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Hyperbolic enhancement of a quantum battery
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A quantum system which can store energy, and from which one can extract useful work, is known as a quantum
battery. Such a device raises interesting issues surrounding how quantum physics can provide certain advantages
in the charging, energy storage, or discharging of the quantum battery as compared to their classical equivalents.
However, the pernicious effect of dissipation degrades the performance of any realistic battery. Here, we show
how one can circumvent this problem of energy loss by proposing a quantum battery model which benefits from
quantum squeezing. Namely, charging the battery quadratically with a short temporal pulse induces a hyperbolic
enhancement in the stored energy, such that the dissipation present becomes essentially negligible in comparison.
Furthermore, we show that when the driving is strong enough, the useful work which can be extracted from the
quantum battery, that is the ergotropy, is exactly equal to the stored energy. These impressive properties imply a
highly efficient quantum energetic device with abundant amounts of ergotropy. Our theoretical results suggest a
possible route to realizing high-performance quantum batteries, which could be realized in a variety of platforms
exploiting quantum continuous variables.
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I. INTRODUCTION

The emerging field of quantum energy science seeks to
discover unprecedented improvements in an array of promis-
ing energy technologies, from quantum solar power to nuclear
fusion [1]. Among these innovations, the necessity to improve
the world’s existing energy storage technology ensures that
quantum battery research is of utmost importance. Interest-
ingly, as well as quantum physics and engineering, quantum
battery research encompasses both quantum thermodynamics
and quantum information science, such that this subfield poses
appealing fundamental and applied challenges [2].

Early and inventive experiments probing the transfer and
storage of energy in the quantum world have already revealed
certain quantum advantages. During the charging process,
superextensive charging rates have been reported in an organic
microcavity [3], quantum correlation-boosted charging has
been demonstrated in a spin system [4], and the manipula-
tion of bright and dark states has led to stable charging in
a superconducting quantum battery [5]. Meanwhile, careful
measurements of the energy transfer between light and qubits
has benchmarked the current capabilities for controlling quan-
tum energy and information flow [6,7].

However, some problems which harm the expected utility
of quantum batteries remain. Dissipation is intrinsic to open
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quantum systems, so how can one effectively combat energy
loss from a quantum battery? Thermodynamically, there is a
maximum amount of work which can be reasonably extracted
from a quantum storage device (the so-called ergotropy) [8,9],
so how can one optimize this measure instead of the overall
stored energy? A stream of theoretical proposals for model
quantum batteries have sought to address these important
issues, as well as related questions concerning the speed-up
of the charging and discharging processes [10–23]. Here,
we suggest a rather different approach based upon quantum
squeezing. We consider a bipartite quantum battery model,
where the battery charger is coupled to the battery holder
(cf. the sketch of Fig. 1). Importantly, we propose that the
charger is driven by a quadratic [24–27] temporal pulse, which
induces squeezing into the system. Consequentially, there is a
hyperbolic enhancement in the energy stored in the battery
holder, such that the inevitable energy loss in the system
is made effectively negligible. Previously, continuous (rather
than pulsed) two-photon drives have been studied theoreti-
cally within the context of quantum batteries in Refs. [28–30].

The total Hamiltonian operator Ĥ of the composite quan-
tum battery system, as sketched in Fig. 1, can be decomposed
into four parts,

Ĥ = Ĥa + Ĥb + Ĥa−b + Ĥd , (1)

which account for the battery charger and holder energies,
the charger-holding coupling, and the driving of the battery
charger as follows (we take h̄ = 1 here and throughout),

Ĥa = ωb a†a, (2)

Ĥb = ωb b†b, (3)
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FIG. 1. The pulsed quadratic quantum battery. A representation
of the considered bipartite quantum battery model of Eq. (1), asso-
ciated with the two bosonic operators a and b [cf. Eqs. (2) and (3)].
The battery charger is coupled (gray bar) at the rate g to the battery
holder [cf. Eq. (4)], which has the level spacing ωb (white lines). The
charger is driven by a quadratic pulse (red arrows) of dimensionless
strength � [cf. Eq. (5)], and suffers from dissipation (cyan arrow)
at the decay rate γ [cf. Eq. (6)]. In this sketch, there is an example
stored energy E = 3ωb in the battery holder [cf. Eq. (7)].

Ĥa−b = g(a†b + b†a), (4)

Ĥd = �

2
δ(t )(a†a† + aa). (5)

The bosonic creation and annihilation operators b† and b raise
and lower respectively the number of excitations in the battery
holder, and they are subject to the commutation rule [b, b†] =
1, while a† and a behave similarly for the battery charger. We
consider the energy-level spacing ωb for the charger and the
holder to be the same [cf. Eqs. (2) and (3)], and there is a
coupling rate g > 0 between them which mediates the energy
transfer [cf. Eq. (4)]. In turn, the battery charger is driven
quadratically with a short temporal pulse of dimensionless
strength �, and δ(x) is the delta function of Dirac [cf. Eq. (5)].
Experimentally, such kinds of parametric (or two-photon)
drives have been recently realized using a variety of supercon-
ducting circuits [31–34], while quantum harmonic oscillators
are known to nicely model realistic quantum batteries [35].

The Hamiltonian dynamics of Eq. (1) can be upgraded with
the aid of a Gorini-Kossakowski-Sudarshan-Lindblad quan-
tum master equation in order to account for the inevitable
energy loss from the battery charger into the external envi-
ronment. The dissipationless battery holder is assumed to be
isolated from the environment, since it is supposed to be able
to store energy on an exceedingly large timescale. This ap-
proximation is indeed close to the current experimental reality
[3–7]. The density matrix ρ of the overall quantum battery is
then governed by the master equation [36]

∂tρ = i[ρ, Ĥ ] + γ

2
(2aρa† − a†aρ − ρa†a), (6)

where the Hamiltonian operator Ĥ is defined by Eq. (1),
and where γ � 0 is the decay rate of the battery charger.
This completes the mathematical description of the model,
as represented pictorially in Fig. 1. The average value of the
battery holder population 〈b†b〉, which can be accessed from
Eq. (6) after employing the trace property Tr(Oρ) = 〈O〉 with
the density matrix ρ (where O is some operator), then gives
rise to the energy E stored in the quantum battery,

E = ωb〈b†b〉. (7)

Determining this important energetic measure, which takes on
the example value of E = 3ωb in the cartoon battery imag-
ined in Fig. 1, for the introduced driven-dissipative model of
Eq. (6) is a key aim of this theoretical study, alongside finding
the optimal time needed to achieve the energetic maximum.

After the battery charger is disconnected from the battery
holder, the dissipationless holder is then able to store the
energy E indefinitely. However, thermodynamically not all of
this stockpiled energy is useful for doing work. The useful
energy stored in the quantum battery, or more formally the
so-called ergotropy E , is given by the celebrated formula [8,9]

E = E − Eβ, (8)

which subtracts off from the stored energy E of Eq. (7) the
unuseful energy Eβ of the passive state ρβ . Within quantum
continuous variable theory [37,38], the passive state energy Eβ

can be written down exactly in terms of the second moments
〈b†b〉 and 〈bb〉 of the battery holder, as follows [12,29],

Eβ = ωb

(√
D − 1

2

)
, (9)

D = (1 + 2〈b†b〉)2 − 4|〈bb〉|2, (10)

since here all first moments are zero (that is, 〈b〉 = 〈b†〉 = 0,
as is shown in the Supplemental Material [39]). In what fol-
lows, we describe analytically the energetic E and ergotropic
E measures of the presented model, revealing the high per-
forming nature of the proposed quadratic quantum battery.
We also note that while we consider a delta pulse in Eq. (5),
our forthcoming analytic results are also applicable to driving
pulses with some finite temporal width τ , as long as the
timescale ωbτ � 1 is observed.

II. RESULTS

The equation of motion for the second moments of interest,
for all times t > 0 after the action of the driving pulse appear-
ing in Eq. (5), is given by the Schrödinger-like equation

i∂t
 = H
, (11)

where the mean operators are contained within 
, and
where the four-dimensional dynamical matrix H are together
defined by


 =

⎛
⎜⎜⎜⎜⎝

〈a†a〉
〈b†b〉
〈a†b〉
〈b†a〉

⎞
⎟⎟⎟⎟⎠, H =

⎛
⎜⎜⎜⎝

−iγ 0 g −g

0 0 −g g

g −g −i γ

2 0

−g g 0 −i γ

2

⎞
⎟⎟⎟⎠. (12)
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The formal solution of Eq. (11) leads to the following expres-
sions for the average populations 〈a†a〉 and 〈b†b〉 of the battery
charger and battery holder, respectively,

〈a†a〉 = C

[
1

2

( g

G

)2
+ 8g2 − γ 2

16G2
cos(2Gt ) − γ

4G
sin(2Gt )

]

× e− γ t
2 ,

〈b†b〉 = C
( g

G

)2
sin2(Gt )e− γ t

2 , (13)

which gives rise to the renormalized coupling strength G,
which is defined as

G =
√

g2 −
(γ

4

)2
, � =

√(γ

4

)2
− g2, (14)

and where we also introduced the related renormalized de-
cay rate � for use later on. The solutions of Eq. (13) are
given in terms of an unknown constant prefactor C, which
can be determined by the boundary conditions of the prob-
lem as defined by the parametric drive. Exactly at t = 0 the
quadratic pulse of Eq. (5) acts, which couples a wider vari-
ety of moments such that Eq. (11) becomes ten-dimensional
(as shown in the Supplemental Material [39]). Integrating
this generalized equation of motion, using the integrating
factor technique for example, reveals that the C prefactor is
simply

C = sinh2(�). (15)

The consequence of the quadratic drive of Eq. (5) has been
to introduce a degree of quantum squeezing [40,41] into the
quantum battery system. This has manifested in the hyperbolic
enhancement factor C of Eq. (15), where the dimensionless
drive strength � resembles a kind of squeezing parameter (as
is discussed in the Supplemental Material [39]). Importantly,
such a striking hyperbolic enhancement as C is not seen in
linearly driven models due to the absence of squeezing in that
more standard case [23].

Most notably, the mean populations of Eq. (13) also exhibit
an exceptional point when g = gEP, where we introduce the
key value [cf. Eq. (14)]

gEP = γ

4
, (16)

which marks where two of the eigenvalues and eigenvec-
tors associated with Eq. (12) coalesce, in a type of spectral
singularity [42–45]. The exceptional point of Eq. (16) de-
marcates the borderland between oscillatory population cycles
and nonoscillatory population dynamics in the quantum bat-
tery. This drastic change in the dynamics is noticeable from
the stored energy E , which follows from Eqs. (7) and
(13) as

E =

⎧⎪⎪⎨
⎪⎪⎩

ωb sinh2(�)
( g

�

)2
sinh2(�t )e− γ t

2 , g < gEP,

ωb sinh2(�)
(

γ t
4

)2
e− γ t

2 , g = gEP,

ωb sinh2(�)
( g

G

)2
sin2(Gt )e− γ t

2 , g > gEP.

(17)

In particular, there is an unusual quadratic dependence ex-
actly at the exceptional point, in between the more standard
hyperbolic and trigonometric dynamics. There is always an
exponential decay of the stored energy E with the time

constant 2/γ due to the lossy battery charger, as depicted
in Fig. 1. Most importantly, Eq. (17) demonstrates a hy-
perbolic enhancement in energy owing to the C factor of
Eq. (15), making the pulsed quadratic battery an interesting
proposition for a quantum storage device exploiting squeez-
ing (as is further discussed in the Supplemental Material
[39]). We plot the dynamical energy E of Eq. (17), in
units of ωb sinh2(�) and for the example case with the cou-
pling g = 2γ , as the purple line in Fig. 2(a). This graph
displays some hallmarks of the proposed quantum battery
model in the desirable g > gEP regime, including exponen-
tially damped oscillations and exact energetic zeros at certain
times when the condition t = nπ/G (where n is an integer) is
fulfilled.

Clearly from the purple line (marking the stored
energy E ) in Fig. 2(a), the temporal position of the first en-
ergetic peak—which is the global maximum in the energy
E—is of great importance. Indeed, the knowledge of this
energetic maximum allows one to find the optimal charg-
ing time tE , where E (tE ) = maxt {E (t )}. The turning points
of Eq. (17) suggest that the optimal charging times tE are
given by

tE =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctanh
(

4�
γ

)
�

, g < gEP,
1

gEP
, g = gEP,

arctan
(

4G
γ

)
G , g > gEP,

(18)

which is plotted as the purple line in Fig. 2(b), as a
function of the crucial coupling-to-dissipation ratio g/γ .
The asymptotics of Eq. (18) at small and large ratios of
g/γ make the scaling of the optimal time tE even more
explicit as

lim
g�gEP

tE = 4

γ
ln

(
γ

2g

)
, (19)

lim
g�gEP

tE = π

2g
− γ

4g2
, (20)

which are marked with the dashed cyan and dashed pink
lines respectively in Fig. 2(b). Intuitively, with weaker cou-
plings g the optimal charging time tE increases—and in
fact it eventually becomes logarithmically divergent [cf.
Eq. (19)]. Conversely, stronger couplings g lead to quicker
optimal times tE , which rapidly approaches the inverse-
g dissipationless result of tE = π/2g [which itself comes
from the first maximum of the sinusoidal function—cf.
Eq. (20)].

The energetic maxima E (tE ) themselves are determinable
directly from Eq. (17) with Eq. (18), leading to the compact
results

E (tE ) =

⎧⎪⎨
⎪⎩

ωb sinh2(�)e− γ

2�
arccoth( γ

4� ), g < gEP,

ωb sinh2(�)e−2, g = gEP,

ωb sinh2(�)e− γ

2G arccot( γ

4G ), g > gEP,

(21)

where the case exactly at the exceptional point (g = gEP) sees
the dimensionless number 1/e2 � 0.135 arise. This optimal
energy E (tE ) is plotted as the purple line in Fig. 2(c) as a
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FIG. 2. Energetics of the quantum battery. (a) The ergotropy E of the quantum battery in units of ωb sinh2(�), where ωb is the energy-level
spacing and � is the strength of the driving pulse, as a function of time (in units of the inverse decay rate 1/γ ) [cf. the definitions of
Eqs. (8)–(10), along with the results of Eqs. (24) and (25)]). We consider the case when the coupling strength g = 2γ , and increasing large
values of � are marked with increasingly light (dark green to yellow) lines. Purple line: The stored energy E [cf. Eq. (17)]. Yellow line: The
strong driving approximation of Eq. (27). Dark green line: The weak driving approximation of Eq. (26). (b) A log-log plot of the time tE taken
(in units of 1/γ ) to reach the maximum in stored energy E , as a function of the coupling-to-dissipation ratio g/γ [cf. Eq. (18)]. Dashed cyan
line: The weak-coupling approximation of Eq. (19). Dashed pink line: The strong-coupling approximation of Eq. (20). (c) A log-log plot of the
maximum stored energy E (tE ), in units of ωb sinh2(�), as a function of g/γ [cf. Eq. (21)]. Dashed cyan line: The weak-coupling approximation
of Eq. (22). Dashed pink line: The strong-coupling approximation of Eq. (23).

function of the reduced coupling strength g/γ . The limiting
behavior of this optimal energy follows from Eq. (21) as

lim
g�gEP

E (tE ) = ωb sinh2(�)

(
2g

γ

)2

, (22)

lim
g�gEP

E (tE ) = ωb sinh2(�)

(
1 − πγ

4g

)
, (23)

which captures the quadratic in g decrease in optimal energy
at very small couplings where g � γ [cf. Eq. (22)], and
defines the energetic upper bound of ωb sinh2(�), which is
approached inverse linearly in g at large couplings where g �
γ [cf. Eq. (23)]. These asymptotics are represented with the
dashed cyan and dashed pink lines respectively in Fig. 2(c),
completing the basic energetic analysis of the proposed pulsed
quantum battery.

In the discharging phase, when the battery charger is dis-
connected from the battery holder, the maximal amount of
work which can be extracted from the quantum battery (via
unitary operations) is governed by the ergotopy E [8,9]. For
the case of the pulsed quantum battery, this important measure
follows directly from the definitions of Eqs. (8)–(10). Pleas-
ingly, the results of Eqs. (13) and (15), as well as auxiliary
results presented in the Supplemental Material [39], allow
for an explicit expression for the influential quantity D to be
determined [cf. Eq. (10)], via

D = 1 + 4 sinh2(�)P (1 − P ), (24)

P =
( g

G

)2
sin2(Gt )e− γ t

2 . (25)

These brief formulas allow for the dynamical ergotropy E to
be calculated analytically, the results of which are shown in
Fig. 2(a), where increasing large values of the drive � are
marked with increasingly light (from dark green to light green
to yellow) lines. The functional behavior of the ergotopy E is
highly reminiscent of the stored energy E (purple line in the
panel), essentially being damped sinusoidal-like oscillations.

In the two limiting cases of very weak and very strong drives,
the ergotropy E is captured by the exact asymptotics

lim
��1

E = ωb sinh2(�)P2, (26)

lim
��1

E = ωb sinh2(�)P, (27)

where the dynamic function P was just introduced in Eq. (25).
When � � 1, there is a significant difference between the
stored energy E (purple line) and the ergotropy E (dark green
line) as shown in Fig. 2(a), signifying the inefficiency of this
weak driving regime [cf. Eq. (26)]. However, when � � 1,
the ergotropy E (yellow line) swiftly approaches the stored en-
ergy E (purple line) exactly [cf. Eqs. (17) and (27)]. Hence the
pulsed quadratic battery exhibits a remarkable strong driving
regime with two highly desirable measures of performance:
(i) It is essentially perfectly efficient since E � E , and (ii) it
is able to store an abundance of energy owing to the hyper-
bolic enhancement carried by the all-important C factor [cf.
Eq. (15)].

III. DISCUSSION

In conclusion, we have suggested a quantum continuous
variable model of a quantum battery, which features a hyper-
bolic enhancement of its stored energy (due to its quadratic
pulsed drive inducing quantum squeezing). This remarkable
feature acts to combat the unavoidable energy loss suffered by
the battery charger. Importantly, the ergotropy is essentially
equal to the stored energy for strong enough driving pulses,
revealing the efficient nature of the proposed quantum battery
in the discharging phase. Our analytic theory also allows for
compact expressions for the optimal charging times and opti-
mal energetics of this high-performing quantum battery. The
underlying idea of exploiting squeezing in order to boost the
achievements of the quantum battery may also have some sig-
nificance for wider efforts surrounding quantum technological
advancements in the generation, transfer and storage of energy
[46,47].
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All data are available in the paper and the Supplemental
Material.
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