0,2〉−, |↑κ

(1)
0,2〉−, |↓κ

(0)
2,0〉−, |↑κ

(0)
2,0〉−}, we get αi j = 0

(and hence, α ji = 0 ) for i = 3, 2, 8, 7 and j = 5, 6, 0, 1
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respectively:

∴, EA0A1
α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α00 α01 0 0 α04 α05 α06 0 0
α10 α11 0 0 α14 α15 α16 0 0
0 0 α22 α23 α24 0 0 α27 α28

0 0 α32 α33 α34 0 0 α37 α38

α40 α41 α42 α43 α44 α45 α46 α47 α48

α50 α51 0 0 α54 α55 α56 0 0
α60 α61 0 0 α64 α65 α66 0 0
0 0 α72 α73 α74 0 0 α77 α78

0 0 α82 α83 α84 0 0 α87 α88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B2)

Now for the order pairs {|ψ〉, |↑κ
(2)
2,0〉−},

|ψ〉 ∈ {∣∣↓κ
(1)
2,0

〉−
,
∣∣↑κ

(1)
2,0

〉−
,
∣∣↓κ

(0)
0,2

〉−
,
∣∣↑κ

(0)
0,2

〉−}
,

and for {|↑κ
(2)
0,2〉−, |φ〉},

|φ〉 ∈ {∣∣↓κ
(1)
0,2

〉−
,
∣∣↑κ

(1)
0,2

〉−
,
∣∣↓κ

(0)
2,0

〉−
,
∣∣↑κ

(0)
2,0

〉−}
,

we get αi4 = 0, i = 2, 3, 7, 8 (and hence, α4i = 0 ) and α4 j = 0, j = 6, 5, 1, 0 (and hence, α j4 = 0 ) respectively:

∴ EA0A1
α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α00 α01 0 0 0 α05 α06 0 0
α10 α11 0 0 0 α15 α16 0 0
0 0 α22 α23 0 0 0 α27 α28

0 0 α32 α33 0 0 0 α37 α38

0 0 0 0 α44 0 0 0 0
α50 α51 0 0 0 α55 α56 0 0
α60 α61 0 0 0 α65 α66 0 0
0 0 α72 α73 0 0 0 α77 α78

0 0 α82 α83 0 0 0 α87 α88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B3)

By choosing the order pairs {|↓κ
(1)
2,0〉−, |φ〉},

|φ〉 ∈ {∣∣↑κ
(1)
2,0

〉−
,
∣∣↓κ

(0)
0,2

〉−
,
∣∣↑κ

(0)
0,2

〉−}
,

we get

α32 + α23 = 0, α27 + α38 = 0, α37 + α28 = 0. (B4)

For {|↓κ
(1)
2,0〉−, |S〉}, we get

{(α22 − α33) − (α32 − α23)} + {(α27 − α38) − (α37 − α28)}
= 0. (B5)

For {|↓κ
(1)
2,0〉−, |κ (2)

0,2〉−}, we get

{(α22 − α33) − (α32 − α23)} − {(α27 − α38) − (α37 − α28)}
= 0. (B6)

Equations (B5) and (B6) together provide

(α22 − α33) − (α32 − α23) = 0,

(α27 − α38) − (α37 − α28) = 0. (B7)

Now by choosing the order pairs {|↓κ
(1)
2,0〉−, |φ〉}, |φ〉 ∈

{|�κ
(1)
2,0〉−, |�κ

(0)
0,2〉−}, we get

(α22 − α33) + (α32 − α23) = 0,

(α27 − α38) + (α37 − α28) = 0. (B8)

Equations (B7) and (B8) together give

(α22 − α33) = 0, (α32 − α23) = 0,

(α27 − α38) = 0, (α37 − α28) = 0. (B9)

From (B4) and (B9), we get α32 = α23 = α27 = α38 =
α37 = α28 = 0 and ∴ α72 = α83 = α73 = α82 = 0. Now for
{|ψ〉, |↓κ

(1)
0,2〉−}, |ψ〉 ∈ {|↓κ

(0)
2,0〉−, |↑κ

(0)
2,0〉−}, we get

α05 + α16 = 0, α15 + α06 = 0. (B10)

Now by considering {|↓κ
(0)
2,0〉−, |�κ

(1)
0,2〉−} we get

(α05 − α16) + (α15 − α06) = 0 (B11)

and by choosing {|↓κ
(0)
2,0〉−, |κ (0)

0,2〉−} we get

(α05 − α16) − (α15 − α06) = 0. (B12)

Equations (B11) and (B12) give together

(α05 − α16) = 0, (α15 − α06) = 0. (B13)

From (B10) and (B13), we get α05 = α16 = α15 = α06 = 0
and ∴ α50 = α61 = α51 = α60 = 0. Choosing order
pairs {|↓κ

(0)
2,0〉−, |↑κ

(0)
2,0〉−}, {|↓κ

(1)
0,2〉−, |↑κ

(1)
0,2〉−} and

{|↓κ
(0)
0,2〉−, |↑κ

(0)
0,2〉−} we get

(α10 + α01) = 0, (α65 + α56) = 0, (α78 + α87) = 0.

(B14)

Now for the pairs {|↓κ
(0)
2,0〉−, |�κ

(0)
2,0〉−}, {|↓κ

(1)
0,2〉−, |�κ

(1)
0,2〉−}

and {|↓κ
(0)
0,2〉−, |S〉} we get

(α00 − α11) + (α10 − α01) = 0,

(α55 − α66) + (α65 − α56) = 0, (B15)

(α77 − α88) + (α78 − α87) = 0,
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and for the pairs {|�κ
(0)
2,0〉−, |↓κ

(0)
2,0〉−}, {|�κ

(1)
0,2〉−, |↓κ

(1)
0,2〉−},

and {|S〉, |↓κ
(0)
0,2〉−} we get

(α00 − α11) − (α10 − α01) = 0,

(α55 − α66) − (α65 − α56) = 0, (B16)

(α77 − α88) − (α78 − α87) = 0.

Equations (B15) and (B16) give

(α00 − α11) = 0, (α10 − α01) = 0,

(α55 − α66) = 0, (α65 − α56) = 0, (B17)

(α77 − α88) = 0, (α78 − α87) = 0.

From (B14) and (B17), we get α10 = α01 = α65 = α56 =
α78 = α87 = 0, and

∴ EA0A1
α =

⎡
⎢⎢⎣

α00 0 · · · 0
0 α11 · · · 0
...

...
. . .

...

0 0 · · · α88

⎤
⎥⎥⎦ (B18)

is now a diagonal matrix where α00 = α11, α22 =
α33, α55 = α66, α77 = α88. Now considering the
pairs {|↓κ

(2)
0,2〉−, |κ (1)

0,2〉−}, {|↑κ
(2)
2,0〉−, |�κ

(2)
2,0〉−} and

{|↓κ
(2)
2,0〉−, |�κ

(2)
2,0〉−}, we get

α22 = α77, α44 = α55, α11 = α66. (B19)

Now by choosing the pair {|κ (1)
0,2〉−, |S〉} we get

2(α00 + α11) − α44 = α22 + α33 + α77

⇒ 2(α00 + α00) − α00 = α22 + α22 + α22

⇒ 3(α00) = 3(α22)

⇒ α00 = α22. (B20)

Eventually we get α00 = α11 = α22 = α33 = α44 = α55 =
α66 = α77 = α88. �
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