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Adjoint master equation for multitime correlators
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The quantum regression theorem is a powerful tool for calculating the multitime correlators of operators of
open quantum systems whose dynamics can be described in Markovian approximation. However, the scope of
the quantum regression theorem is limited by a particular time order of the operators in multitime correlators
and does not include out-of-time-ordered correlators. In this work, we obtain an adjoint master equation for
multitime correlators that applies to out-of-time-ordered correlators. We show that this equation can be derived
for various approaches to the description of the dynamics of open quantum systems, such as the global or local
approach. We show that the adjoint master equation for multitime correlators is self-consistent. Namely, the
final equation does not depend on how the operators are grouped inside the correlator and it coincides with the
quantum regression theorem for the particular time ordering of the operators.
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I. INTRODUCTION

Out-of-time-ordered correlators (OTOCs) hold a special
place in many-body quantum physics. Originally, OTOC
was introduced in [1] to analyze the relation between the
semi-classical and quantum description of the electrons in
superconductors. In recent years, OTOCs received growing
attention because of their deep connection with the entan-
glement in quantum systems [2–14]. OTOCs can be used to
quantitatively characterize the quantum chaos [15–25] and
to study some other problems in quantum systems [26–32].
OTOCs with more than two operators dependent on time are
important in the quantum chaos theory because they are used
to define the quantum generalized Lyapunov exponent [33].
In addition, it is possible to measure OTOC experimentally
[34–44].

An experimentally feasible quantum system is never
completely isolated from its environment. Therefore, the cal-
culation of correlators should take into account the open
nature of the quantum system. When the system dynamics
can be described in the Born-Markov approximation, the
quantum regression theorem is applicable for calculations of
multitime correlation functions of operators. However, the
quantum regression theorem cannot be applied to OTOCs
[45,46]. In [47], the general quantum regression theorem
(GQRT) for OTOC was developed. The derivation of GQRT
relies on Heisenberg-Langevin equations and requires explicit
knowledge of the corresponding noise operators, which gen-
erally demands the knowledge of the system’s eigenstates and
eigenenergies. Thus, it may be difficult to apply GQRT for
complex quantum systems.

An alternative method to describe the dynamics of an open
quantum system is the Lindblad master equation [45]. In the
Born-Markov approximation, the Heisenberg-Langevin equa-
tion and Lindblad master equation are equivalent [48]. Each
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of these two methods has its advantages and disadvantages.
Usually, one of these methods is preferable for a particular
problem. When the relaxation superoperators strongly depend
on the interaction constant between subsystems of a complex
open quantum system, it is necessary to investigate the ratios
between the relaxation rates and this interaction constant.
When the interaction constant is less than relaxation rates, one
uses the so-called local approach [49–53], in the opposite case
one uses the global approach [45,49–51,54]. In the intermedi-
ate case, one can use a partially secular approach [55,56] or
the approach based on the perturbation theory [57]. For this
type of problem, the Lindblad master equation is preferable. In
this regard, it is important to expand the scope of applicability
of the quantum regression theorem to OTOCs in the formalism
of the Lindblad master equation.

In this work, we derive the adjoint master equation for
multitime correlators. We write explicitly the equation for
OTOCs with an arbitrary number of operators. We show that
the adjoint master equation for multitime correlators is self-
consistent, such that the resultant equation does not depend
on how we group the operators inside the trace function.
The derived adjoint master equation for multitime correlators
gives the same result as the standard quantum regression
theorem when the latter is applicable. Recently, a similar
framework was used in [46] to analyze the quantum regression
theorem with a main focus on non-Markovian dynamics.
In this paper, we mainly focus on explicitly going beyond
four-point correlators, prooving the self-consistency of the
adjoint master equation for multitime correlators, and veri-
fying the compatibility of the equation with the approximate
approaches to the relaxation operators.

II. DECOMPOSITION OF THE
SYSTEM-RESERVOIR INTERACTION

We consider the system interacting with the reservoir. The
Hamiltonian of the system is ĤS , the Hamiltonian of the
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reservoir is ĤR, and the Hamiltonian of the system-reservoir
interaction is ĤSR. We assume that the evolution of the whole
system is Hermitian and governed by the Hamiltonian

Ĥ = ĤS + ĤR + ĤSR. (1)

We consider the system Hamiltonian to be time-independent.
Additionally, we consider the interaction of the system with
only one reservoir such that the interaction Hamiltonian is

ĤSR = h̄λŜR̂, (2)

where Ŝ is the operator of the system, R̂ is the operator of the
reservoir, and λ is the interaction constant. One reservoir with
the interaction Hamiltonian (2) is the simplest possible case,
which, however, can be straightforwardly generalized to the
multiple reservoirs.

The Hamiltonian (1) governs the time evolution of any
operator D̂ in Heisenberg representation

D̂(t2) = eiĤ (t2−t1 )/h̄D̂(t1)e−iĤ (t2−t1 )/h̄, (3)

where t1 and t2 are arbitrary moments in time. The equation for
time evolution (3) remains the same if the operator D̂ is the
system’s operator, the reservoir’s operator, or the product of
both types.

In the general case, it is rarely possible to establish an
explicit form of the operator (3), even if, at the initial moment,
the operator D̂ was only an operator of the system.

Usually, two conditions accompany the study of the open
quantum system: (1) it is the evolution of the system that
is important, whereas the evolution of the reservoir is not
of interest; (2) the system has a small number of degrees
of freedom, while the reservoir, on the contrary, has a large
number of degrees of freedom. When both conditions are
met, one can exploit the Born-Markov approximation and
write effective equations for the averages and correlators for
the system operators tracing out the reservoir’s degrees of
freedom.

To derive the equation for the correlators, we have to find
the decomposition of the Hermitian time evolution of the op-
erator Ŝ form the right-hand side of the Eq. (2) [45]. Typically,
there are two possible options for such a decomposition. The
first one is the exact decomposition of the operator Ŝ,

eiĤSt/h̄Ŝe−iĤSt/h̄ = Ĉ0 +
⎛
⎝ M∑

j=1

Ĉje
−iω j t + H.c.

⎞
⎠. (4)

The second option is the approximate decomposition of the
operator Ŝ

eiĤSt/h̄Ŝe−iĤSt/h̄ ≈ Ĉ0 +
⎛
⎝ M∑

j=1

Ĉje
−iω j t + H.c.

⎞
⎠. (5)

In Eqs. (4) and (5) ω j �= 0, ω j �= ωk at j �= k, and Ĉ†
0 = Ĉ0.

The exact decomposition (4) is used in the global approach
to the Lindblad master equation [45,49–51,54], whereas the

approximate decomposition (5) is used in the local approach
[49–53], partially secular approach [56], and the approach
based on perturbation theory [57].

III. INTERACTION REPRESENTATION

There are two coexisting parts that determine the time
evolution of the correlators. The first part originates from
the Hamiltonian ĤS and preserves the energy in the system.
Thus, this part is associated with the Hermitian evolution.
The second part originates from the Hamiltonians ĤSR and
ĤR, causing the energy flow between the system and reservoir
and/or destruction of the phase in the system. Thus, this part
is associated with non-Hermitian evolution.

We use the interaction representation to divide the Hermi-
tian and non-Hermitian parts of the evolution. For arbitrary
operator D̂ its interaction representation D̂′(t ) is defined by

D̂′(t ) = ei(ĤS+ĤR )t/h̄D̂e−i(ĤS+ĤR )t/h̄. (6)

The relation between the full quantum dynamics of the oper-
ator with its interaction representation follows from Eq. (3)

D̂(t ) = V̂ †(t )D̂′(t )V̂ (t ). (7)

Here V̂ (t ) = ei(ĤS+ĤR )t/h̄e−iĤt/h̄ and it can be obtained from
the equation

dV̂ (t )

dt
= − i

h̄
Ĥ ′

SR(t )V̂ (t ), (8)

with the initial condition V̂ (0) = 1̂. According to Eqs. (2) and
(6), Ĥ ′

SR(t ) = h̄λŜ′(t )R̂′(t ). Thus, we can explicitly find the
approximate evolution of the operator V̂ (t + �t ) up to the
second order in the interaction constant λ,

V̂ (t + �t ) ≈ V̂ (t ) + Ŵ (t,�t ), (9)

where W (t,�t ) = −iλV̂1(t,�t ) − λ2V̂2(t,�t ) and

V̂1(t,�t ) =
∫ t+�t

t
dt1Ŝ′(t1)R̂′(t1)V̂ (t ), (10)

V̂2(t,�t ) =
∫ t+�t

t
dt1

∫ t1

t
dt2Ŝ′(t1)Ŝ′(t2)R̂′(t1)R̂′(t2)V̂ (t ).

(11)

The approximate time evolution (9) is the key to deter-
mining the effective non-Hermitian dynamics of the system.
Indeed, with this equation for any operator of the system B̂,
we can determine the relation between its values at time t and
at time t + �t

B̂(t + �t ) ≈ �t
i

h̄
[ĤS (t ), B̂(t )] + {V̂ †(t )

+ Ŵ †(t,�t )}B̂′(t ){V̂ (t ) + Ŵ (t,�t )}, (12)

where we use [B̂(t ), ĤR(t )] = 0. Note that we define the
Hamiltonians ĤS (t ) and ĤR(t ) according to Eq. (3).

We use Eq. (12) to derive the quantum regression theorem
and the more general adjoint master equation for multitime
correlators.
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IV. QUANTUM REGRESSION THEOREM

In this section, we derive the standard quantum regression
theorem for the correlation function

〈Â1B̂1(t + τ )Â2〉, (13)

where Â1, B̂1(t + τ ), and Â2 are the operators of the system
and Â1 and Â2 are taken at times prior to t and do not depend
on τ . We assume that we know the correlation function (13)
at τ = 0, and we are to determine its subsequent evolution at
τ > 0.

To derive the quantum regression theorem, we consider the
connection between the correlation functions 〈Â1B̂1(t + τ )Â2〉
and 〈Â1B̂1(t + τ + �τ )Â2〉. Equation (12) leads to

〈Â1B̂1(t + τ + �τ )Â2〉

≈ �τ
i

h̄
〈Â1[ĤS (t + τ ), B̂1(t + τ )]Â2〉 + 〈Â1{V̂ †(t + τ )

+ Ŵ †(t + τ,�τ )}B̂′
1(t + τ ){V̂ (t + τ )

+ Ŵ (t + τ,�τ )}Â2〉. (14)

For Eq. (14), we can apply assumptions and methods sim-
ilar to those used for the derivation of the Lindblad master
equation [45,54]. In particular, we set certain limitations for
the time �τ , use the Born and Markov approximations, and
assume that at any time t the density matrix is factorized
ρ̂ = ρ̂S (t )ρ̂ th

R , the operator of the reservoir has the zero mean
trR[R̂(t )ρ̂ th

R ] = 0. We also suppose that we know either exact
(4) or approximate (5) decomposition of the system operator
in interaction representation such that the operators Ĉj are
known. In the right-hand side of Eq. (14), we preserve only
terms that either do not depend on �τ or linear in �τ and
obtain the standard quantum regression theorem (see Ap-
pendix A)

d〈Â1B̂1(t + τ )Â2〉
dτ

= 〈Â1Lt+τ [B̂1(t + τ )]Â2〉, (15)

where we introduce the adjoint Lindblad superoperator

Lt [B̂] = i

h̄
[ĤS (t ), B̂] + L√

γ0Ĉ0(t )[B̂]

+
M∑

j=1

L√
γ

↓
j Ĉ j (t )

[B̂] +
M∑

j=1

L√
γ

↑
j Ĉ†

j (t )
[B̂], (16)

LĈ[B̂] = Ĉ†B̂Ĉ − 1
2Ĉ†ĈB̂ − 1

2 B̂Ĉ†Ĉ, (17)

where the dissipation rates γ0, γ
↓
j , and γ

↑
j are considered in

more details in Appendix A.
For Â1 = 1̂ and Â2 = 1̂, Eq. (15) reduces to the equation for

the mean of the operator B̂1(t + τ ). For Â1 = B̂†(t ), Eq. (15)
leads to the standard quantum regression theorem for corre-
lation functions 〈B̂†

1(t )B̂1(t + τ )〉 that can be found in many
textbooks [45,48].

V. ADJOINT MASTER EQUATION
FOR MULTITIME CORRELATORS

The quantum regression theorem cannot be applied to cal-
culate OTOCs. In this section, we address this issue and derive
an adjoint master equation for multitime correlators that is
applicable to OTOCs. The derivation itself is a generalization
of the derivation of the quantum regression theorem presented
in the previous section. To illustrate the main ideas behind
this derivation we first consider a correlator with two time-
dependent operators. Then we consider a correlator with an
arbitrary number of operators depending on time.

A. Time evolution of two operators

The simplest correlator to which the quantum regression
theorem is not applicable is

〈Â1B̂1(t + τ )Â2B̂2(t + τ )Â3〉, (18)

where Â1, B̂1(t + τ ), Â2, B̂2(t + τ ), and Â3 are the operators
of the system, and Â1, Â2, and Â3 contain only times prior to
t and do not depend on τ . We assume we know the correlator
(18) at τ = 0.

The connection between the correlator

〈Â1B̂1(t + τ )Â2B̂2(t + τ )Â3〉,
and the correlator

〈Â1B̂1(t + τ + �τ )Â2B̂2(t + τ + �τ )Â3〉,
follows from Eq. (12)

〈Â1B̂1(t + τ + �τ )Â2B̂2(t + τ + �τ )Â3〉 ≈ �τ
i

h̄
〈Â1[ĤS (t + τ ), B̂1(t + τ )]Â2B̂2(t + τ )Â3〉

+ �τ
i

h̄
〈Â1B̂1(t + τ )Â2[ĤS (t + τ ), B̂2(t + τ )]Â3〉 + 〈Â1{V̂ †(t + τ )

+ Ŵ †(t + τ,�τ )}B̂′
1(t + τ ){V̂ (t + τ ) + Ŵ (t + τ,�τ )}Â2{V̂ †(t + τ )

+ Ŵ †(t + τ,�τ )}B̂′
2(t + τ ){V̂ (t + τ ) + Ŵ (t + τ,�τ )}Â3〉. (19)

This equation allows us to obtain the adjoint master equation in almost the same way we derive the quantum regression theorem
(15). The details of this derivation are presented in Appendix B. We note, that in this derivation we again suppose that either
exact (4) or approximate (5) decomposition such that the operators Ĉj are known. There is one notable difference between this
derivation and the derivation of the quantum regression theorem given in the previous section. Namely, in this derivation, we
have to take into account the combinations of operators Ŵ (t + τ,�τ ) and Ŵ †(t + τ,�τ ) that belong to different operators
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B̂′
j (t + τ ) in the correlator (19). The resultant adjoint master equation for the correlator (18) is

d〈Â1B̂1(t + τ )Â2B̂2(t + τ )Â3〉
dτ

= 〈Â1Lt+τ [B̂1(t + τ )]Â2B̂2(t + τ )Â3〉 + 〈Â1B̂1(t + τ )Â2Lt+τ [B̂2(t + τ )]Â3〉

+ γ0〈Â1[Ĉ0, B̂1](t + τ )Â2[B̂2, Ĉ0](t + τ )Â3〉 +
M∑

j=1

γ
↓
j 〈Â1[Ĉ†

j , B̂1](t + τ )Â2[B̂2, Ĉj](t + τ )Â3〉

+
M∑

j=1

γ
↑
j 〈Â1[Ĉj, B̂1](t + τ )Â2[B̂2, Ĉ†

j ](t + τ )Â3〉, (20)

where we denote [Ĉ, B̂](t + τ ) = [Ĉ(t + τ ), B̂(t + τ )]. The last three terms in the right-hand side of the Eq. (20) containing
commutators between the operators Ĉj and B̂m are the main difference between quantum regression and the adjoint master
equation for multitime correlators.

We stress that in Eq. (20) the operators Ĉj may correspond to the exact decomposition (4) or to the approximate decomposition
(5). In both cases, the Eq. (20) remains the same.

For Â1 = 1̂, Eq. (20) reproduces the results obtained in [46,47].

B. Time evolution of n operators

In this subsection, we present the adjoint master equation for the correlation function containing an arbitrary number of
time-dependent operators

〈
Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1

〉
, (21)

where Â j , B̂ j (t + τ ) are the operators of the system and Â j may contain only times prior to t and does not depend on τ . We
assume that the correlation function (21) at τ = 0 is known. Below, we also use the notation 〈Â1B̂1(t + τ ) . . . Ân+1〉 for the
correlation function (21).

In this case, the derivation is the same as in the previous subsection. As a result, we obtain the adjoint master equation for the
correlation function (21)

d〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉
dτ

=
n∑

m=1

L(m)
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉]

+
n−1∑

m1=1

n∑
m2=m1+1

M(m1,m2 )
t+τ [〈Â1B̂1(t + τ ) . . . Ân+1〉], (22)

where

L(m)
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉] = 〈Â1 . . . ÂmLt+τ [B̂m(t + τ )]Âm+1 . . . Ân+1〉, (23)

M(m1,m2 )
t+τ [〈Â1B̂1(t + τ ) . . . Ân+1〉] = γ0〈Â1 . . . [Ĉ0, B̂m1 ](t + τ ) . . . [B̂m2 , Ĉ0](t + τ ) . . . Ân+1〉

+
M∑

j=1

γ
↓
j 〈Â1 . . . [Ĉ†

j , B̂m1 ](t + τ ) . . . [B̂m2 , Ĉj](t + τ ) . . . Ân+1〉

+
M∑

j=1

γ
↑
j 〈Â1 . . . [Ĉ j, B̂m1 ](t + τ ) . . . [B̂m2 , Ĉ†

j ](t + τ ) . . . Ân+1〉. (24)

The first term in the right-hand side of Eq. (22) corresponds to the dynamics of the solitary operators B̂ j (t ). The second term in
the right-hand side of Eq. (22) describes the nontrivial time evolution of the correlator due to interplay between the operators
B̂ j (t ). These terms are vital for OTOCs and provide the self-consistency of the adjoint master equation for multitime correlators.

VI. SELF-CONSISTENCY OF THE ADJOINT MASTER EQUATION FOR MULTITIME CORRELATORS

We show the self-consistency of the adjoint master equation for multitime correlators for particular correlator

〈B̂1(t + τ )B̂2(t + τ )〉, (25)

where B̂1 and B̂2 are the operators of the system.
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We can obtain the equation for this correlation function (25) in two different ways. First, we can consider the correlator (25)
as the correlator (18) with Â1 = Â2 = Â3 = 1̂, B̂2 = 1̂, and B̂1 = (B̂1B̂2). In this case, Eq. (20) gives

d〈B̂1(t + τ )B̂2(t + τ )〉
dτ

= 〈Lt+τ [B̂1(t + τ )B̂2(t + τ )]〉. (26)

Second, we can consider the correlator (25) as the correlator (18) with Â1 = Â2 = Â3 = 1̂. In this case, Eq. (20) gives

d〈B̂1(t + τ )B̂2(t + τ )〉
dτ

= 〈Lt+τ [B̂1(t + τ )]B̂2(t + τ )〉 + 〈B̂1(t + τ )Lt+τ [B̂2(t + τ )]〉 + γ0〈[Ĉ0, B̂1](t + τ )[B̂2, Ĉ0](t + τ )〉

+
M∑

j=1

γ
↓
j 〈[Ĉ†

j , B̂1](t + τ )[B̂2, Ĉj](t + τ )〉 +
M∑

j=1

γ
↑
j 〈[Ĉj, B̂1](t + τ )[B̂2, Ĉ†

j ](t + τ )〉. (27)

The self-consistency of the adjoint master equation for
multi-time correlators means that (i) Eq. (26) is equivalent
to Eq. (27) and (ii) the adjoint master equation for multitime
correlators gives the same result as the standard quantum re-
gression theorem (15) for the correlator (13) with Â1 = Â2 =
1̂ and B̂1 = (B̂1B̂2). Thus, the adjoint master equation for the
correlation function (25) is self-consistent.

In Appendix C, we prove the self-consistency of the adjoint
master equation in the general case.

VII. CONCLUSION

In this work, we derived an adjoint master equation for
multitime correlators. This equation is preferable for the usage
of different approaches to relaxation operators such as the
global approach [45,49–51,54], the local approach [49–53],
the partially secular approach [56], and the approach based on
the perturbation theory [57]. Indeed, the presented derivation
does not depend on whether we use the exact or approximate
expansion of the operator of interaction between the system
and reservoir. Such flexibility reflects that the adjoint master

equation for the multitime correlators is independent of the
particular relaxation operators.

We showed that the derived adjoint master equation for
multitime correlators is self-consistent: the final equation for
a correlator does not depend on how we group the opera-
tors inside the correlator and it coincides with the quantum
regression theorem when the latter is applicable. This equa-
tion does not apply to the out-of-time-ordered correlators in
open quantum systems. Also, the adjoint master equation for
multitime correlators allows calculating of the correlator
〈Â1(t1)Â2(t2) . . . Ân(tn)〉 with arbitrary relations between t1,
t2,..., tn. The exact algorithm for n = 4 is presented in [47].

In this work, we explicitly derived the adjoint master
equation for one reservoir interacting with the system. The
derivation in the case of multiple reservoirs is straightforward.
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APPENDIX A: TRANSFORMATION OF THE CORRELATORS IN THE RIGHT-HAND SIDE OF EQ. (14)

Here, we consider the second term in the right-hand side of Eq. (14)

〈Â1{V̂ †(t + τ ) + Ŵ †(t + τ,�τ )}B̂′
1(t + τ ){V̂ (t + τ ) + Ŵ (t + τ,�τ )}Â2〉, (A1)

and trace out the reservoirs’ degrees of freedom preserving the terms up to λ2. In this Appendix, we use all the standard
assumptions about the reservoir given in the textbook [45]. We also explicitly listed these assumptions in Sec. IV. We consider
the terms proportional to λ0, λ1 and λ2 separately.

To transform the term of Eq. (A1) proportional to λ0 we use Eq. (7) and obtain

〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂ (t + τ )Â2〉 = 〈Â1B̂1(t + τ )Â2〉. (A2)

All the terms of Eq. (A1) proportional to λ1 are zero because trR(R̂(t )ρ̂ th
R ) = 0. Namely,

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2〉 = 0, (A3)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂1(t + τ,�τ )Â2〉 = 0. (A4)

The terms of Eq. (A1) proportional to λ2 are

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂1(t + τ,�τ )Â2〉, (A5)

λ2〈Â1V̂
†

2 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2〉, (A6)
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λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂2(t + τ,�τ )Â2〉. (A7)

We consider the correlator Eq. (A5) in details. This correlator can be transformed in the following way:

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂1(t + τ,�τ )Â2〉

= λ2
∫ t+τ+�τ

t+τ

dt1

∫ t+τ+�τ

t+τ

dt2〈Â1V̂
†(t + τ )Ŝ′(t1)R̂′(t1)B̂′

1(t + τ )Ŝ′(t2)R̂′(t2)V̂ (t + τ )Â2〉

= λ2
∫ t+τ+�τ

t+τ

dt1

∫ t+τ+�τ

t+τ

dt2〈Â1R̂′(t1)[Ĉ0(t + τ ) +
M∑

j=1

Ĉj (t + τ )e−iω j (t1−t−τ )

+
M∑

j=1

Ĉ†
j (t + τ )eiω j (t1−t−τ )]B̂(t + τ )[Ĉ0(t + τ ) +

M∑
k=1

Ĉk (t + τ )e−iωk (t2−t−τ ) +
M∑

k=1

Ĉ†
k (t + τ )eiωk (t2−t−τ )]R̂′(t2)Â2〉, (A8)

where we use the definition Eq. (10), decomposition Eq. (4) [or Eq. (5)], and relation between interaction representation and
full evolution given by Eq. (7). We also replace V̂ †(t + τ )R̂′(t1) and R̂′(t2)V̂ (t + τ ) with R̂′(t1)V̂ †(t + τ ) and V̂ (t + τ )R̂′(t2)
for t1, t2 � t because the corresponding commutators are proportional to λ and can be omitted. Following [45], we assume that
density matrix of the system and the reservoir are factorized at any moment in time. Thus,

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂1(t + τ,�τ )Â2〉 = λ2

∫ �τ

0
dτ1

∫ �τ

0
dτ2〈R̂′(τ1)R̂′(τ2)〉〈Â1[Ĉ0(t + τ ) +

M∑
j=1

Ĉj (t + τ )e−iω jτ1

+
M∑

j=1

Ĉ†
j (t + τ )eiω jτ1 ]B̂(t + τ )[Ĉ0(t + τ ) +

M∑
k=1

Ĉk (t + τ )e−iωkτ2

+
M∑

k=1

Ĉ†
k (t + τ )eiωkτ2 ]Â2〉, (A9)

where we use 〈R̂′(τ1)R̂′(τ2)〉 = 〈R̂′(t1)R̂′(t2)〉. We integrate the correlator of the reservoir operators over time and obtain [45]

λ2
∫ �τ

0
dτ1

∫ �τ

0
dτ2

〈
R̂′(τ1)R̂′(τ2)

〉
eiωAτ1 e−iωBτ2 = �τδωA,ωB

⎧⎪⎨
⎪⎩

γ
↓
A , if ωA > 0,

γ
↑
A , if ωA < 0,

γ0, if ωA = 0.

(A10)

Finally, we have

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂1(t + τ,�τ )Â2〉 = �τγ0〈Â1Ĉ0(t + τ )B̂1(t + τ )Ĉ0(t + τ )Â2〉

+ �τ

M∑
j=1

γ
↓
j 〈Â1Ĉ

†
j (t + τ )B̂1(t + τ )Ĉ j (t + τ )Â2〉

+ �τ

M∑
j=1

γ
↑
j 〈Â1Ĉj (t + τ )B̂1(t + τ )Ĉ†

j (t + τ )Â2〉. (A11)

The consideration of the correlators (A6) and (A7) is similar to Eq. (A5). Here, we present the result of tracing out the
reservoirs’ degrees of freedom in these correlators

λ2〈Â1V̂
†

2 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2〉 = �τ

1

2
γ0〈Â1Ĉ0(t + τ )Ĉ0(t + τ )B̂1(t + τ )Â2〉

+ �τ
1

2

M∑
j=1

γ
↓
j 〈Â1Ĉ

†
j (t + τ )Ĉ j (t + τ )B̂1(t + τ )Â2〉

+ �τ
1

2

M∑
j=1

γ
↑
j 〈Â1Ĉj (t + τ )Ĉ†

j (t + τ )B̂1(t + τ )Â2〉, (A12)

052207-6



ADJOINT MASTER EQUATION FOR MULTITIME … PHYSICAL REVIEW A 109, 052207 (2024)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂2(t + τ,�τ )Â2〉 = �τ
1

2
γ0〈Â1B̂1(t + τ )Ĉ0(t + τ )Ĉ0(t + τ )Â2〉

+ �τ
1

2

M∑
j=1

γ
↓
j 〈Â1B̂1(t + τ )Ĉ†

j (t + τ )Ĉ j (t + τ )Â2〉

+ �τ
1

2

M∑
j=0

γ
↑
j 〈Â1B̂1(t + τ )Ĉ j (t + τ )Ĉ†

j (t + τ )Â2〉. (A13)

Using Eq. (A2), Eqs. (A3) and (A4), and Eqs. (A11) and (A13), we derive the quantum regression theorem (15) from Eq. (14).

APPENDIX B: TRANSFORMATION OF THE CORRELATORS IN THE RIGHT-HAND SIDE OF EQ. (19)

Here, we present the transformation of the correlator in the right-hand side of Eq. (19) that traces out the reservoirs’ degrees
of freedom and preserves the terms up to λ2. We consider the correlator on the right-hand side of Eq. (19) that has the form

〈Â1{V̂ †(t + τ ) + Ŵ †(t + τ,�τ )}B̂′
1(t + τ ){V̂ (t + τ ) + Ŵ (t + τ,�τ )}Â2{V̂ †(t + τ )

+ Ŵ †(t + τ,�τ )}B̂′
2(t + τ ){V̂ (t + τ ) + Ŵ (t + τ,�τ )}Â3〉, (B1)

and decompose it in correlators proportional to λ0, λ1, λ2.
The term of the correlator (B1) proportional to λ0 is

〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂ (t + τ )Â2V̂
†(t + τ )B̂′

2(t + τ )V̂ (t + τ )Â3〉 = 〈Â1B̂1(t + τ )Â2B̂2(t + τ )Â3〉. (B2)

All the terms of the correlator (B1) proportional to λ1 are zero because trR(R̂(t )ρ̂ th
R ) = 0. Namely,

λ〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2V̂

†(t + τ )B̂′
2(t + τ )V̂ (t + τ )Â3〉 = 0, (B3)

λ〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂1(t + τ,�τ )Â2V̂
†(t + τ )B̂′

2(t + τ )V̂ (t + τ )Â3〉 = 0, (B4)

λ〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂ (t + τ )Â2V̂
†

1 (t + τ,�τ )B̂′
2(t + τ )V̂ (t + τ )Â3〉 = 0, (B5)

λ〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂ (t + τ )Â2V̂
†(t + τ )B̂′

2(t + τ )V̂1(t + τ,�τ )Â3〉 = 0. (B6)

The terms of the correlator (B1) proportional to λ2 are

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂1(t + τ,�τ )Â2V̂

†(t + τ )B̂′
2(t + τ )V̂ (t + τ )Â3〉, (B7)

λ2〈Â1V̂
†

2 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2V̂

†(t + τ )B̂′
2(t + τ )V̂ (t + τ )Â3〉, (B8)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂2(t + τ,�τ )Â2V̂
†(t + τ )B̂′

2(t + τ )V̂ (t + τ )Â3〉, (B9)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂ (t + τ )Â2V̂
†

1 (t + τ,�τ )B̂′
2(t + τ )V̂1(t + τ,�τ )Â3〉 (B10)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂ (t + τ )Â2V̂
†

2 (t + τ,�τ )B̂′
2(t + τ )V̂ (t + τ )Â3〉, (B11)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂ (t + τ )Â2V̂
†(t + τ )B̂′

2(t + τ )V̂2(t + τ,�τ )Â3〉, (B12)

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2V̂

†
1 (t + τ,�τ )B̂′

2(t + τ )V̂ (t + τ )Â3〉, (B13)

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2V̂

†(t + τ )B̂′
2(t + τ )V̂1(t + τ,�τ )Â3〉, (B14)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂1(t + τ,�τ )Â2V̂
†

1 (t + τ,�τ )B̂′
2(t + τ )Â3V̂ (t + τ )〉, (B15)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂1(t + τ,�τ )Â2V̂
†(t + τ )B̂′

2(t + τ )V̂1(t + τ,�τ )Â3〉. (B16)

The correlators (B7) to (B9) are similar to the correlators (A5) to (A7). These correlators correspond to the term

〈Â1Lt+τ [B̂1(t + τ )]Â2B̂2(t + τ )Â3〉 (B17)

in Eq. (20). The same is true for the correlators (B10) to (B12) that corresponds to the term

〈Â1B̂1(t + τ )Â2Lt+τ [B̂2(t + τ )]Â3〉 (B18)
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in Eq. (20). The correlators (B13) to (B16) do not directly correspond to the correlators (A5) to (A7). The consideration similar
to one conducted for (A5) in Appendix A can be done for the correlators (B13) to (B16) leading to the following result:

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2V̂

†
1 (t + τ,�τ )B̂′

2(t + τ )V̂ (t + τ )Â3〉
= �τγ0〈Â1Ĉ0(t + τ )B̂1(t + τ )Â2Ĉ0(t + τ )B̂2(t + τ )Â3〉

+ �τ

M∑
j=1

γ
↓
j 〈Â1Ĉ

†
j (t + τ )B̂1(t + τ )Â2Ĉj (t + τ )B̂2(t + τ )Â3〉

+ �τ

M∑
j=1

γ
↑
j 〈Â1Ĉj (t + τ )B̂1(t + τ )Â2Ĉ

†
j (t + τ )B̂2(t + τ )Â3〉, (B19)

λ2〈Â1V̂
†

1 (t + τ,�τ )B̂′
1(t + τ )V̂ (t + τ )Â2V̂

†(t + τ )B̂′
2(t + τ )V̂1(t + τ,�τ )Â3〉

= �τγ0〈Â1Ĉ0(t + τ )B̂1(t + τ )Â2B̂2(t + τ )Ĉ0(t + τ )Â3〉

+ �τ

M∑
j=1

γ
↓
j 〈Â1Ĉ

†
j (t + τ )B̂1(t + τ )Â2B̂2(t + τ )Ĉ j (t + τ )Â3〉

+ �τ

M∑
j=1

γ
↑
j 〈Â1Ĉj (t + τ )B̂1(t + τ )Â2B̂2(t + τ )Ĉ†

j (t + τ )Â3〉, (B20)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂1(t + τ,�τ )Â2V̂
†

1 (t + τ,�τ )B̂′
2(t + τ )Â3V̂ (t + τ )〉

= �τγ0〈Â1B̂1(t + τ )Ĉ0(t + τ )Â2Ĉ0(t + τ )B̂2(t + τ )Â3〉

+ �τ

M∑
j=1

γ
↓
j 〈Â1B̂1(t + τ )Ĉ†

j (t + τ )Â2Ĉj (t + τ )B̂2(t + τ )Â3〉

+ �τ

M∑
j=1

γ
↑
j 〈Â1B̂1(t + τ )Ĉ j (t + τ )Â2Ĉ

†
j (t + τ )B̂2(t + τ )Â3〉, (B21)

λ2〈Â1V̂
†(t + τ )B̂′

1(t + τ )V̂1(t + τ,�τ )Â2V̂
†(t + τ )B̂′

2(t + τ )V̂1(t + τ,�τ )Â3〉
= �τγ0〈Â1B̂1(t + τ )Ĉ0(t + τ )Â2B̂2(t + τ )Ĉ0(t + τ )Â3〉

+ �τ

M∑
j=1

γ
↓
j 〈Â1B̂1(t + τ )Ĉ†

j (t + τ )Â2B̂2(t + τ )Ĉ j (t + τ )Â3〉

+ �τ

M∑
j=1

γ
↑
j 〈Â1B̂1(t + τ )Ĉ j (t + τ )Â2B̂2(t + τ )Ĉ†

j (t + τ )Â3〉. (B22)

These correlators correspond to the terms

γ0〈Â1[Ĉ0, B̂1](t + τ )Â2[B̂2, Ĉ0](t + τ )Â3〉 +
M∑

j=1

γ
↓
j 〈Â1[Ĉ†

j , B̂1](t + τ )Â2[B̂2, Ĉj](t + τ )Â3〉

+
M∑

j=1

γ
↑
j 〈Â1[Ĉj, B̂1](t + τ )Â2[B̂2, Ĉ†

j ](t + τ )Â3〉 (B23)

in Eq. (20).

APPENDIX C: SELF-CONSISTENCY OF THE ADJOINT MASTER EQUATION FOR MULTITIME CORRELATORS
IN GENERAL CASE

Here, we prove the self-consistency of the adjoint master equation Eq. (22). To do this we consider correlator (21) with

B̂m = T̂ (m)
1 . . . T̂ (m)

pm
. (C1)
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Using the property of the commutator

[Ĉ, T̂1 . . . T̂p] =
p∑

k=1

T̂1 . . . T̂k−1[Ĉ, T̂k]T̂k+1 . . . T̂p, (C2)

and mathematical induction for pm one can proof that

L(m)
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉] =

pm∑
k=1

L(m,k)
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉]

+
pm−1∑
k1=1

pm∑
k2=k1+1

M(m,k1,m,k2 )
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉, ] (C3)

and

M(m1,m2 )
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉] =

pm1∑
k1=1

pm2∑
k2=1

M(m1,k1,m2,k2 )
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉], (C4)

where we denote

L(m,k)
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉] = 〈Â1B̂1(t + τ ) . . . Âm . . .Lt+τ [T̂ (m)

k (t + τ )] . . . Âm+1 . . . ÂnB̂n(t + τ )Ân+1〉,
(C5)

and

M(m1,k1,m2,k2 )
t+τ [〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉]
= γ0〈Â1B̂1(t + τ ) . . . Âm1 . . . [Ĉ0, T̂ (m1 )

k1
](t + τ ) . . . Âm1+1 . . . Âm2 . . . [T̂ (m2 )

k2
, Ĉ0](t + τ ) . . . Âm2+1 . . . ÂnB̂n(t + τ )Ân+1〉

+
M∑

j=1

γ
↓
j 〈Â1B̂1(t + τ ) . . . Âm1 . . . [Ĉ†

j , T̂ (m1 )
k1

](t + τ ) . . . Âm1+1 . . . Âm2 . . . [T̂ (m2 )
k2

, Ĉj](t + τ ) . . . Âm2+1 . . . ÂnB̂n(t + τ )Ân+1〉

+
M∑

j=1

γ
↑
j 〈Â1B̂1(t + τ ) . . . Âm1 . . . [Ĉj, T̂ (m1 )

k1
](t + τ ) . . . Âm1+1 . . . Âm2 . . . [T̂ (m2 )

k2
, Ĉ†

j ](t + τ ) . . . Âm2+1 . . . ÂnB̂n(t + τ )Ân+1〉.

(C6)

Using equations (C3) and (C4) one can rewrite Eq. (22) as

d〈Â1B̂1(t + τ ) . . . ÂnB̂n(t + τ )Ân+1〉
dτ

=
n∑

m=1

pm∑
k=1

L(m,k)
t+τ [〈Â1T̂ (1)

1 (t + τ ) . . . T̂ (p1 )
1 (t + τ ) . . . ÂnT̂ (1)

n (t + τ ) . . . T̂ (pn )
n (t + τ )Ân+1〉]

+
n−1∑

m1=1

n∑
m2=m1+1

pm1∑
k1=1

pm2∑
k2=1

M(m1,k1,m2,k2 )
t+τ [〈Â1T̂ (1)

1 (t + τ ) . . . T̂ (p1 )
1 (t + τ ) . . . ÂnT̂ (1)

n (t + τ ) . . . T̂ (pn )
n (t + τ )Ân+1〉]

+
n∑

m=1

pm−1∑
k1=1

pm∑
k2=k1+1

M(m,k1,m,k2 )
t+τ [〈Â1T̂ (1)

1 (t + τ ) . . . T̂ (p1 )
1 (t + τ ) . . . ÂnT̂ (1)

n (t + τ ) . . . T̂ (pn )
n (t + τ )Ân+1〉]. (C7)

Representing B̂m as T̂ (m)
1 . . . T̂ (m)

pm
and using only Eq. (22), we come to the same equation. It proves the self-consistency of the

adjoint master equation for multitime correlators.
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