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Galilean relativity and wave-particle duality imply the Schrödinger equation
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We show that the Schrödinger equation can be derived assuming the Galilean covariance of a generic wave
equation and the validity of the de Broglie’s wave-particle duality hypothesis. We also obtain from this set of
assumptions the transformation law for the wave function under a Galilean boost and prove that complex wave
functions are unavoidable for a consistent description of a physical system. The extension to the relativistic
domain of the above analysis is also provided. We show that Lorentz covariance and wave-particle duality are
consistent with two different transformation laws for the wave function under a Lorentz boost. This leads to two
different wave equations, namely, the Klein-Gordon equation and the Lorentz covariant Schrödinger equation.
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I. INTRODUCTION

Schrödinger arrived at his eponymous equation inspired
by Hamilton’s analogy between ordinary mechanics and ge-
ometrical optics. Instead of geometrical optics, Schrödinger
worked with physical (wave) optics and searched for its “me-
chanical” analog. This search, guided by the de Broglie’s
wave-particle duality hypothesis [1], eventually led to what
we know today as the Schrödinger equation [2].1

Our main goal in this work is to derive the Schrödinger
equation assuming the de Broglie’s wave-particle duality
hypothesis and the Galilean covariance of the wave equa-
tion alone. Furthermore, we show that this connection
between the Schrödinger equation and Galilean covariance is
unique, namely, the Schrödinger equation is the only linear
wave equation satisfying both de Broglie’s hypothesis and
Galilean covariance. We also obtain from this set of assump-
tions the transformation rule for the wave function after a
Galilean boost [6–9] and an alternative proof that complex
wave functions are unavoidable [10–12].

The last part of this work deals with the relativistic ex-
tension of the previous analysis. We show that two different
classes of transformation laws for the wave function are com-
patible with Lorentz covariance. One transformation law leads
to the Klein-Gordon equation [13–16] and the other one to the
Lorentz covariant Schrödinger equation [17].

Before we move on, we should mention that the
Schrödinger equation can be obtained by introducing, in very
specific ways, stochastic fields or probabilistic arguments into
classical physics [18–23], and most of the time by invoking
the classical Hamilton-Jacobi equation [19,21–23]. Of partic-
ular notice is Ref. [24], where the Schrödinger equation was
obtained by assuming the existence of a complex wave

*rigolin@ufscar.br
1We should mention that Schrödinger was also influenced by Ein-

stein’s second paper on the Bose-Einstein condensate [3], which is
acknowledged by Schrödinger himself [4,5].

function that satisfied an arbitrary linear wave equation with,
at most, a first-order time derivative.

II. ASSUMPTIONS

A. de Broglie’s hypothesis

The wave-particle duality postulated by de Broglie [1] dic-
tates that any massive particle also has a wave-like character,
quantitatively expressed by the following relations: λ = h/p
and ν = E/h, where λ is the particle’s “wavelength,” ν is its
“frequency,” h is Planck’s constant, p is the magnitude of the
particle’s momentum p, and E its energy.

In modern notation, de Broglie’s hypothesis means that a
particle’s energy E and momentum p are given by

E = h̄ω, (1)

p = h̄k, (2)

where h̄ = h/(2π ), the angular frequency ω = 2πν, the wave
number k = |k| = 2π/λ, and k is the wave vector associated
with the particle’s wave function.

Throughout de Broglie’s Ph.D. thesis [1] it is implicit that
one should look for a wave equation governing the particle’s
dynamics. This is what Schrödinger accomplished three years
after de Broglie presented his Ph.D. thesis [2]. One hun-
dred years later, our main goal here is to use de Broglie’s
wave-particle duality, Eqs. (1) and (2), plus the following
assumption to derive the Schrödinger equation.

B. Galilean covariance

In this work, Galilean covariance refers to mathematical
expressions or physical laws that does not change under spa-
tial rotations and Galilean boosts. We will not be dealing
with space or time translations. These latter two opera-
tions plus spatial rotations and Galilean boosts constitute
the inhomogeneous Galilean group. If we exclude space
and time translations, we have the homogeneous Galilean
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group. Note that Galilean boosts are also known as Galilean
transformations.

If S and S′ are two inertial reference frames, with S′ moving
away from S with velocity v, the Cartesian coordinates locat-
ing a given event and the time of its occurrence in both frames
are related by the following rules according to the Galilean
relativity:

t = t ′, (3)

r = r′ + vt ′. (4)

For simplicity and without losing generality, the above rela-
tions assume that the origin of time and space coincide in
both inertial frames. We also have, in an obvious notation,
that r = (x, y, z) and r′ = (x′, y′, z′) are the space coordinates
of the event in S and S′, respectively, and t and t ′ are the
corresponding time of occurrence of the event. Equations (3)
and (4) are what we call a Galilean boost or transformation.

Using Einstein’s summation notation, the most general
way of writing a wave equation is

aμν∂μ∂ν�(r, t ) + bμ∂μ�(r, t ) + f (r, t )�(r, t ) = 0. (5)

Note that by wave equation we mean the most general ho-
mogeneous linear partial differential equation in the variables
x, y, z, and t of order less than or equal to 2, and with constant
coefficients multiplying the derivatives. We also assume that
a wave equation has to provide solutions that propagate the
waves along the spacetime, especially for free particles with
nonzero momentum.

In Eq. (5), aμν and bμ are constants (Galilean invari-
ants) and f (r, t ) is an arbitrary function but a strict Galilean
scalar, namely, f (r, t ) = f ′(r′, t ′) after a spatial rotation or
a Galilean boost. Also, ∂μ = ∂

∂xμ and μ = 0, 1, 2, 3, where
x0 = ct , x1 = x, x2 = y, and x3 = z, with c being the speed
of light in vacuum.

With the previous notation, we can state the principle of
Galilean covariance as follows. If inertial frame S′ is con-
nected to S by a spatial rotation or a Galilean boost, then if
in S the wave equation is given by Eq. (5), in S′ it should look,
up to an overall nonnull multiplicative factor

aμν∂μ′∂ν ′� ′(r′, t ′) + bμ∂μ′� ′(r′, t ′) + f ′(r′, t ′)� ′(r′, t ′) = 0.

(6)

III. OBTAINING THE SCHRÖDINGER EQUATION

A. Covariance under spatial rotations

According to de Broglie’s hypothesis, a particle with mass
m has an associated wave function describing its dynamics. In
the nonrelativistic domain and for a free particle with nonnull
momentum, this wave function must describe the fact that this
particle moves away with speed v = p/m. Whether or not we
deal with a localized particle, or with a real or complex wave
function, variables r and t are constrained by the following
relation if we want propagating waves,

k · r − ωt . (7)

Since the scalar product k · r is invariant under spatial
rotations, and by using that the vacuum is isotropic, Galilean

covariance implies that under any spatial rotation the wave
functions in frames S and S′ are related by the following rule:2

�(r, t ) = � ′(r′, t ). (8)

Note that any Euclidean vector in S′ is connected to its corre-
sponding representation in S by an orthogonal transformation
belonging to the SO(3) group, i.e., r′ = Mr, with M ∈ SO(3).
Moreover, if we assume �(r, t ) = α� ′(r′, t ), where α is a
constant, it is easy to see that α = 1. Indeed, if we rotate from
S to S′ and then to S′′ we get �(r, t ) = α2� ′′(r′′, t ). If we
rotate directly from S to S′′ we have �(r, t ) = α� ′′(r′′, t ).
Comparing both expressions for �(r, t ) we obtain that α2 =
α. Since α cannot be zero, the only valid solution is α = 1.

Using the transformation law given by Eq. (8), it can be
shown that we guarantee covariance under spatial rotations if,
and only if, for j, k = 1, 2, 3 [17,25,26],

bj = 0, (9)

a j0 + a0 j = 0, (10)

a jk + ak j = 0, for j �= k, (11)

a j j = akk . (12)

Using Eqs. (9) to (12) and renaming the constant parame-
ters multiplying the derivatives, Eq. (5) becomes

A∂2
t �(r, t ) + B∇2�(r, t ) + C∂t�(r, t ) + f (r, t )�(r, t ) = 0.

(13)

Equation (13) is the most general linear partial differen-
tial equation of order two compatible with covariance under
any spatial rotation. To arrive at Eq. (13), we use that ∂0 =
∂0, ∂ j = −∂ j , for j = 1, 2, 3, ∂2

t = ∂2/∂t2, and −∂ j∂
j = ∇2,

where the latter is the Laplacian, an invariant under spatial
rotations.

B. Covariance under Galilean boosts

Since Eq. (13) is covariant under spatial rotations, we can
work without losing in generality with a Galilean boost along
the x axis, where v = (v, 0, 0),

t = t ′, (14)

x = x′ + vt ′, (15)

y = y′, (16)

z = x′. (17)

Using the chain rule and Eqs. (14) to (17), the first-order
derivatives change as follows:

∂t = ∂t ′ − v∂x′ , (18)

∂ j = ∂ j′ , for j = x, y, z. (19)

2If k and r are not related by k · r, rotational covariance can be
obtained assuming �(r, t ) = g(r′, t )� ′(r′, t ) [17].
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We also assume that the wave function changes according
to the following rule after a Galilean boost:

�(r, t ) = g(r′, t ′)� ′(r′, t ′), (20)

with g(r′, t ′) representing an arbitrary function of r′ and t ′.
Equation (20) is the most general way of representing how a
wave function changes after an arbitrary symmetry operation
[17,25,26].

Using Eqs. (18) to (20), we obtain that the term multiplying
A in Eq. (13) is transformed to several different terms con-
taining pure or mixed derivatives. One of these terms is the
following mixed derivative:

−2Avg(r′, t ′)
∂2� ′(r′, t ′)

∂t ′∂x′ . (21)

Another term proportional to ∂t ′∂x′� ′(r′, t ′) cannot be
found anywhere else in the transformed equation after the
Galilean boost. The derivatives multiplying the other con-
stants in Eq. (13) cannot provide a mixed derivative in the t ′
and x′ variables if we use Eqs. (18) to (20). Therefore, since
g(r′, t ′) �= 0 and the transformed term given by Eq. (21) is
not in Eq. (13) before the transformation, Galilean covariance
implies that A = 0. Note that since the boost is along the x
axis, g(r′, t ′) depends only on x and t .

This result is interesting by its own since it implies that
we cannot have a covariant equation with a second-order
derivative in time. In other words, we proved the following
result.

Theorem 1. If the order of the differential equation is at
most two, Galilean covariance implies that the wave equa-
tion cannot have a second-order time derivative.

This is another way of understanding why the Schrödinger
equation has only a first-order time derivative. If higher than
second-order derivatives are allowed, we show in the Ap-
pendix that when fourth-order derivatives are present we can
have a second-order time derivative and a covariant differen-
tial equation. However, for the free-particle case, this equation
is essentially the squared Schrödinger operator acting on �.

Setting A = 0 in Eq. (13), Eqs. (18) to (20) lead to the
following transformed wave equation if we drop the primes
and factor out the common term g(r′, t ′):

B∇2� + C∂t� + f � +
[

2B

g

∂g

∂x
− Cv

]
1

∂x�

+
[

B

g

∂2g

∂x2
+ C

g

∂g

∂t
− Cv

g

∂g

∂x

]
2

� = 0. (22)

To obtain covariance, the two brackets above should be
zero, i.e., [ ]1 = [ ]2 = 0. By demanding that [ ]1 = 0 and
taking the spatial derivative we obtain

B

g

∂2g

∂x2
= Cv

2g

∂g

∂x
. (23)

Using Eq. (23), the second condition for covariance, namely,
[ ]2 = 0, can be written as

∂g

∂t
= v

2

∂g

∂x
. (24)

This is the one-way wave equation whose general solution is

g(x, t ) = h

(
t + 2

v
x

)
. (25)

Inserting g(x, t ) back into [ ]1 = 0 gives

dh(u)

du
= Cv2

4B
h(u), (26)

where u = t + 2x/v. The general solution to the above equa-
tion is

h(u) = g0 exp

[
Cv2

4B
u

]
, (27)

with g0 being an arbitrary constant. Finally, returning to g and
using the definition of u we obtain

g(x, t ) = g0 exp

[
C

4B
v2t + C

2B
vx

]
. (28)

Putting back the primes, dividing and multiplying the ex-
ponent by the particle’s mass m, we arrive at the following
solution for a boost in an arbitrary direction:

g(r′, t ′) = g0 exp

[
C

2mB

(
mv2

2
t ′ + mv · r′

)]
. (29)

Note that if we go directly from frame S to S′′ or from S to S′
and then to S′′, we get that g0 = 1.

Equation (29) is the most general function g(r′, t ′) that un-
der a general Galilean boost [cf. Eqs. (3) and (4)] guarantees
the covariance of the wave equation (13) if its wave function
transforms according to Eq. (20).

If g(r′, t ′) is a constant, we must have C = 0. This implies
the following differential equation after setting A = C = 0 in
Eq. (13):

B∇2�(x) + f (x)�(x) = 0. (30)

Note that Eq. (30) is the Helmholtz equation with nonconstant
eigenvalues f (x)/B. But the most important point is that the
above equation has no time derivatives. This means that it is
not a wave equation at all. Putting it differently, we proved the
following result.

Theorem 2. Galilean covariance implies that the wave
function cannot be a strict scalar under a Galilean boost, i.e.,
it is impossible to have a covariant wave equation such that,
up to an overall constant phase, �(r, t ) = � ′(r′, t ′) after a
Galilean boost.

C. de Broglie’s wave-particle duality

If we now set C �= 0, we have that, in general, g(r′, t ′) is
a function of r′ and t ′. Moreover, whenever v �= 0, looking at
Eq. (29) we note that if C/B is a positive real number, g(r′, t ′)
diverges as a function of the time. In addition, if C/B is a
negative real number, it tends to zero as the time increases.
Since �(r, t ) = g(r′, t ′)� ′(r′, t ′), this implies that if C/B is
real and |� ′(r′, t ′)| is a nonzero bounded function for all t ′, we
have that |�(r, t )| is either zero or infinity after a sufficiently
long time.
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However, according to de Broglie’s hypothesis, there must
be a wave function with wave number k and frequency ω

associated to a particle of mass m. For a free particle with
nonzero velocity, the magnitude of this wave function cannot
be infinity or zero. Otherwise no physical meaning could be
attributed to it and we could not extract from it a meaningful
wave number and frequency that must be associated to the
moving free particle according to de Broglie’s hypothesis.
Therefore, we can only satisfy both Galilean covariance and
de Broglie’s wave-particle duality if C/B is a pure imaginary
number. In other words, the wave-particle duality should be
valid in any inertial reference frame and this would not be the
case if we had a zero or divergent wave function.

The fact that g(r′, t ′) must be a complex number implies
that we cannot have a real quantum mechanics. Complex num-
bers, or equivalently complex wave functions, are mandatory
when both Galilean covariance and de Broglie’s hypothesis
are assumed. This can be proved by the following simple
argument. Assume that in the inertial reference frame S′,
moving away from S with velocity v, we are able to somehow
completely describe a particle of mass m using a purely real
wave function. If we now go to frame S, the particle’s wave
function is given by Eq. (20). Since g(r′, t ′) is necessarily a
complex number, in frame S the wave function will thus be
necessarily a complex number also. Therefore, we proved the
following interesting result.

Theorem 3. Galilean covariance and the de Broglie’s
wave-particle duality imply that complex wave functions are
unavoidable to properly describe a physical system.

To finally arrive at the Schrödinger equation, we need to
determine the value of C/B. This is accomplished using de
Broglie’s relations, Eqs. (1) and (2), which lead to a specific
dispersion relation for free particles. We then require that the
wave equation that we have so far, Eq. (32), must yield the
same dispersion relation for its plane wave solution. This will
fix the value of C/B.

For a nonrelativistic free particle of mass m moving with
constant velocity v, we have that its momentum and energy
are p = mv and E = p2/(2m). The second equation together
with Eqs. (1) and (2) lead to the following dispersion relation:

ω = h̄k2

2m
. (31)

The wave equation we have so far can be written as
follows:

B∇2�(r, t ) + C∂t�(r, t ) + f (r, t )�(r, t ) = 0. (32)

If we insert the ansatz

�(r, t ) = �0ei(k·r−ωt ), (33)

where �0 is an arbitrary constant, into Eq. (32) we get

Bk2 + iCω − f (r, t ) = 0. (34)

If we now demand that ω and k are related by Eq. (31), we
have that Eq. (34) becomes

k2

(
B + ih̄

2m
C

)
− f (r, t ) = 0. (35)

Since f (r, t ) cannot depend on k, the only solution to Eq. (35)
is

C

B
= i2m

h̄
, (36)

f (r, t ) = 0. (37)

We thus fixed the value of C/B and discovered that for
a free particle f (r, t ) = 0. With Eq. (36) we can write the
final expression for the transformation rule for the wave equa-
tion after a Galilean boost [cf. Eq. (29)],

g(r′, t ′) = exp

[
i

h̄

(
mv2

2
t ′ + mv · r′

)]
. (38)

Equations (36) and (37) when inserted into Eq. (32) give
the Schrödinger equation for a free particle. To write Eq. (32)
exactly as we write today the Schrödinger equation, we
express B and C as follows:

B = h̄2

2m
D, (39)

C = ih̄D. (40)

Equations (39) and (40) satisfy Eq. (36) and D is an arbitrary
constant. Inserting Eqs. (39) and (40) into Eq. (32) and using
Eq. (37), we obtain the free-particle Schrödinger equation af-
ter dropping the overall constant D,

ih̄
∂�

∂t
= − h̄2

2m
∇2�. (41)

We can also fix the value of f in Eq. (32) by studying the
case of a particle in a constant potential V and then generaliz-
ing the obtained equation to a position and time-dependent
potential. For a constant potential, the particle’s energy is
E = p2/(2m) + V = h̄2k2/(2m) + V . The dispersion relation
now is

ω = h̄k2

2m
+ V

h̄
. (42)

Inserting Eqs. (33) and (42) into Eq. (32), and using Eqs. (39)
and (40), we get

f (r, t ) = −DV. (43)

Using Eqs. (39), (40), and (43), we can write Eq. (32) after
dropping the overall constant D as follows:

ih̄
∂�

∂t
= − h̄2

2m
∇2� + V �. (44)

Equation (44) is the celebrated Schrödinger equation, derived
here using only two assumptions, namely, Galilean covariance
and de Broglie’s wave-particle duality relations.

IV. OBTAINING THE RELATIVISTIC EQUATIONS

Since we will be dealing with relativistic wave equa-
tions, it is convenient to use the four-vector notation. The
four-vector notation can be summarized as follows [16]. The
contravariant four-vector xμ is defined as (x0, x1, x2, x3) =
(ct, x, y, z), where c is the speed of light in vacuum. Us-
ing the metric where g00 = 1, g11 = g22 = g33 = −1, with
gμν = 0 otherwise, the covariant four-vector is xμ = gμνxν ,
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i.e., (x0, x1, x2, x3) = (ct,−x,−y,−z). The Einstein summa-
tion convention is assumed, where the Greek indexes run
from 0 to 3 while the Latin ones go from 1 to 3. The scalar
product between two four-vectors is xμyμ and between two
spatial vectors is x · y = −x jy j . The covariant four-gradient
is defined as ∂μ = ( ∂

∂x0 ,
∂

∂x1 ,
∂

∂x2 ,
∂

∂x3 ) and the contravariant
four-gradient by ∂μ = gμν∂ν , where gμν = gμν .

In the four-vector notation, for instance, the Galilean
boosts (3) and (4) can be written as

x0 = x0′
, (45)

x j = x j′ + β jx0′
, (46)

where β j = v j/c. Note that β = |β| = |v|/c = v/c.
The analysis carried out up to Eq. (13) applies here as well

since we assume for the wave function the same transforma-
tion law under spatial rotations of the nonrelativistic case [cf.
Eq. (8)]. It is convenient to rewrite Eq. (13) as

A∂2
0 �(x) − B∂ j∂

j�(x) + C∂0�(x) + f (x)�(x) = 0, (47)

where A = c2A, B = B, C = cC, and x = (x0, x1, x2, x3).
As before, due to the covariance of the wave equation (47)

under spatial rotations, we employ a boost along the x1 axis
without losing in generality. However, we must work now
with a Lorentz instead of a Galilean boost

x0 = γ (x0′ + βx1′
), (48)

x1 = γ (x1′ + βx0′
), (49)

x2 = x2′
, (50)

x3 = x3′
, (51)

where

β = v

c
and γ = 1√

1 − β2
. (52)

The analogs of Eqs. (18) and (19) are

∂0 = γ (∂0′ − β∂1′ ), (53)

∂1 = γ (∂1′ − β∂0′ ), (54)

∂2 = ∂2′ , (55)

∂3 = ∂3′ . (56)

Inserting Eqs. (20) and (53) to (56) into Eq. (47), and
assuming f (x) to be a strict Lorentz scalar, f (x) = f ′(x′), we
obtain after factoring out the common g(x′) term

A′∂2
0′�

′(x′) + B′∂2
1′�

′(x′) + B∂2
2′�

′(x′) + B∂2
3′�

′(x′)

+ C′∂0′� ′(x′) + D′∂0′∂1′� ′(x′) + E ′∂1′� ′(x′)

+ F ′� ′(x′) + f ′(x′)� ′(x′) = 0, (57)

where

A′ = γ 2(A + β2B), (58)

B′ = γ 2(β2A + B), (59)

C′ = γ

[
C + 2(A + β2B)γ

∂0′g(x′)
g(x′)

− 2(A + B)βγ
∂1′g(x′)

g(x′)

]
, (60)

D′ = −2γ 2β(A + B), (61)

E ′ = γ

[
−Cβ − 2(A + B)βγ

∂0′g(x′)
g(x′)

+ 2(B + β2A)γ
∂1′g(x′)

g(x′)

]
, (62)

F ′ = γ

[
C

∂0′g(x′)
g(x′)

+ (A + β2B)γ
∂2

0′g(x′)
g(x′)

− Cβ
∂1′g(x′)

g(x′)
− 2(A + B)βγ

∂0′∂1′g(x′)
g(x′)

]
+ (B + β2A)γ

∂2
1′g(x′)
g(x′)

]
. (63)

We first note that in Eq. (57), the mixed derivative term,
D′∂0′∂1′� ′(x′), should be zero since it is not present in the
wave equation before the Lorentz boost. Therefore, we must
have D′ = 0, which, according to Eq. (61), implies

A = −B. (64)

If we now use Eq. (64) and the mathematical identity (1 −
β2)γ 2 = 1, Eq. (57) can be written as

B∂μ′∂μ′
� ′(x′) − C′∂0′� ′(x′) − f ′(x′)� ′(x′)

− E ′∂1′� ′(x′) − F ′� ′(x′) = 0, (65)

where

C′ = Cγ − 2B
∂0′g(x′)

g(x′)
, (66)

E ′ = −Cβγ + 2B
∂1′g(x′)

g(x′)
, (67)

F ′ = Cγ

(
∂0′g(x′)

g(x′)
− β

∂1′g(x′)
g(x′)

)
+ B

(
∂2

1′g(x′)
g(x′)

− ∂2
0′g(x′)
g(x′)

)
. (68)

Comparing Eq. (65) with the original differential equa-
tion before the Lorentz boost, i.e., comparing it with the
equation below, which is Eq. (47) when A = −B,

B∂μ∂μ�(x) − C∂0�(x) − f (x)�(x) = 0, (69)

we realize that to guarantee covariance three conditions must
be met,

C′ = C, (70)

E ′ = 0, (71)

F ′ = 0. (72)

There are two distinct classes of solutions that satisfy
Eqs. (70) to (72).
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A. Klein-Gordon equation

The first class of solutions assumes that it is possible to
obtain a relativistic wave equation such that the wave function
is a strict scalar under a Lorentz boost, i.e., �(x) = � ′(x′).
This is achieved if we impose that g(x′) = 1. Note that the
results below are also true for any nonnull constant g(x′).

For a constant g we immediately see that F ′ = 0 since it
only depends on derivatives of g. Furthermore, Eqs. (66) and
(67) become, respectively, C′ = Cγ and E ′ = −Cβγ . We can
only have C′ = C and E ′ = 0, and thus satisfy Eqs. (70) and
(71), if C = 0.

With C = 0 the wave equation becomes

B∂μ∂μ�(x) − f (x)�(x) = 0, (73)

which is the Klein-Gordon equation if we set f (x) =
−Bm2c2/h̄2. We can arrive at the previous value for f (x)
by demanding the validity of the Einstein energy-momentum
relation, namely, E2 = m2c4 + p2c2, and by applying de
Broglie’s hypothesis to obtain from the Einstein energy-
momentum relation the corresponding dispersion relation that
the plane wave solution to Eq. (73) must satisfy.

The present analysis can be summarized in the following
theorem.

Theorem 4. Lorentz covariance is compatible with the
wave function being a strict scalar under a Lorentz boost,
i.e., �(x) = � ′(x′) after a Lorentz boost. In addition, together
with de Broglie’s hypothesis and Einstein energy-momentum
relation, they lead to the Klein-Gordon equation.

It is not difficult to see that the logic that led to the above
theorem can be easily reverted, leading to the following result.

Theorem 5. Lorentz covariance, de Broglie’s hypothesis,
and the Einstein energy-momentum relation imply the Klein-
Gordon equation and that the wave function is, up to an
overall constant, a strict scalar under a Lorentz boost, i.e.,
�(x) = � ′(x′) after a Lorentz boost.

The proof of the above theorem is as follows. Lorentz
covariance, i.e., covariance under spatial rotations and rel-
ativistic boosts, leads to the wave equation (69) and the
auxiliary conditions (70) to (72) that will allow us to obtain
the transformation law for the wave function under a Lorentz
boost. If we now use the Einstein energy-momentum relation
and de Broglie’s wave-particle hypothesis, we obtain the fol-
lowing dispersion relation:

h̄2ω2 = m2c4 + c2 h̄2k2. (74)

If we use Eq. (74) and the plane wave ansatz (33), the wave
equation (69) becomes

m2c2

h̄2 B − iω

c
C + f (x) = 0. (75)

Since B,C, and f are independent of k and ω, the only solu-
tion to Eq. (75) compatible with this constraint is

C = 0, (76)

f (x) = −m2c2

h̄2 B. (77)

However, if C = 0, Eq. (70) implies that C′ = 0. Looking at
the definition of C′, Eq. (66), this implies that g(x′) should

not depend on x0′
. Similarly, Eqs. (76), (71), and (67) imply

that g(x′) should not depend on x1′
. In other words, g(x′) is a

constant, proving that �(x) is a strict scalar under a Lorentz
boost. Note that if g(x) is a constant, the remaining constraint,
Eq. (72), is automatically satisfied. Finally, if we insert f (x)
as given in Eq. (77) into the wave equation (69) and use the
fact that C = 0, we obtain after dropping the common factor
B the Klein-Gordon equation.

B. Lorentz covariant Schrödinger equation

The second class of solutions to Eqs. (70) to (72) no longer
assumes a constant g(x′). We start by solving Eq. (71). Using
Eq. (67), E ′ = 0 leads to the following partial differential
equation:

∂g(x0′
, x1′

)

∂x1′ = Cγ β

2B
g(x0′

, x1′
), (78)

whose general solution is

g(x0′
, x1′

) = h(x0′
) exp

(
Cγ β

2B
x1′

)
. (79)

Using Eq. (70), we have that Eq. (66) gives the following
partial differential equation:

∂g(x0′
, x1′

)

∂x0′ = C(γ − 1)

2B
g(x0′

, x1′
). (80)

Inserting Eq. (79) into Eq. (80) we get

dh(x0′
)

dx0′ = C(γ − 1)

2B
h(x0′

), (81)

the solution of which is

h(x0′
) = g0 exp

[
C(γ − 1)

2B
x0′

]
, (82)

where g0 = 1 (see Sec. III B).
Therefore, using Eqs. (79) and (82) we obtain

g(x0′
, x1′

) = exp

{
C

2B
[(γ − 1)x0′ + γ βx1′

]

}
. (83)

The remaining constraint, Eq. (72), is automatically sat-
isfied if we use the solution above, Eqs. (83) and (68). It is
worth mentioning that we recover the case of a constant g(x′)
if C = 0, which we proved to be the case by a different route
in Sec. IV A.

Looking at Eq. (83), we realize that the same analysis
carried out for the nonrelativistic case concerning the complex
nature of g(x′) applies here if g(x′) is not a constant (C �= 0).
This implies that C/B must be a pure imaginary number
if C �= 0 and that complex wave functions are unavoidable
(cf. Sec. III C). Note that if g(x′) is a constant, the previous
analysis does not apply. This implies that real wave functions
are compatible with Lorentz covariance and the Klein-Gordon
equation.

Without further input, C/B is an arbitrary pure imaginary
number. We can fix its value by demanding that the nonrela-
tivistic limit (β = v/c � 1) of Eq. (83) tends to Eq. (38), its
nonrelativistic analog.

The nonrelativistic limit of Eq. (83) is obtained by ex-
panding its exponent in powers of v/c and keeping only
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the dominant terms. Since γ − 1 ≈ v2/(2c2) and γ β ≈ v/c,
Eq. (83) becomes

g(x′, t ′) ≈ exp

[
C

2Bc

(
v2

2
t ′ + vx′

)]
. (84)

We used that x0′ = ct ′ and x1′ = x′ to arrive at Eq. (84).
Note that x can be the shorthand notation for the four-vector
(x0, x1, x2, x3) or simply the variable associated with the x
axis. The context makes it clear which meaning one should
attribute to x. Comparing Eqs. (84) and (38), where we set
v = (v, 0, 0) in the later equation, we realize that they are
equal if

C

B
= i2mc

h̄
. (85)

Inserting Eq. (85) into Eq. (83) we get

g(x0′
, x1′

) = exp

{
i

h̄
[(γ − 1)mcx0′ + γ mvx1′

]

}
. (86)

If we use that x0′ = ct ′, x1′ = x, and note that vx = v · r,
we obtain from Eq. (86) the transformation law for a Lorentz
boost in an arbitrary direction (along the direction of v)

g(r′, t ′) = exp

{
i

h̄
[(γ − 1)mc2t ′ + γ mv · r′]

}
. (87)

We are still left with one free parameter to fix the values of
C and B, provided we respect Eq. (85). Employing the same
convention of the non-relativistic case, namely, Eqs. (39) and
(40), we obtain the following wave equation from Eq. (69)

∂μ∂μ� − i
2mc

h̄
∂0� + 2mV

h̄2 � = 0. (88)

Note that we also used the nonrelativistic convention, Eq. (43),
to rename f (x). In the present case, V should be interpreted
as a relativistic invariant or a relativistic scalar under proper
Lorentz transformations whose nonrelativistic limit tends to
the Newtonian potential energy [17].

Equation (88) is the Lorentz covariant Schrödinger equa-
tion obtained in Ref. [17] by a different set of assumptions. It
can also be written as follows, akin to the way we write the
nonrelativistic Schrödinger equation

− h̄2

2mc2

∂2�

∂t2
+ ih̄

∂�

∂t
= − h̄2

2m
∇2� + V �. (89)

Looking at Eq. (89) we realize that it differs from the nonrel-
ativistic Schrödinger equation by its first term. It is also clear
that when c → ∞, another way to obtain the nonrelativistic
limit, this term goes to zero and we recover the Schrödinger
equation exactly.

Theorems 4 and 5 indicate that the plane wave solution to
Eq. (88) does not satisfy the dispersion relation (74), unless
m = 0. In this particular case g(x′) becomes a constant accord-
ing to Eq. (87) and the assumptions that led to those theorems
are fulfilled.

To better understand this point, let S′ be the rest frame of
a particle with mass m that is moving with constant speed v
with respect to an inertial frame S. For the free-particle case
(V = 0), we have that in S′ the wave function � ′(r′, t ′) = �0,
with �0 being a constant, is a solution to Eq. (88) that has

a clear physical meaning. Note that this is not the case for
the Klein-Gordon equation, which does not accept a constant
solution if the mass is not zero.

A constant solution in S′ means a plane wave with a null
wave vector and zero frequency. As such, the same inter-
pretation of the nonrelativistic case applies here, where we
should understand h̄ω as the kinetic energy of the particle.
This becomes even clearer if we use the transformation rule
(20) and Eq. (87) to obtain the wave function in S from the
one in S′, namely,

�(r, t ) = �0 exp

{
i

h̄
[(γ − 1)mc2t ′ + γ mv · r′]

}
,

= �0 exp

{
i

h̄
[−(γ − 1)mc2t + γ mv · r]

}
. (90)

To obtain the last line, we used the inverse of the Lorentz boost
given by Eqs. (48) to (51) to express the primed variables as
functions of the unprimed ones.

Comparing Eq. (90) with the standard way of writing a
plane wave, Eq. (33), we recognize that

h̄ω = (γ − 1)mc2, (91)

h̄k = γ mv. (92)

Note that (γ − 1)mc2 is the usual relativistic kinetic energy of
the particle and γ mv its relativistic momentum from the point
of view of S. This is consistent with the interpretation we gave
above about the constant solution in the particle’s rest frame,
where both the kinetic energy and momentum are zero.

A detailed analysis of Eq. (89) in several different scenar-
ios and external potentials is given in Ref. [17] as well as
its connection with the Klein-Gordon equation. The second
quantization of Eq. (89) is also provided in Ref. [17] as well
as a generalized Lorentz covariant Schrödinger equation in
which the transformation law for the wave function under a
boost and under spatial rotations are given by a nonconstant
g(x′). The extension of the present ideas for a spin-1/2 el-
ementary particle is given in Refs. [25,26], where the first
and second quantized theories are developed. The common
feature of the quantum field theories built on Eq. (89) [17] and
on its spin-1/2 extension [25,26] can be summarized in the
fact that particles and antiparticles with the same mass do not
have the same dispersion relation anymore. This points to a
fully relativistic way of understanding the asymmetry between
matter and antimatter in the present day universe [17,25,26].

V. CONCLUSION

We showed that it is possible to derive the Schrödinger
equation using only two assumptions, namely, de Broglie’s
wave-particle duality hypothesis and the Galilean covariance
of the wave equation. The first assumption means that there
is a wave function associated with a massive particle and that
its energy and momentum are connected to the frequency and
wave vector of that wave as prescribed by de Broglie. The
second assumption is the Galilean relativity principle, which,
in the sense employed in this work, postulates that the wave
equation (laws of physics) should look the same after either a
spatial rotation or a Galilean transformation (Galilean boost).
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The above analysis not only lead unambiguously to the
nonrelativistic Schrödinger equation, but also to the trans-
formation law for the wave function after a Galilean boost.
It also lead to the proof that the wave function cannot be a
strict scalar under a Galilean transformation, namely, it is not
possible to have a nonrelativistic wave equation satisfying the
two assumptions outlined above such that �(r, t ) → �(r, t )
after a Galilean boost.

Furthermore, we showed that Galilean covariance and de
Broglie’s wave-particle duality also imply that complex wave
functions are unavoidable for a consistent description of a
physical system in all inertial frames. We also showed that any
wave equation compatible with those two assumptions cannot
have a second-order time derivative, which is an alternative
way of understanding why the Schrödinger equation has only
a first-order time derivative [24].

The extension of the above results to the relativistic domain
was given in the end of this work. We derived the wave
equations compatible with de Broglie’s wave-particle dual-
ity hypothesis and Lorentz covariance, where the latter term
means covariance under spatial rotations and Lorentz boosts.

We showed that Lorentz covariance is compatible with a
wave function that transforms under a Lorentz boost as a
strict scalar, i.e., �(r, t ) → �(r, t ) after a Lorentz transfor-
mation. Moreover, we showed that Lorentz covariance plus
de Broglie’s hypothesis and the Einstein energy-momentum
relation lead unambiguously to the Klein-Gordon equation if,
and only if, �(r, t ) → �(r, t ) under proper Lorentz transfor-
mations (spatial rotations and boosts).

However, we showed that Lorentz covariance is also com-
patible with a wave function that is not a strict scalar under a
Lorentz boost, namely, with a wave function that transforms
after a Lorentz boost as follows, �(r, t ) → g(r, t )�(r, t ).
By requiring that the nonrelativistic approximation of g(r, t )
should tend to Schrödinger’s wave-function transformation
law, we uniquely determined it and also its associated wave
equation. This wave equation was shown to be the Lorentz-
covariant Schrödinger equation, derived in Ref. [17] by a
different set of assumptions.

Also, an interesting extension of the ideas contained in this
work would be to search for the most general second-order
linear wave equation and the respective wave-function trans-
formation rule by requiring “Einstein’s general covariance”
[27] for the wave equation. This approach may lead to a wave
equation that incorporates the gravitational field from the start,
opening the door to a consistent quantum theory of gravity.

Finally, we would like to call attention to an open prob-
lem that we were not able to solve so far, despite several
attempts. The solution to this problem might lead to an even
deeper understanding of nonrelativistic quantum mechanics,
in particular about the origin and meaning of the measurement
postulate and Born rule, i.e., the statistical interpretation of
the wave function. The problem is the following. Using the
two assumptions outlined above, we were not able to derive
the Born rule. We believe it is not possible to arrive at it
from those two assumptions alone. However, we do not know
either what third physical assumption one should bring to the
table to arrive at it. In other words, what is the extra ingredient,
the extra basic physical law, that we need to prove the Born
rule and completely build nonrelativistic quantum mechanics

without ad hoc postulates that do not have a clear physical
meaning?
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APPENDIX : HIGHER-ORDER DIFFERENTIAL
EQUATIONS

1. Third-order differential equation

The most general linear third-order partial differential
equation on the variables xμ is

aμνκ∂μ∂ν∂κ�(x) + aμν∂μ∂ν�(x) + bμ∂μ�(x)

+ f (x)�(x) = 0, (A1)

where we assume that f (x) → f (x) after a spatial rotation or
a Galilean boost. In other words, f (x) is a strict scalar under
those symmetry operations.

Since the order of the derivatives can be interchanged at
will (we are assuming that �(x) is a well-behaved infinitely
differentiable function), we slightly modify the Einstein sum-
mation convention to simplify the analysis. When two or
more indexes are summed, we restrict the sum such that each
subsequently index is greater or equal to its predecessor. For
instance,

aμν∂μ∂ν = a11∂1∂1 + a12∂1∂2 + a22∂2∂2. (A2)

We now start analyzing the constraints on the coefficients
aμνκ coming from demanding the covariance of the differ-
ential equation (A1) under spatial rotations. We also assume
that the wave function is a strict scalar under spatial rotations,
namely, �(x) → �(x) after an arbitrary spatial rotation.

The analysis is carried out most simply by separating it
into two distinct parts. The first one deals with the case where
the first index is 0, a temporal derivative. The second case
considers the scenario where only pure spatial derivatives are
present. These two cases exhaust all possibilities.

When μ = 0 we have the following third-order term:

a0νκ∂0∂ν∂κ�(x). (A3)

Since the first index is fixed and equal to zero and under
any spatial rotation ∂0 → ∂0, what we have here is an actual
two-index term. Therefore, this term and the other lower-order
terms in Eq. (A1) can be written as follows after renaming
some of the dummy indexes:

aμν∂μ∂ν�(x) + bμ∂μ�(x) + f (x)�(x) = 0, (A4)

where

aμν = a0μν∂0 + aμν. (A5)

According to the results of the main text (see Sec. III A), by
demanding the covariance of Eq. (A4) under spatial rotations
we obtain

a00∂2
0 �(x) − a11∂ j∂

j�(x) + b0∂0�(x) + f (x)�(x) = 0,

(A6)
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where we used that a11 = a22 = a33 and ∂ j = −∂ j . Inserting
Eq. (A5) into Eq. (A6) we get

a000∂3
0 �(x) − a011∂0∂ j∂

j�(x) + a00∂2
0 �(x)

−a11∂ j∂
j�(x) + b0∂0�(x) + f (x)�(x) = 0. (A7)

When μ �= 0 we have the following third-order term:

ai jk∂i∂ j∂k�(x), (A8)

where no temporal index is present.
If the three indexes are equal, let us say equal to j, a

rotation of π radians about any one of the other two re-
maining orthogonal axes leads to ∂ j → −∂ j . This implies that
∂3

j → −∂3
j and, thus, that a j j j = 0 for j = 1, 2, 3. This is true

since after the spatial rotation the term a j j j∂3
j �(x) changes to

−a j j j∂3
j �(x). Since the last term was not in the differential

equation before the transformation, and there are other terms
in the equation that do not change sign under this symmetry
operation, we can only guarantee covariance if a j j j = 0.

If two indexes are equal, a π radian rotation about the axis
labeled by this index will change the sign of the derivative
related to the index that is different. In other words, we will
have a j jk∂2

j ∂k�(x) → −a j jk∂2
j ∂k�(x) and the same argument

we employed above to prove that a j j j = 0 leads to a j jk = 0,
for j �= k.

Finally, if the three indexes are different, we implement a
rotation of π/2 radians about any one of the three orthogonal
axes. For instance, rotating π/2 radians about the k axis (z-
axis), we have that ∂k → ∂k , ∂i → ∂ j and ∂ j → −∂i, where i
and j mean the x axis and and y axis, respectively. Therefore,
in general, we will have ai jk∂i∂ j∂k�(x) → −ai jk∂i∂ j∂k�(x)
and thus by similar arguments already employed in the two
previous cases we must have ai jk = 0, if i �= j �= k.

The three cases above combined imply that ai jk = 0 for
all possible values of i, j, k. Therefore, Eq. (A7) is the most
general third-order differential equation compatible with co-
variance under spatial rotations.

We need now to impose covariance under Galilean boosts.
In this scenario the wave function changes according to the
following rule:

�(x) → g(x)�(x), (A9)

where g(x) �= 0. Note that the shorthand notation for
�(x0, x1, x2, x3) is �(x). After a Galilean boost we also
have that

∂0 → ∂0 − β∂x, (A10)

where β = v/c �= 0, while the spatial derivatives remain un-
changed (see Secs. III B and IV).

Using Eqs. (A9) and (A10), we have that a000∂3
0 �(x) yield

after the Galilean boost the following term (among many
others, of course):

−3βg(x)a000∂2
0 ∂x�(x). (A11)

A term proportional to ∂2
0 ∂x�(x) will not appear anywhere

else after transforming Eq. (A7). This comes about because its
other terms are either at most of second order in the derivatives
or first order in the time derivative when the order of the
derivative is higher than 2. Therefore, since Eq. (A11) was

not in Eq. (A7) before the Galilean transformation, we must
have that

a000 = 0 (A12)

to guarantee covariance under a Galilean boost.
Moving to the term −a001∂0∂ j∂

j�(x), we have that after a
Galilean boost one of the new terms is

βa001g(x)∂x∂ j∂
j�(x). (A13)

Since a000 = 0 and the other terms in Eq. (A7) are, at
most, of second order in the derivatives, the fact that a term
proportional to ∂x∂ j∂

j�(x) is absent before the Galilean trans-
formation implies that we necessarily have

a001 = 0 (A14)

to preserve the covariance of Eq. (A7) under a Galilean boost.
Combining Eqs. (A12) and (A14), we have that Eq. (A7)

becomes

a00∂2
0 �(x) − a11∂ j∂

j�(x) + b0∂0�(x) + f (x)�(x) = 0.

(A15)

In other words, if we restrict the order of the derivatives
up to three, there is no third-order derivative term compati-
ble with both covariance under spatial rotations and Galilean
boosts. As we show next, we can only have a compatible
third-order term if we allow the presence of fourth-order terms
as well.

2. Fourth-order differential equation

The same notation, conventions, and assumptions laid out
at the previous subsection are valid here. The most general
linear fourth order partial differential equation on the variables
xμ can be written as

aμνκε∂μ∂ν∂κ∂ε�(x) + aμνκ∂μ∂ν∂κ�(x)

+ aμν∂μ∂ν�(x) + bμ∂μ�(x) + f (x)�(x) = 0. (A16)

The constraints on the coefficients aμνκε due to the covari-
ance of the differential equation (A16) under spatial rotations
are obtained as follows. Similarly to the way we worked out
the third-order differential equation, we start with the case
where the first index is 0. The other case, where μ �= 0,
contains only spatial derivatives and these two cases exhaust
all possibilities.

When μ = 0 we have

a0νκε∂0∂ν∂κ∂ε�(x). (A17)

Since under any spatial rotation ∂0 → ∂0, we are actually
working with an effective three-index term. This term and the
lower-order terms of Eq. (A16) can be written as follows to
highlight this point:

aμνκ∂μ∂ν∂κ�(x) + aμν∂μ∂ν�(x) + bμ∂μ�(x)

+ f (x)�(x) = 0, (A18)

where

aμνκ = a0μνκ∂0 + aμνκ . (A19)

Following the analysis of the previous subsection, if we
require the covariance of Eq. (A18) under spatial rotations we
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get that it becomes

a000∂3
0 �(x) − a011∂0∂ j∂

j�(x) + a00∂2
0 �(x)

− a11∂ j∂
j�(x) + b0∂0�(x) + f (x)�(x) = 0. (A20)

Inserting Eq. (A19) into Eq. (A20) we get

a0000∂4
0 �(x) − a0011∂2

0 ∂ j∂
j�(x) + a000∂3

0 �(x)

− a011∂0∂ j∂
j�(x) + a00∂2

0 �(x) − a11∂ j∂
j�(x)

+ b0∂0�(x) + f (x)�(x) = 0. (A21)

When μ �= 0 we have the following fourth-order term:

ai jkl∂i∂ j∂k∂l�(x), (A22)

where no temporal index is present.
If the four indexes are equal to j, a rotation of π/2

radians about any other orthogonal axes not labeled by j
leads to ∂4

j ↔ ∂4
k or ∂4

j ↔ ∂4
l , where j �= k �= l . This implies

that a1111 = a2222 = a3333 to ensure covariance under these
particular rotations. For example, a counterclockwise rota-
tion of π/2 radians about the x3 axis leads to the following
changes, a1111∂4

1 �(x) → a1111∂4
2 �(x) and a2222∂4

2 �(x) →
a2222∂4

1 �(x), which implies that a1111 = a2222 when covari-
ance is required. A similar analysis changing the axis of
rotation gives a1111 = a3333.

If we have three identical indexes, namely, j j jk, with
j �= k, a π radian rotation about the xk axis leads to
a j j jk∂3

j ∂k�(x) → −a j j jk∂3
j ∂k�(x) since ∂ j → −∂ j and ∂k →

∂k under this rotation. This implies that a j j jk = 0 to guarantee
covariance.

If two indexes are equal and the other two are different
from the latter and from each other, namely, j jkl , with j �=
k �= l , a counterclockwise π radian rotation about the xk axis
gives ∂k → ∂k , ∂ j → −∂ j , and ∂l → −∂l . This implies that
a j jkl∂2

j ∂k∂l�(x) → −a j jkl∂2
j ∂k∂l�(x) and thus we must have

a j jkl = 0 to obtain covariance.
Now, if two indexes are equal and the other two are

also equal but different from the other pair, namely, j jkk,
with j �= k, a counterclockwise π/2 radian rotation about
the x j axis gives ∂2

j → ∂2
j and ∂2

k ↔ ∂2
l , where l �= j and

l �= k. This implies that a j jkk∂2
j ∂

2
k �(x) → a j jkk∂2

j ∂
2
l �(x)

while a j jll∂2
j ∂

2
l �(x) → a j jll∂2

j ∂
2
k �(x) and thus we must have

a j jkk = a j jll to have covariance.
Combining the results of the last four paragraphs, we ob-

tain that Eq. (A22) becomes

[
a1111

(
∂4

1 + ∂4
2 + ∂4

3

) + a1122
(
∂2

1 ∂2
2 + ∂2

1 ∂2
3 + ∂2

2 ∂2
3

)]
�(x).

(A23)

We need one last rotation, namely, a counterclockwise
π/4 radian rotation about the x3 axis. In this case ∂3 →
∂3, ∂1 → (∂1 + ∂2)/

√
2 and ∂2 → (∂2 − ∂1)/

√
2. Therefore,

transforming Eq. (A23) we get

a1111

(
∂4

1 + ∂4
2

2
+ 3∂2

1 ∂2
2 + ∂4

3

)
�(x)

+ a1122

(
∂4

1 + ∂4
2

4
− ∂2

1 ∂2
2

2
+ ∂2

1 ∂2
3 + ∂2

2 ∂2
3

)
�(x). (A24)

Looking at Eq. (A24) we note that, individually, the oper-
ators multiplying a1111 and a1122 are not covariant under the
latter rotation. However, the whole expression can be made
covariant if we set

a1122 = 2a1111. (A25)

Indeed, using Eq. (A25) we have that Eq. (A24) becomes

a1111(∂2
1 + ∂2

2 + ∂2
3

)2
�(x) = a1111∂ j∂

j∂k∂
k�(x), (A26)

which is the same expression we get by also inserting
Eq. (A25) into Eq. (A23), where the latter equation is the term
under investigation before the transformation.

Moreover, the operator (∂2
1 + ∂2

2 + ∂2
3 )2 is actually the

square of the Laplacian, i.e., (∇2)2 ≡ ∇2(∇2). Since the
Laplacian operator is invariant under any rotation, we have
that Eq. (A26) is covariant under any rotation as well.

Using Eqs. (A21) and (A26), and renaming the constant
coefficients, we can write the most general linear fourth-order
partial differential equation that is covariant under arbitrary
spatial rotations as follows:

Ã∂4
0 �(x) + B̃∂ j∂

j∂k∂
k�(x) − C̃∂2

0 ∂ j∂
j�(x)

+ ã∂3
0 �(x) − b̃∂0∂ j∂

j�(x) + A∂2
0 �(x)

− B∂ j∂
j�(x) + C∂0�(x) + f (x)�(x) = 0. (A27)

We need now to analyze the covariance under a Galilean
boost. Using Eqs. (A9) and (A10), we see that one of the terms
coming from Ã∂4

0 �(x) after the boost is

−4βg(x)Ã∂3
0 ∂x�(x). (A28)

A mixed derivative term proportional to ∂3
0 ∂x�(x) does not

come from any other transformed term of Eq. (A27). This is
true because the other terms in Eq. (A27) are either at most
of third order in the derivatives or second order in the time
derivative when the order of the derivative is higher than three.
Hence, since this term is absent before the boost, we can only
guarantee covariance under Galilean transformations if

Ã = 0. (A29)

If we now use Eqs. (A9) and (A10), one of the terms
stemming from −C̃∂2

0 ∂ j∂
j�(x) after the boost is

2βg(x)C̃∂0∂x∂ j∂
j�(x). (A30)

Since we must have Ã = 0 and the other terms in Eq. (A27)
are either at most of third order in the derivatives or do
not have a time derivative, a similar term proportional to
∂0∂x∂ j∂

j�(x) will not appear after the boost. Thus, since a
term like this is not present before the transformation, we have

C̃ = 0 (A31)

to preserve the covariance of Eq. (A27) under a Galilean
boost.
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A similar argument used to prove Eq. (A12) applies here
as well. This leads to

ã = 0 (A32)

to preserve covariance under boosts.
Combing the results given by Eqs. (A29), (A31), and

(A32), the differential equation (A27) becomes

B̃∂ j∂
j∂k∂

k�(x) − b̃∂0∂ j∂
j�(x) + A∂2

0 �(x)

− B∂ j∂
j�(x) + C∂0�(x) + f (x)�(x) = 0. (A33)

It is worth mentioning that after the boost, the fourth-order
term B̃∂ j∂

j∂k∂
k�(x) will provide similar terms to those com-

ing from −b̃∂0∂ j∂
j�(x). This is why the argument used in

the previous subsection to rule out the latter term is no longer
valid. Similarly, since the latter term is now present, after the
boost it will give similar terms to those coming from A∂2

0 �(x).
This is why now the presence of a pure second-order time
derivative will not contradict Galilean covariance and why the
proof of the main text ruling it out no longer applies.

Applying Eqs. (A9) and (A10) to Eq. (A33), after a long
but straightforward calculation, similar to the ones we ex-
plicitly showed in Secs. III and IV, we get that we can only
guarantee covariance if

B̃ = AB2

C
2 , (A34)

b = 2AB

C
, (A35)

g(r′, t ′) = exp

[
C

2mB

(
mv2t ′

2
+ mv · r′

)]
, (A36)

where A = c2A, C = cC, and b̃ = cb. We also used that x0′ =
ct ′ to arrive at the last equation.

To fix the value of C/B we require that the plane wave
solution to Eq. (A33) satisfies the free-particle dispersion
relation (31), where the dispersion relation is a consequence
of de Broglie’s wave-particle duality hypothesis. Inserting the
ansatz (33) into Eq. (A33), we obtain the dispersion relation
(31) if

C

B
= i2m

h̄
, (A37)

f (r, t ) = 0. (A38)

Note that with this value for C/B, g(r′, t ′) given by Eq. (A36)
is exactly the one we obtained for the standard Schrödinger
equation [cf. Eq. (38)]. In other words, the wave functions of
the fourth-order equation and the Schrödinger equation have
the same transformation law under a Galilean boost.

Using Eqs. (A34), (A35), and (A37), the wave equation can
be written as

Ah̄2

4m2
∇4� + ih̄A

m
∇2∂t� − A∂2

t �

− B∇2� − i2mB

h̄
∂t� − f � = 0, (A39)

where ∇4 ≡ ∇2(∇2), i.e., the square of the Laplacian.

It is interesting to note that if A = 0, or equivalently A = 0,
we recover the standard Schrödinger equation by properly ad-
justing the free parameter B, i.e., by choosing B = −h̄2/(2m)
and by setting f = V (r, t ). Since the constant A multiplies
the second-order time derivative, its suppression leads imme-
diately to the Schrödinger equation, even if we go up to fourth
order.

Moreover, writing the Schrödinger equation as

Ŝ� = 0, (A40)

where

Ŝ = h̄2

2m
∇2 + ih̄∂t − V (A41)

is what we call the Schrödinger operator, we obtain for a
constant V that

Ŝ2 = h̄4

4m2
∇4 + ih̄3

m
∇2∂t − h̄2∂2

t − V
h̄2

m
∇2 − i2V h̄∂t + V 2.

(A42)

Comparing Eq. (A42) with the operator acting on � that
generates the wave equation (A39), we realize that they are
equal if

A = h̄2, (A43)

B = V h̄2

m
, (A44)

f = −V 2. (A45)

In other words, for a free particle (V = 0), or a particle in
a constant potential, the fourth-order wave equation (A39) is
obtained from “squaring” the Schrödinger equation. Specif-
ically, it is obtained by squaring the Schrödinger operator
Ŝ . The Schrödinger equation is given by Ŝ� = 0 and the
fourth-order equation by Ŝ2� = 0 if A, B, and f are given
by Eqs. (A43) to (A45). The latter relation also implies that
any solution to the Schrödinger equation is also a solution to
the fourth-order equation. Indeed, if � is a solution to the
Schrödinger equation we have Ŝ� = 0. But Ŝ2� = Ŝ (Ŝ�).
Therefore, we must have Ŝ2� = 0, proving that � is also a
solution to the fourth-order equation.

Finally, if V is not constant but depends on the position,
namely, if V = V (r), one of the terms of the square of the
Schrödinger operator is

− h̄2

m
∇V · ∇�. (A46)

Looking at Eq. (A39), we realize that this type of mixed
derivative is absent from it. Therefore, it is not possible,
in general, to make the square of the Schrödinger equation
(Ŝ2� = 0) equivalent to the fourth-order wave equation (A39)
if V is not a constant.

052209-11



GUSTAVO RIGOLIN PHYSICAL REVIEW A 109, 052209 (2024)

[1] L. de Broglie, Ann. Phys. (Paris) 10, 22 (1925).
[2] E. Schrödinger, Phys. Rev. 28, 1049 (1926).
[3] A. Einstein, Sitzungsberichte der Preußischen Akademie der

Wissenschaften zu Berlin, Physikalisch-mathematische Klasse
(1925), pp. 3–14.

[4] E. Schrödinger, Naturwissenschaften 14, 664 (1926).
[5] E. Pérez and T. Sauer, Arch. Hist. Exact Sci. 64, 561 (2010).
[6] J.-M. L.-Leblond, J. Math. Phys. 4, 776 (1963).
[7] J.-M. L.-Leblond, Commun. Math. Phys. 6, 286 (1967).
[8] L. E. Ballentine, Quantum Mechanics: A Modern Development,

(World Scientific, Singapore, 1998).
[9] S. T. Pereira and R. M. Angelo, Phys. Rev. A 91, 022107

(2015).
[10] M.-O. Renou, D. Trillo, M. Weilenmann, T. P. Le, A. Tavakoli,

N. Gisin, A. Acín, and M. Navascués, Nature (London) 600,
625 (2021).

[11] Z.-Da Li, Y.-Li Mao, M. Weilenmann, A. Tavakoli, H. Chen, L.
Feng, S.-J. Yang, M.-O. Renou, D. Trillo, T. P. Le, N. Gisin, A.
Acín, M. Navascués, Z. Wang, and J. Fan, Phys. Rev. Lett. 128,
040402 (2022).

[12] M. C. Chen, C. Wang, F. M. Liu, J. W. Wang, C. Ying, Z. X.
Shang, Y. Wu, M. Gong, H. Deng, F.-T. Liang, Q. Zhang, C.-Z.

Peng, X. Zhu, A. Cabello, C.-Y. Lu, and J.-W. Pan, Phys. Rev.
Lett. 128, 040403 (2022).

[13] O. Klein, Z. Phys. 37, 895 (1926).
[14] W. Gordon, Z. Phys. 40, 117 (1926).
[15] V. Fock, Z. Phys. 39, 226 (1926).
[16] W. Greiner, Relativistic Quantum Mechanics: Wave Equations,

(Springer-Verlag, Berlin, 2000).
[17] G. Rigolin, Adv. High Energy Phys. 2022, 5511428 (2022).
[18] E. Nelson, Phys. Rev. 150, 1079 (1966).
[19] M. J. W. Hall and M. Reginatto, J. Phys. A: Math. Gen. 35, 3289

(2002).
[20] P. M. Grinwald, Found. Phys. 52, 50 (2022).
[21] J. S. Briggs, S. Boonchui, and S. Khemmani, J. Phys. A: Math.

Theor. 40, 1289 (2007).
[22] J. H. Field, Eur. J. Phys. 32, 63 (2011).
[23] W. P. Schleich, D. M. Greenberger, D. H. Kobe, and M. O.

Scully, Proc. Natl. Acad. Sci. USA 110, 5374 (2013).
[24] S. Bobbio and G. Marrucci, Nuovo Cimento A 109, 1567

(1996).
[25] G. Rigolin, J. Phys. G: Nucl. Part. Phys. 50, 125003 (2023).
[26] G. Rigolin, J. Phys. G: Nucl. Part. Phys. 50, 125005 (2023).
[27] J. D. Norton, Rep. Prog. Phys. 56, 791 (1993).

052209-12

https://doi.org/10.1051/anphys/192510030022
https://doi.org/10.1103/PhysRev.28.1049
https://doi.org/10.1007/BF01507634
https://doi.org/10.1007/s00407-010-0066-x
https://doi.org/10.1063/1.1724319
https://doi.org/10.1007/BF01646020
https://doi.org/10.1103/PhysRevA.91.022107
https://doi.org/10.1038/s41586-021-04160-4
https://doi.org/10.1103/PhysRevLett.128.040402
https://doi.org/10.1103/PhysRevLett.128.040403
https://doi.org/10.1007/BF01397481
https://doi.org/10.1007/BF01390840
https://doi.org/10.1007/BF01321989
https://doi.org/10.1155/2022/5511428
https://doi.org/10.1103/PhysRev.150.1079
https://doi.org/10.1088/0305-4470/35/14/310
https://doi.org/10.1007/s10701-022-00561-1
https://doi.org/10.1088/1751-8113/40/6/007
https://doi.org/10.1088/0143-0807/32/1/007
https://doi.org/10.1073/pnas.1302475110
https://doi.org/10.1007/BF02778240
https://doi.org/10.1088/1361-6471/ad0312
https://doi.org/10.1088/1361-6471/ad0313
https://doi.org/10.1088/0034-4885/56/7/001

