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Weak-valued correlation functions: Insights and precise readout strategies
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The correlation function in quantum systems plays a vital role in decoding their properties and gaining insights
into physical phenomena. Its interpretation corresponds to the propagation of particle excitations between space-
time, similar in spirit to the idea of quantum weak measurement in terms of recording the system information
by interaction. By defining weak-valued correlation function, we propose the basic insights and the universal
methods for recording them on the apparatus through weak measurement. To demonstrate the feasibility of our
approach, we perform numerical experiments of perturbed quantum harmonic oscillators, addressing the intricate
interplay between the coupling strength and the number of ensemble copies. Additionally, we extend our protocol
to the domain of quantum field theory, where joint weak values encode crucial information about the correlation
function. Hopefully, this comprehensive investigation can advance our understanding of the fundamental nature
of the correlation function and weak measurement in quantum theories.
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I. INTRODUCTION

The correlation function is an indispensable aspect of
quantum theory that furnishes a comprehensive characteriza-
tion of the properties of quantum systems [1]. By unifying
essential concepts, it serves as a powerful tool for investi-
gating various quantities in quantum field theory, including
scattering amplitudes, transition probabilities, and vertex am-
plitudes. Also, by employing Wick’s trick, the correlation
function provides insights into statistical behaviors in many-
body physics [2]. The physical interpretation of the n-point
correlator 〈�|T [φ̂(x1) · · · φ̂(xn)]|�〉/〈�|�〉 corresponds to
information extraction from the system with probing particles
excitations. It is indeed the amplitude of a system preserving
its ground state after (anti)particle excitations at space-times
(x1, . . . , xn). Those excited particles could be viewed as prob-
ing particles or apparatuses due their weak nature compared
to the whole system. Besides the more conventional cor-
relator, the out-of-time correlator has also proven valuable
in exploring engaging phenomena such as quantum chaos
and information scrambling, which remain active frontiers of
research [3–6].

Meanwhile, recent developments in quantum information
allow us to retrieve the information of a quantum system
through interacting with the apparatus. In particular, weak
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measurement of the Aharonov-Albert-Vaidman (AAV) for-
malism [7] has emerged as a novel way of recording the
information on the pointer while weakly disturbing the sys-
tem, an idea similar to the interpretation of the correlation
function mentioned above. Weak measurements have led to
a range of cutting-edge experiment proposals [8,9] and ad-
vancements [10,11], using this technique. These experiments
include the recording of physical quantities [12–14], quantum
tomography [15,16], quantum steering [17–19], and transition
detection [20,21].

This similarity of extracting information via weak inter-
action motivates us to consider the weak-valued correlation
function as the outcome of a weak measurement. Interestingly,
this perspective is also supported by the Gell-Mann–Low
theorem, as well as the two-state vector formalism. In the
calculation of the correlation function, it is customary to in-
voke the Gell-Mann–Low theorem [22] before embarking on
Feynman diagram calculations. This theorem allows one to
recast the n-point correlator 〈�|T [φ̂(x1) · · · φ̂(xn)]|�〉/〈�|�〉
as a sum of connected diagrams with n external lines. The
physical interpretation of it entails the evolution of two vac-
uum states 〈0||0〉 from the infinite past and future to the
state 〈�||�〉 in the present. If we adopt a time-symmetric
perspective, the two-state vector formalism (TSVF) [23,24]
could be introduced as an alternative to the Gell-Mann–Low
theorem. Without requiring adiabaticity, the TSVF allows for
an arbitrary Hamiltonian to guide the evolution of eigenstates
towards the preselection or postselection state, offering us the
weak-valued interpretation of the correlation function [25].1

1Recently, we became aware of Ref. [25], which aims at showing
a new interpretation of the weak value, whereas in the present work
we focus on the weak-valued correlation function.
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In this article we define the weak-valued correlation func-
tion using the standard AAV formalism, where the correlation
function is viewed as the result of weak measurement. In
Sec. II we propose the general ideas and universal schemes for
recording the correlation function on the apparatus through
weak measurement. In Sec. III we start with the perturbed
quantum harmonic oscillator as the minimal example to ex-
emplify our scheme. By measuring eigenvalues, we estimate
the final apparatus state, yielding complex readouts [26]. Our
findings reveal the trade-off between measurement strength
and the number of experimental copies. This trade-off deter-
mines an optimal coupling coefficient, allowing the closest
estimation of weak values with limited experimental copies.
In Sec. IV we further extend our analysis to quantum field
theory utilizing the framework proposed by Dressel et al.
[27], which presents an alternative paradigm for implementing
weak measurement. In Sec. V we analyze the pivotal role of
the Gell-Mann–Low theorem and TSVF in the weak-valued
correlation function as part of the motivation of our work. We
also discuss the experimental realization and further inves-
tigation of correlators and quantum foundations. We briefly
summarize in Sec. VI.

II. WEAK-VALUED CORRELATION FUNCTION

The basic idea of the weak-valued correlation function
(WVCF) is to construct the space-time excitation of the cor-
relation function through weak measurement. This could be
realized through measuring the excitation operator of the sys-
tem defined by

Ĝ = T [φ̂(x1) · · · φ̂(xn)] (1)

under pre- and postselection of the system into the ground
state |�〉. The scheme of the AAV-type weak measurement
giving the WVCF is as follows. We begin by prepar-
ing the system’s quantum state in the preselection state
|�〉 and the apparatus in an arbitrary state |φ〉, which
combine together into a separable state |�〉 ⊗ |φ〉. Then
we couple the system and apparatus using an impulsive
interaction

Hint = gδ(t − t0)Ĝ ⊗ Â, (2)

where Â is the Hermitian operator of the apparatus used
for coupling. Finally, after postselection |�〉 on the system,
the whole state evolves into 〈�|�〉(|�〉 ⊗ e−igGw Â|φ〉), in the
weak-coupling regime g → 0. Here Gw is usually called
a weak value for Ĝ and different space-time (x1, . . . , xn)
gives different Ĝ and thus different values of Gw. Thus,
we define Gw(x1, . . . , xn) as the WVCF, which converges
to the true value of the correlation function in the limit
of g → 0:

Gw(x1, . . . , xn) → 〈�|T [φ̂(x1) · · · φ̂(xn)]|�〉
〈�|�〉 , g → 0.

(3)

To precisely read out the WVCF recorded in the final state
of the apparatus, we resort to the average value of any operator
M̂ of the apparatus in the final state (derivation details are in

Appendix C)

〈M̂〉 f � 〈M̂〉i + ig〈ÂM̂ − M̂Â〉iReGw

+ g(〈ÂM̂ + M̂Â〉i − 2〈M̂〉i〈Â〉i )ImGw, (4)

where 〈· · · 〉i corresponds to the average over the initial state
of the apparatus |φ〉 and 〈· · · 〉 f corresponds to the average
over the final state of the apparatus e−igGw Â|φ〉. Here Eq. (4)
corresponds to a set of equations of two unknown variables
ReGw and ImGw, the solution of which gives us Gw.

Note that there are other well-known definitions of weak
measurement, e.g., the continuous-in-time positive-operator-
valued measure [28,29]. However, the weak measurement in
this paper refers to only the standard AAV formalism that
consists of a preselection on the system, system-apparatus
coupling, and a postselection on the system, accumulating a
weak value of the apparatus wave function.

Furthermore, our definition of the WVCF and the weak
measurement scheme could be directly generalized to quan-
tum field systems by considering the system and apparatus as
two separate degrees of freedom of a quantum field and by
considering the pre- and postselected states as the boundary
conditions of the quantum field [27]. To define the WVCF, we
need to perform the polar decomposition Ĝ = Û R̂ (see Sec. IV
for an explanation), where Û is a unitary operator and R̂ is a
Hermitian positive-semidefinite operator [30]. This time we
measure the Hermitian part R̂ of the excitation operator

Hint = gδ(t − t0)R̂ ⊗ Â (5)

under the preselection |I〉 = |�〉 ⊗ |Ia〉 and postselection
|F 〉 = |�〉 ⊗ |Fa〉, where |�〉 = Û †|�〉. According to the
quantum action principle [31], the variation of detection prob-
ability is given by

δ ln p = 2δg(ReRwImAw + ImRwReAw ), (6)

where p = |〈F | exp(−i
∫

Ĥintdt )|I〉|2 is the detection proba-
bility of the quantum field and Aw = 〈Fa|Â|Ia〉/〈Fa|Ia〉 is the
weak value of Â. To extract the weak value Rw, we perform
measurements on the left-hand side of Eq. (6), utilizing suit-
able preselection |Ia〉 and postselection |Fa〉 states to solve the
corresponding linear equations. The solution of Eq. (6) gives
us Rw → 〈�|R̂|�〉

〈�|�〉 when δg → 0. We call Rw a weak-valued
Hermitian function. Accordingly, we define the WVCF in the
quantum field as

Gw = Rw

〈�|�〉
〈�|�〉 → 〈�|T [φ̂(x1) · · · φ̂(xn)]|�〉

〈�|�〉 , δg → 0.

(7)

The details of readout strategies in quantum field theory will
be discussed in Sec. IV.

In this work we focus on this type of measurement and
refrain from discussing the detailed implementation on a spe-
cific quantum platform at this stage. Although the operator
being measured may be a product of local operators, the re-
sponse obtained through weak measurements aligns with the
established theory of a weak value [32]. Moreover, the theory
remains valid even in cases where nonlocal interactions are
necessary for certain tasks, enabling experimental devices to
realize joint weak values [33].

052210-2



WEAK-VALUED CORRELATION FUNCTIONS: INSIGHTS … PHYSICAL REVIEW A 109, 052210 (2024)

III. SIMPLEST CASE: PERTURBED QUANTUM
HARMONIC OSCILLATOR

Next we exemplify our proposal in quantum mechanics,
by considering the perturbed quantum harmonic oscillator
(PQHO). The Hamiltonian reads H = p2/2m + mω2x2/2 +
λx4, where the anharmonic perturbation λx4 is treated as the
self-interaction term. Without loss of generality, we define the
excitation operator at an arbitrary time t � 0,

Ĝ = x(t )x(0) = eiHt xe−iHt x; (8)

its weak values correspond to the correlation function of the
PQHO.

To perform the weak measurement, we employ a qubit as
the apparatus to record the weak value. We prepare the separa-
ble initial state |�〉 ⊗ [cos( θ0

2 )|↑〉 + sin( θ0
2 )eiϕ |↓〉], where |↑〉

and |↓〉 are the eigenbasis of σ̂z. Then we couple the excitation
operator of the system and the spin-y operator of the apparatus
using an impulsive interaction Hint = gδ(t − t0)Ĝ ⊗ σ̂y, which
entangles the quantum states of the system and apparatus. Af-
ter the postselection |�〉, the WVCF accumulates on the final
state of the apparatus, given by e−igGw σ̂y |φ〉. It is worth noting
that in the limit of g → 0, they converge to the true values.

The physical interpretation of the WVCF corresponds to
a rotation through a small angle θ − θ0 = 2gGw around the
Y axis, assuming Gw is real. In the case of a complex weak
value Gw = ReGw + i ImGw [26], we need to analyze the
effect of the nonunitary operator e−igGw σ̂y on the apparatus,
to retrieve the value of correlator at an arbitrary time. In the
weak-coupling regime, the expectation values of the qubit in
different directions satisfy the equations (see Appendix C for
details)

〈σ̂y〉 f � 〈σ̂y〉i + 2g
(
1 − 〈σ̂y〉2

i

)
ImGw,

〈σ̂x〉 f � 〈σ̂x〉i + 2g〈σ̂z〉iReGw − 2g〈σ̂x〉i〈σ̂y〉iImGw, (9)

〈σ̂z〉 f � 〈σ̂z〉i − 2g〈σ̂x〉iReGw − 2g〈σ̂z〉i〈σ̂y〉iImGw.

By measuring the expectation values of the spin components,
we can access the value of Gw. With the estimations of 〈σ̂y〉 f

and 〈σ̂x〉 f , we estimate the WVCF as

ImGw = 〈σ̂y〉 f − 〈σ̂y〉i

2g
(
1 − 〈σ̂y〉2

i

) ,

ReGw = 〈σ̂x〉i〈σ̂y〉i

〈σ̂z〉i
ImGw + 〈σ̂x〉 f − 〈σ̂x〉i

2g〈σ̂z〉i
. (10)

Figure 1 provides valuable insight into the behavior of our
protocol in the PQHO model, highlighting the importance of
operating within the weak-coupling regime to ensure accu-
rate readout of the WVCF. The readout of our protocol is
calculated through numerical simulations for different cou-
pling strengths g according to Eq. (10). Here we approximate
the perturbed ground state as |�〉 � |0〉 + [(−3/2

√
2)|2〉 −

(
√

6/8)|4〉]λ in the eigenbasis of the harmonic oscillator |n〉
and we express Ĝ in the basis of |�〉 as a six-dimensional
operator (see Appendixes A and B for details). We consider
the calculated results under a six-dimensional cutoff as the
true values.

By observing the expectation values 〈σ̂x〉 f and 〈σ̂y〉 f and
solving Eqs. (9), which hold only in the weak-coupling

FIG. 1. Weak-valued correlation function determined from
Eq. (10) for different measurement strengths g during the time t ∈
[0, 30) plotted as a function of (a) the real part and (b) the imaginary
part. The true values of the correlation function are represented by
a dark solid line, while the weak values are depicted as a series of
colored dotted lines.

regime, we retrieve the WVCF. Our simulations demonstrate
that the readout deviates significantly from the true value at
larger value of g, indicating the occurrence of the weak-to-
strong transition [20]. In this regime, the higher-order terms
in the expansion of the evolving operator exp(−igĜ ⊗ σ̂y)
introduce non-negligible effects on the apparatus. However,
we establish the validity of our protocol by showing that the
readouts at g = 0.1 exhibit good agreement with the true val-
ues, confirming the accuracy of our approach. We underscore
the significance of adhering to the weak-coupling regime for
reliable and precise readout of the WVCF.

It is important to note that the simulations presented in
Fig. 1 are idealized, assuming perfect estimations of the ex-
pectation values 〈σ̂i〉 f , i.e., requiring infinite copies of the final
state e−igGw σ̂y |φ〉. In experimental implementations, however,
the accuracy of our readout depends on both the coupling
strength and the number of available copies. Let us consider
that we have access to 2N copies of the final state in a single
experiment, allowing us to perform N shots of measurement
on the operators σ̂x and σ̂y, respectively. By averaging the
eigenvalues σi = ±1 as the measurement outcomes, we obtain
the imperfect estimations of 〈σ̂i〉 f as 〈σ̂i〉E = ∑N

i=1 σi. The
discrepancy between 〈σ̂i〉 f and 〈σ̂i〉E is bounded by |〈σ̂i〉 f −
〈σ̂i〉E | � ε(N, δ), where ε(N, δ) represents the upper bound
on the measurement-induced deviation with a probability of
1 − δ. Several explicit bounds can be used, such as the em-
pirical Bernstein bound [34], which is applicable in various
cases. Moreover, in practical scenarios, the optimal coupling
strength is not necessarily the weakest possible. When the
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FIG. 2. Gaussian kernel density distribution of the relative radical vector zRV = (zR − zTV)/|zTV| on the complex plane, for various numbers
of copies 2N and coupling strengths g. The marginal density distributions are shown at the top and on the right-hand sides sides, providing
additional information about the distribution characteristics. In the top right corner of each panel we indicate the optimal value of the coupling
strength g for each corresponding N .

signal-to-noise ratio decreases, extracting meaningful infor-
mation from the apparatus becomes more challenging, leading
to less precise retrieval of the correlator value with a lim-
ited number of copies N . Conversely, a stronger coupling
enables a more accurate estimation of 〈σ̂i〉 f , albeit with a
larger deviation between the weak value and the true value.
Thus, a trade-off exists between the coupling strength g and
the number of copies 2N . Depending on specific criteria,
one can select an appropriate coupling strength for a given
number of copies, aiming to achieve a readout that sufficiently
approaches the true values.

In this spirit, we designed a numerical experiment to re-
trieve the WVCF in the practical situation. The main results
of this experiment simulation are shown in Fig. 2, where we
analyze the distribution of the relative error radical vector
zRV = (zR − zTV)/|zTV| on the complex plane. Here zR is the
readout of the weak value based on the estimations 〈σ̂i〉E and
zTV is the true value of the correlator. We vary the coupling
strength from weak (g = 0.1) to strong (g = 1) with an inter-
val of 0.1 and examine the variation trend in the distribution of
the radical vector zRV by increasing the number of copies 2N .
We observe that with increasing 2N , the distribution changes
from a multiple-peaklike shape to a Gaussian distribution on
the complex plane. In the few-shot cases (N = 5, 50), the
discrete nature of the values of possible readouts, resulting
from the estimations 〈σ̂i〉E , is blurred by performing Gaussian

interpolation before plotting them as dots for illustrative pur-
poses. As N increases significantly, the readout values tend to
converge to a continuum limit, approximating a complex nor-
mal distribution. To ensure reliable distributions, we perform
M = 10 000 individual simulations with specific settings of
gi and Nj to minimize statistical fluctuations. In terms of the
trade-off, our objective is to identify the coupling strength that
maximizes the likelihood of minimal deviation between the
readout and the true value in a single experiment. After ana-
lyzing the raw data, we indicate the optimal coupling strength
for each N ∈ [1, 10 000] in Fig 3 (for the methodology and
additional information see Appendix D). This numerical ex-
periment yields valuable insights into the behavior of our
protocol, aiding in the determination of the appropriate cou-
pling strength and number of copies for accurately reading
the WVCF.

IV. EXTENSION TO QUANTUM
FIELD THEORY: φ4 THEORY

In the regime of weak interaction, the correlation func-
tion could be regarded as the weak value of field operator
products under appropriate pre- and postselected boundary
conditions [27]. Here we extend the concept of the WVCF
to quantum field theory by considering the interaction be-
tween two separate degrees of freedom of the field under the
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FIG. 3. Detailed trade-off data of optimal g ∈ G =
{0.1, 0.2, . . . , 1} for each N ∈ [1, 10 000].

pre- and post-space-time boundary conditions. We take φ4

as an example to illustrate this extension. The Lagrangian
density of the φ4 theory is defined as L = 1

2∂μφ∂μφ − 1
2 m2

φ2 − λ
4!φ

4.
We consider the excitation operator at the origin and its

polar decomposition:

Ĝ = Tφ(t, 0)φ(0, 0) = Û R̂. (11)

Since the quantum action principle (6) only allows Hermitian
operators, we need to separate the Hermitian part of the
excitation operator using polar decomposition Ĝ = Û R̂
[30]. We denote the ground state by |�〉 and after unitary
transformation |�〉 = Û †|�〉. We consider the orbital degree

of freedom of the local field as the system and the spin degree
of freedom of the local field as the apparatus, which are two
separate degrees of freedom of a local field. To carry out
the weak measurement, we couple the Hermitian part of the
excitation operator and the Pauli-x operator of the field Ĥint =
gδ(t − t0)R̂ ⊗ σ̂x under the initial |I〉 = |�〉 ⊗ |Ia〉 and final
states of the field |F 〉 = |�〉 ⊗ |Fa〉. By applying the quantum
action principle [1,31], we have the joint weak value of the
Hermitian variation of the quantum action δŜ = −δgR̂ ⊗ σ̂x,
which encodes the amplitude a = 〈F | exp(−i

∫
Ĥintdt )|I〉 =

〈�| ⊗ 〈Fa|e−igR̂⊗σ̂x |�〉 ⊗ |Ia〉 as a weak value Sw =
〈F |δŜ|I〉/〈F |I〉 = −ih̄δ ln a, giving Eq. (6). To get Rw,
we choose |Ia〉1 = |↑〉 and |Fa〉1 = 1/

√
2(|↑〉 + |↓〉), and

|Ia〉2 = 1/
√

2(i|↑〉 + |↓〉) and |Fa〉2 = |↓〉 for convenience,

Re(Rw ) = δ ln p2/(2δg),

Im(Rw ) = δ ln p1/(2δg), (12)

where p = |a|2 is the detection probability and δg is the
tunable coupling strength. We can retrieve the WVCF Gw =
Rw〈�|�〉/〈�|�〉 by multiplying Rw with 〈�|�〉/〈�|�〉,
which interestingly coincides with the amplitude between the
selection on the first degree of freedom of the local field.

To demonstrate the protocol, we simulate the weak-valued
two-time correlation function of a φ4 lattice field theory with
(1 + 1)-dimensional space-time in Fig. 4. Based on the quan-
tum action principle, it provides an alternative paradigm for
weak measurement, differing from the standard AAV formal-
ism. As an infinitesimal variation, this paradigm is closely
related to the path-integral formalism and can be applied in
quantum mechanics. (Refer to Appendix E for all simulation
details.)

FIG. 4. Numerical simulations of a φ4 lattice field theory. The weak-valued effective Hermitian function Rw of a φ4 lattice field theory
determined from Eq. (12) for different measurement strengths g during the time t ∈ {−2,−1, . . . , 2} is plotted in (a) the real part, (b) the
imaginary part, and (c) the module. The corresponding weak-valued correlation function obtained from G(t, 0) = Rw〈�|�〉/〈�|�〉 is plotted
in (d) the real part, (e) the imaginary part, and (f) the module. We plot the true values of the correlation function as dark dots, while weak
values are plotted as colored crosses.
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V. DISCUSSION AND OUTLOOK

After formulating the WVCF and its readout strategies
in quantum mechanics and quantum field theory, we discuss
the equivalence between the TSVF and the Gell-Mann–Low
(GL) theorem in the interpretation of correlation functions.
It also serves as the inspiration for this work. Following
the GL theorem, we derive ground states |�∓〉 =
limε→0 UεI (0,∓∞)|0〉/〈0|UεI (0,∓∞)|0〉 by adiabatically
evolving the vacuum state |0〉 from infinite past or future to
the present. Here UεI (0,∓∞) is the time-evolution operator
corresponding to the Hamiltonian Hε (t ) = H0 + e−ε|t |λV ,
which is known as the Møller operator [35]. Thus, we write
the n-point correlation function of the corresponding system
G(n)(x1, . . . , xn)=〈0|T [φ̂I (x1) · · · φ̂I (xn)S]|0〉/〈0|S|0〉=〈�+|
T [φ̂(x1) · · · φ̂(xn)]|�−〉/〈�+|�−〉, satisfying the adiabatic
criteria to preserve the ground state. Note that the GL
theorem is not compulsory to derive the same expression. For
example, we have an alternative way to arrive at the ground
state from the vacuum state, departing from finite past t1 and
future t2 to the preselected state |�−〉 = U (tnow, t1)|0〉 and
postselected state 〈�+| = 〈0|U †(t2, tnow) at a certain time
tnow. Accordingly, we can introduce an auxiliary potential
in the total Hamiltonian to compensate for excitations
or design a schedule for turning on the perturbation.
Propagators U (tnow, t1) and U †(t2, tnow) serve as shortcuts to
adiabaticity [36,37], providing a more efficient way than the
adiabatic evolution in the GL theorem. Thus, we derive the
same expression of the correlation function, which can be
understood as a weak value.

Considering the experimental implementation, one may
turn to digital quantum simulation, a flexible method for ex-
ploring quantum dynamics of both quantum mechanics and
quantum field theory [38,39]. This approach allows entangle-
ment and selections with quantum circuits. Alternatively, one
also has the standard technique in quantum field theory by
introducing weak source currents linearly coupled to the field
in the Lagrangian, perturbing the field evolution within local
apparatuses. The joint averaged response of these apparatuses
reveals the desired correlators, shedding light on the dynamics
and properties of the investigated quantum field system.

Going beyond the examples in the work, a compelling
application lies in reading out out-of time-order correlations.
using weak measurement, where operators are non-time-
ordered. Additionally, we can explore scattering matrix
modulation with different pre- and postselections to study
nonequilibrium physics and quantum nonlocality through
propagators. Meanwhile, it is also compatible with the
Keldysh formalism [40] that extends backward propagation in
the calculation of the generalized correlation function, provid-
ing a systematic framework for investigating nonequilibrium
systems [41–43].

VI. CONCLUSION

We have introduced the WVCF in a quantum system and
quantum field as the result of weak measurement. We pro-
posed a standard weak measurement of the AAV type to read
out the WVCF of the PQHO. Our results reveal the interplay
between the coupling strength and the number of copies in the

readout. Furthermore, we extended our framework to quantum
field theory, where correlator calculations are crucial. Fi-
nally, we redefined the Gell-Mann–Low theorem to develop a
method for calculating the correlation function. By employing
the TSVF to accelerate adiabatic evolution, we established an
equivalent theory where the correlation function is interpreted
as a weak value.

All codes and simulation data are available at [44].
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APPENDIX A: GROUND STATE FROM
THE GELL-MANN–LOW THEOREM

To calculate the ground state |�〉 of the perturbed PQHO
using the Gell-Mann–Low theorem, we consider the adiabatic
Hamiltonian given by

Hε (t ) = p2

2m
+ 1

2
mω2x2 + λe−ε|t |x4. (A1)

We begin by focusing on the ground state |�−〉. Expanding
the state in terms of a perturbation series, we express the target
state as the ratio of two sets of infinite series

|�−〉 = lim
ε→0

UεI (0,−∞)|0〉
〈0|UεI (0,−∞)|0〉

= lim
ε→0

∑∞
n=0 cnλ

n∑∞
n=0 bnλn

=
∞∑

n=0

anλ
n, (A2)

where UεI is the adiabatic time-evolution operator in the in-
teracting picture. The series division on the right-hand side is
implemented as

an = 1/b0[cn − a0bn − · · · − an−1b1], n = 0, 1, 2, . . . .

Here an represents the coefficients of the perturbation series
expansion of the ground state, which we aim to determine.
The calculation involves solving a recursive equation to ob-
tain the values of an. By following this procedure, we can
determine the ground state of the PQHO Hamiltonian using
the Gell-Mann–Low theorem.

Indeed, complex analysis reveals that the series repre-
sentation |�−〉 = ∑∞

n=0 a(ε)
n λn is a divergent series, with an

asymptotic expansion only valid to the first order. On the
complex plane, considering |�−〉 as a complex function of λ,
it is nonanalytic everywhere except at the origin. This can be
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understood by considering the case where λ < 0. In this sce-
nario, there is no minimum energy for the potential, resulting
in the nonexistence of the ground state |�−〉. Consequently,
there is no circle of convergence outside the origin point.

The order of the asymptotic expansion is determined in the
following way. In terms of the Dyson expansion, the time-
evolution operator is written as

UεI (t, t0) = 1 + (−i)
∫ t

t0

dt1HεI (t1)

+ (−i)2
∫ t

t0

dt1

∫ t1

t0

dt2HεI (t1)HεI (t2) + · · · ,

where HεI (t ) = λeiH0t e−ε|t |x4e−iH0t is the adiabatic Hamilto-
nian in the interaction picture. Acting on |0〉 and inserting the
identity operator 1 = ∑

n |n〉〈n| leads to

UεI (t, t0)|0〉 = |0〉 + (−i)λ
∑

n

〈n|x4|0〉
in + ε

|n〉

+ (−i)2λ2
∑
n,m

〈n|x4|m〉〈m|x4|0〉
(in + 2ε)(im + ε)

|n〉 + · · · ,

where |n〉 is the eigenbasis of the harmonic oscillator satisfy-
ing Ĥ0|n〉 = En|0〉 and En = n + 1

2 . The ground state could be
derived by putting this into Eq. (A2) and calculating the series
division:

|�−〉 =
∑

n

anλ
n = a0 + a1λ + a2λ

2 + · · · ,

a0 = 〈x|0〉,

a1 = − 3

2
√

2
|2〉 −

√
6

8
|4〉,

a2 = 75

8
√

2
|2〉 + 9

√
6

4
|4〉 + 17

16

√
5|6〉 + 3

√
70

64
|8〉. (A3)

To find the optimal order for asymptotic expansion,
we study the correlation function at t = 0: G(2)(0, 0) =
〈�|x2|�〉/〈�|�〉. Our simulation result of solving the
eigenequations gives 0.3700. Reserving Eq. (A3) to first order
gives 0.3570, which is close to the simulation result. However,
when reserved to second order, it becomes 0.8484, with more
deviation. As expected, the higher the order is, the greater
deviation we get. Likewise, we get |�+〉 in a similar way:
|�+〉 = |�−〉 = |�〉. As a result, first order is the optimal
asymptotic series for |�〉:

|�〉 � |0〉 +
(

− 3

2
√

2
|2〉 −

√
6

8
|4〉

)
λ. (A4)

APPENDIX B: TRUNCATED EIGENBASIS
OF THE HARMONIC OSCILLATOR

In order to address the challenge of infinite dimen-
sionality in the calculation of the operator Â = x(t )x(0) =
eiĤt xe−iĤt x, a truncation approach is employed. This approach
involves selecting a cutoff energy level Ncutoff that ranges
from a sufficiently large value down to zero. For the sake
of better illustration, we simulate the eigenequations of the

FIG. 5. Correlation function simulated for different cutoffs of the
energy level Ncutoff. The colored curves are used to show numerical
simulation of solving the eigenequations of the Hamiltonians for the
Ncutoff at the bottom of (a) and (b). The black curve shows the result
calculated from Eq. (A3) for a certain large enough cutoff energy
level Ncutoff = 1000, which is almost covered by the colored curves
at large Ncutoff. Here we utilize complementary colors to explicitly
enhance the distinction between Ncutoff = 5 and Ncutoff = 6.

Hamiltonians under a sufficiently large cutoff of the energy
level Ncutoff = 1000.

By expressing the operator Â in terms of the eigenbasis
of the harmonic oscillator, the cutoff energy level determines
the range of energy levels considered in the calculation. As
shown in Fig. 5, the behavior of the correlation function
G(2)(t, 0) is observed as the cutoff energy level decreases. We
note that as Ncutoff is reduced to Ncutoff = 6, the result from
our calculation (A3) matches the simulation result and the
value of G(2)(0, 0) remains constant at 0.356 972 59. However,
a turning point is reached when Ncutoff reaches Ncutoff = 5,
resulting in an obvious deviation from the simulation result
and G(2)(0, 0) = 0.348 033 37. This observation can be under-
stood by considering that the calculated ground state is only
relevant to the first five energy levels.

Based on these observations, a decision is made to choose
Ncutoff = 6 as the truncated energy level for the calcula-
tion. This choice ensures that the relevant energy levels
are included while controlling the computational complexity
associated with the infinite-dimensional space.

APPENDIX C: COMPLEX WEAK VALUE THROUGH
THE SPIN OF THE POINTER

For any complex weak value Gw = a + bi measured
through the interaction Ĝ ⊗ Â, any observable M̂ of the
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FIG. 6. Absolute mean values |z| are shown for M = 10 000 sampling points of (a) complex value zRV = (zR − zTV)/|zTV|, (b) module
|zRV| = |zR − zTV|/|zTV|, (c) real part Re(zRV) = Re(zR − zTV)/|zTV|, and (d) imaginary part Im(zRV) = Im(zR − zTV})/|zTV|. Error bars denote
confidence intervals of 0.95. Uncertainty is plotted versus the number of copies 1/δ2 − N for g ∈ G = {0.1, 0.2, . . . , 1} over M = 10 000
sampling points of (e) complex value zRV = (zR − zTV)/|zTV|, (f) module |zRV| = |zR − zTV|/|zTV|, (g) real part Re(zRV) = Re(zR − zTV)/|zTV|,
and (h) imaginary part Im(zRV) = Im(zR − zTV)/|zTV|. The relation 1/δ2 − N proves to be linear in all four cases.

apparatus satisfies

〈M̂〉 f = 〈M̂〉i + iga〈ÂM̂ − M̂Â〉i

+ gb(〈ÂM̂ + M̂Â〉i − 2〈M̂〉i〈Â〉i ), (C1)

where we assume Â is Hermitian. This equation is derived
following the method in [26]. The initial and final states of the
apparatus are |φ〉 and |α〉 = e−igGw Â|φ〉 � (1 − igGwÂ)|φ〉,
where |φ〉 is normalized but |α〉 is not. The expectation of any
operator M̂ in the final state is, reserved to first order with the
help of series division,

〈M̂〉 f = 〈α|M̂|α〉
〈α|α〉

� 〈φ|(M̂ − igGwM̂Â + igGwÂM̂ )|φ〉
〈φ|(1 − igGwÂ + igGwÂ)|φ〉

= 〈M̂〉 + (ia〈ÂM̂ − M̂Â〉i + b〈ÂM̂ + M̂Â〉i )g

1 + (2b〈Â〉i )g

� 〈M̂〉i + iga〈ÂM̂ − M̂Â〉i

+ gb〈ÂM̂ + M̂Â〉i − 2gb〈M̂〉i〈Â〉i, (C2)

which gives Eq. (C1). Letting Â = σ̂y and putting spin
components into M in Eq. (C1), we obtain Eq. (9).

APPENDIX D: NUMERICAL SIMULATION
AND DETAILED TRADE-OFF DATA

In the numerical simulation, we focus on a specific time
slice at t = 5.1 and consider a set of coupling constants g ∈
G = {0.1, 0.2, . . . , 1} for investigation. The number of copies
N and number of repeated experiments M are both integers,
with N ranging from 1 to 500 000 and M fixed at 10 000. Each
repeated experiment is assigned a unique random seed ranging
from 10 to 10 010.

For each experiment, we generate N random numbers fol-
lowing a uniform distribution over the interval [0, 1). These
random numbers are used to determine the measured values
of 〈σ̂x〉 f and 〈σ̂y〉 f . To calculate 〈σ̂x〉 f , we assign a value of
−1 to random numbers that are smaller than the probability
|〈σx = −1 |α〉|2/〈α|α〉 and +1 otherwise. Similarly, for 〈σ̂y〉 f ,
we use |〈σy = −1 |α〉|2/〈α|α〉 as the threshold to assign ±1 to
the random numbers.

To evaluate the accuracy of the measured results, we fo-
cus on the relative deviation from the true value, given by
zRV = (zR − zTV)/|zTV|. Utilizing Eq. (10), we obtain M =
10 000 sampling points on the complex plane, denoted by
zRV(m; g, N ), m ∈ [0, M ), for each combination of g ∈ G and
N ∈ [1, 500 000].

In the initial step, we study several important statistical
quantities to gain a global understanding of the data set.
Specifically, we calculate the mean values and variances for
the complex value, module, real part, and imaginary part of
zRV. Figures 6(a)–6(d) summarize the results for g ∈ G and
N ∈ [1, 5000]. These panels clearly illustrate the trade-off
between g and N as the transition from N ∼ 10 to N ∼ 1000
becomes apparent.

Additionally, we explore the uncertainty properties, paying
particular attention to their dependence on N and g. Fig-
ures 6(e)–6(h) depict the variance versus the number of copies
1/δ2 − N for the complex value, module, real part, and imag-
inary part of zRV. Horizontally, the perfect linearity in all four
cases verifies our prediction that δ ∼ 1/

√
N . Vertically, the

consistent ordering of g ∈ G for a given N demonstrates that
the uncertainty increases with smaller values of g.

Finally, we investigate the trade-off between g and N by de-
termining the optimal value of g ∈ G for different ranges of N .
Figure 3 presents the optimal g ∈ G for each N ∈ [1, 10 000].
Our criterion for optimality is as follows. For a given N ,
we compare the distances to the true value zRV(m; gi, N ) −
zRV(m; g j, N ), m ∈ [0, M ), for any two gi, g j ∈ G. If the total
number of cases where zRV(m; gi, N ) − zRV(m; g j, N ) < 0 is
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FIG. 7. Comparison of the one-lattice φ4 theory with the PQHO weak-valued correlation function for different measurement strengths g
during the continuous time t ∈ [0, 30). Simulations of weak measurements in the QFT are shown for (a) the real part, (b) the imaginary part,
and (c) the module and in QM for (d) the real part, (e) the imaginary part, and (f) the module.

greater than half of the total sampling M = 10 000, we con-
sider gi to be dominant. The optimal value is the one that
dominates over all other g ∈ G. In the case of a draw, we
choose the one with the smallest value of g.

APPENDIX E: LATTICE SIMULATION OF THE φ4 FIELD

We carry out the lattice simulation of the scalar φ4 quan-
tum field in a (1 + 1) − d discretized Minkowski space-time,
with periodic boundary conditions for both space and time.
The space-time lattices are taken as integers given by xμ =
(t, x) = −l,−(l − 1), . . . , l − 1, l with the lattice spacing
a = 1. We set the initial configuration of φ4 as

φ0(x) =
√

L
∑

p

�p

2π

1√
2Ep

(âpe−ipx + â†
peipx ), (E1)

π0(x) =
√

L
∑

p

−i�p

2π

√
Ep

2
(âpe−ipx − â†

peipx ), (E2)

where the energy momentum Ep = (m2 + p2)1/2, p =
(2π/L)x, the commutation relations [φ0(x), π0(y)] = iδxy and
[âp, â†

p′ ] = δpp′ , and L = 2l + 1. The field operator of φ4

could be obtained by switching on time evolution

φ(t, x) = eiĤtφ(0, x)e−iĤt , (E3)

where Ĥ = 1/2
∑

x �x[π0
2 + (∇φ0)2 + m2φ2

0 + λ/4!φ4
0].

In our numerical simulation, we consider L = 5, with
a truncated Hilbert subspace Ncutoff = 5 for each indi-
vidual lattice. The total dimension of the Fock space
is N = 55 = 3125. The ground state |�〉 is obtained
by numerically solving the eigenequations of Hamilto-
nian. We perform the polar decomposition of the excita-

tion operator Ĝ = Tφ(t, 0)φ(0, 0) with the singular value
decomposition method:

Â = ûŝv̂ = (ûv̂)(v̂†sv) = Û R̂. (E4)

The variation of detection probability in Eq. (12) is simu-
lated by the difference between the perturbed and the un-
perturbed δp = p′ − p = |〈�| ⊗ 〈Fa| e−igR̂⊗σ̂x |�〉 ⊗ |Ia〉|2 −
|〈�| ⊗ 〈Fa|�〉 ⊗ |Ia〉|2. Our simulation result of Rw is shown
in Fig. 4. Similar to its quantum counterpart, the accuracy of
the QFT weak measurement increases with small coupling g.

In order to explore the connection between weak measure-
ments in quantum field theory (QFT) and quantum mechanics
(QM), we consider the one-lattice limit where the behavior
of the φ4 field theory resembles that of the PQHO. By nu-
merically solving the eigenequations of the Hamiltonians, we
obtain the ground states for both systems. The results, shown
in Fig. 7, reveal good agreement in terms of the true values and
trends for different coupling strengths between weak measure-
ments in QFT and QM. However, it is worth noting that weak
measurements in QFT, based on the quantum variation princi-
ple, exhibit less accuracy than the weak measurements in QM
under the same conditions. This discrepancy arises due to the
approximation δp = p′ − p, which introduces uncertainty in
variation δp. In the QFT context, this approximation may not
hold as well, leading to less precise results in weak measure-
ments compared to QM. Further investigation and analysis are
necessary to understand the specific factors contributing to the
differences between weak measurements in QFT and QM. By
examining the limitations and approximations involved, we
can gain insights into the nature of weak measurements in
both frameworks.
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