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Invalidation of the Bloch-Redfield equation in the sub-Ohmic regime via a practical
time-convolutionless fourth-order master equation
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Despite recent advances in quantum sciences, a quantum master equation that accurately and simply charac-
terizes open quantum dynamics across extremely long timescales and in dispersive environments is still needed.
In this study, we optimize the computation of the fourth-order time-convolutionless master equation to meet this
need. Early versions of this master equation required computing a multidimensional integral, limiting its use. Our
master equation accounts for simultaneous relaxation and dephasing, resulting in coefficients proportional to the
system’s spectral density over frequency derivative. In sub-Ohmic environments, this derivative induces infrared
divergence in the master equation, invalidating the second-order Bloch-Redfield master equation findings. We
analyze the approach to a ground state in a generic open quantum system and demonstrate that it is not
reliably computed by the Bloch-Redfield equation alone. The optimized fourth-order equation shows that the
ground-state approach is accurate to second order in bath coupling regardless of the dispersion, even though it
can diverge in the fourth order.
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I. INTRODUCTION

Understanding the quantum dynamics of small systems
coupled to dispersive environments over long timescales is
crucial in various scientific fields [1–6]. Exact state propa-
gation and variational approaches to open quantum systems,
such as Feynman-Vernon influence functional [7] and the
multiconfigurational time-dependent Hartree method [8] scale
exponentially versus time in terms of computational cost. To
make these methods work over the long timescales, further
approximations are necessary, including singular-value de-
composition [9], small matrix disentanglement of the path
integral [10], and the hierarchical equations of motion [11].
These further approximations work well only when the corre-
lations in the bath decrease exponentially over time.

The exact time-convolutionless master equation (TCL2n)
method [12], on the other hand, saturates in computational
cost at the bath correlation timescale, which is polynomial at
fixed n. Here 2n is the perturbative order in the expansion of
time-ordered cumulants. Despite this favorable characteristic,
little progress has been made beyond the widely used TCL2,
which is known as the Bloch-Redfield equation [13,14]. Due
to its multiple time integrals, the exact TCL4 generator has
been considered “cumbersome” [15,16] without additional
approximations. Our approach simplifies this multidimen-
sional integral into a series of independent one-dimensional
integrals, which can be computed efficiently and with rela-
tively low overhead.

A well-known issue with the TCL2n master equation is
that its generator is accurate to the level of O(λ2n), while the
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solutions it provides are accurate only up to O(λ2n−2) [17,18].
Here λ denotes a dimensionless coupling constant linearly
scaling with the interaction Hamiltonian between the system
and the bath. This issue is especially significant in the TCL2
master equation, as the precision of the resulting state is only
of the magnitude O(1). Thus, the Bloch-Redfield equation
precisely represents only the local thermal states as steady
states [18,19]. Bath interactions cause modifications in these
states with the same error as the modifications. The current
state of the field is fraught with significant problems since
the utilization of second-order master equations is widespread
while the precise calculation of the most basic modifications
remains out of reach.

Many proposals have been made to solve this deficiency
by fixing specific issues within the TCL2 master equa-
tion. This includes the coarse-graining approach [20–27],
the partial secular approximation [28,29], the unified master
equation [30,31], the geometric-arithmetic approach [32–37],
the dynamical resonance theory [38–40], and the adiabatic
approximation [41]. There is also a truncated version of the
Bloch-Redfield equation [42], an improved weak coupling
master equation [43,44], the Kossakowski matrix approx-
imation approach [45], and master equations that enforce
thermodynamic consistency [46–49]. As stated by Tupkary
et al. [18], making adjustments to the Bloch-Redfield equation
to ensure complete positivity unavoidably leads to increased
errors in the coherences and breaches conservation laws.
Therefore, it becomes crucial to consider the fourth-order
terms in order to address this issue [18].

Tokuyama and Mori were among the pioneers who recog-
nized the potential of a time-convolutionless master equation
to accurately describe the quantum dynamical map back in
1976 [50]. However, the utilization of this equation in the
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fourth order has not been extensively adopted thus far. Our
goal in this paper is to address the issue of accuracy in the
Bloch-Redfield equation by finding a way to simplify the
TCL4 master equation so that it can be easily implemented in
practice. However, during this process, we realize that there
is still a lot of work ahead of us. In the sub-Ohmic regime,
the TCL4 exhibits an infrared divergence, invalidating the
second-order master equation results from Refs. [14,19].

Brief history. There are many ways to describe the TCL4
generators in terms of Liouvillians that do not include the bath
correlation function over time [51–57]. In the weak coupling
and asymptotic limit, i.e., λ � 1 and t → ∞, where t is
the time of the dynamics, Silbey and colleagues developed
the first easy-to-use formulation for the kernels of the TCL4
generator [58]. However, their methods included additional
assumptions that the extremely singular Dirac delta functions
may approximate the bath correlation functions.

Trushechkin [59] has recently published a simplified TCL4
and TCL6 generator with bath correlation functions that decay
exponentially versus time. However, we cannot use these to
study the asymptotic dynamics when the bath correlations de-
cay as a power law versus time. The same author has also put
up a simplified fourth-order generator for the asymptotic dy-
namics in arbitrary baths, based on Bogoliubov’s approach to
deriving the Boltzmann equation [60]. It would be interesting
to study the differences between Trushechkin’s Bogoliubov
approach and the TCL4 generator derived here to better un-
derstand their domains of validity.

References [61,62] recently reformulated the perturbative
TCL2n expansion and evaluated all integrals over time in
terms of the expansion. Nestmann and Timm, in particular,
pinpoint sequences of matrix products that alternate between
common matrix products and Hadamard products in each term
of the expansion within Liouiville space [61]. In our study,
we utilized a comparable technique, which we refer to as
the “Hadamard trick.” None of the preceding methodologies
provide the same level of simplicity in implementation for
general applications as the one offered in the present study.

Main result. We will show that the TCL4 generator exhibits
infrared divergence in sub-Ohmic baths. The underlying cause
is that a small system emits soft bosons faster than the sub-
Ohmic bath can remove them, leading to the diverging boson
numbers [63]. The infrared divergence is well studied in gauge
quantum field theories, where the scattering cross sections
involving a finite number of asymptotic bosons result in inte-
grals that diverge in the infrared region [64]. In the usual open
quantum system setup, states that have an unlimited number
of bosons are located outside the Fock space [65,66]. Then,
if the ground state or the asymptotic state is computed using
perturbation theory restricted within the Fock space, then the
energy diverges even if lower bounds on the ground-state en-
ergy are demonstrated [67]. Infrared divergence supports the
presence of the infrared triangle [68], which has not yet been
explored in the open quantum system setup. Consequently, we
anticipate that this result will prompt additional investigation
into this triangle.

Application. To demonstrate the usefulness of the TCL4
master equation, we will look at how it models the approach
to a ground-state property of open quantum systems [69,70].
We say that an open quantum system approaches a ground

state if and only if the dynamics’ reduced asymptotic state
at absolute zero is the reduced ground state of the combined
system. We prove the identity between asymptotic and ground
states in generic open quantum systems with bounded Hamil-
tonians for the first time. However, this identity is valid only
in the second-order perturbation theory and breaks down in
the fourth-order theory, with strong and weak corrections de-
pending on whether the bath is sub-Ohmic. When the bath
dispersion crosses Ohmic damping, a first-order phase tran-
sition occurs in the asymptotic states, while a continuous
transition occurs in the ground states.

The paper is organized as follows. We present the termi-
nology and assumptions in Sec. II. The TCL4 generator, the
asymptotic limit, and convergence criteria are developed in
Sec. III. The approach to a ground state will be discussed
in Sec. IV. We discuss conclusions and future prospects in
Sec. V.

II. NOTATION, ASSUMPTIONS, AND GENERIC OPEN
QUANTUM SYSTEMS

Our open quantum system has the total system-bath Hamil-
tonian

HT = HS + HB + HI . (1)

HS is the isolated system Hamiltonian on the N-dimensional
system Hilbert space HS ,

HS =
N∑

n=1

En|n〉〈n| (2)

with nondegenerate energy levels E1 < E2 < · · · < EN . The
system Bohr frequencies are defined as ωnm = En − Em. HB

is the isolated Hamiltonian of the baths, likewise on the bath
Fock space HF . The baths will be considered to be contained
in cubes with volumes Ld and periodic boundary conditions,
with delocalized discrete normal modes of linear harmonic
oscillators,

HB =
∑
α,k

ωα
k bα†

k bα
k , (3)

where α = 1, 2, . . . , Nb label different baths, d is the spatial
dimension of the bath, k labels oscillators with frequencies
ωα

k > 0 in bath α (with h̄ = 1), and bα†
k (bα

k ) are the creation
(annihilation) operators satisfying the canonical commutation
relations [

bα
k , bγ †

q

] = δk,qδα,γ (Kronecker deltas). (4)

The energy spectrum of Eq. (3) is discrete, because the bath
has a finite size.

HI is a Hermitian operator describing the system bath
interaction proportional to a dimensionless (weak) coupling
constant λ. The bath is much larger than the system and the
interaction Hamiltonian has bilinear form [71],

HI =
Nb∑

α=1

Aα ⊗ Fα, (5)

where Aα are Hermitian operators on the system Hilbert space
(system coupling operators) and Fα are operators on cor-
responding bath Fock space (bath coupling operators). The
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system coupling operators are normalized on the Frobenious
norm, i.e., ‖Aα‖2 = 1, while λ is absorbed in Fα , which has
the physical unit of frequency. We shall assume that the bath
coupling operators are local oscillator displacements, which
can be expanded in terms of the normal modes as

Fα =
∑

k

gα
k

(
bα

k + bα†
k

)
, (6)

where gα
k are the (real) form factors, which have the physical

units of frequency and scale with the bath size as 1/Ld/2 [72].
Let us further use H0 = HS + HB, for the free Hamiltonian.

Consequently, the master equation appears in the interaction
picture

d�(t )

dt
= −i[HI (t ), �(t )] ≡ LI (t )�(t ), (7)

where the interaction picture operators are HI (t ) =
eiH0t HI e−iH0t and �(t ) = eiH0tρ(t )e−iH0t and the Liouvillian is
LI (t ) = −i[HI (t ), ]. Throughout this paper, the system and
baths are initialized into a factorized state at time t = 0.

The operators Fα are fully described by two-point time
correlations computed in the bath’s initial state (�B), which
will serve as the reference state for deriving the TCL4 mas-
ter equation utilizing the projector-operator method [12]. We
shall label the bath correlation functions (BCF) as

Cα (t ) = 〈Fα (t )Fα (0)〉 = Tr[�BFα (t )Fα (0)], (8)

which has the physical unit of frequency squared. The baths
themselves are not correlated, that is,

〈Fα (t1)F γ (t2)〉 = TrB[�BFα (t1)F γ (t2)] = 0, (9)

if α 
= γ , which also follows from Eq. (4).
These BCFs will be determined from a characteristic spec-

tral density at zero temperature, which has the physical unit of
frequency and is defined as

J̃ α
ω = π

∑
k

(
gα

k

)2
δ
(
ω − ωα

k

)
, (10)

in terms of which the BCF at any temperature can be ex-
pressed as

Cα (t ) = 1

π

∫ ∞

0
dω J̃ α

ω [cos(ωt ) coth(βαω/2) − i sin(ωt )],

(11)

where βα = 1/(kBTα ). The labels with (without) a tilde will
indicate quantities at zero (any) temperature.

The time-dependent or timed spectral density in bath α is
defined as

�α
ω(t ) =

∫ t

0
dτCα (τ )eiωτ . (12)

The spectral density and the principal density at temperature
Tα are the real and imaginary parts of the half-sided Fourier
transform of the BCF, e.g.,

�α
ω = lim

t→∞ �α
ω(t ) =

∫ ∞

0
dτCα (τ )eiωτ , (13)

namely, J α
ω = Re(�α

ω ) and Sα
ω = Im(�α

ω). The frequency
derivatives of the spectral and principal densities at zero fre-
quency, will be shown to be related to the soft-boson numbers

in asymptotic and ground states, respectively. They can be
obtained by taking the derivative of Eq. (13), substituting
ω = 0, and taking the real and imaginary parts. The result
is

∂J α
ω

∂ω

∣∣∣∣
ω=0

= −
∫ ∞

0
tIm[Cα (t )]dt, (14)

∂Sα
ω

∂ω

∣∣∣∣
ω=0

=
∫ ∞

0
tRe[Cα (t )]dt . (15)

Because of Eq. (11), Eq. (14) is temperature independent.
The spectral density at nonzero temperature is related to

that at zero temperature as

J α
ω = J̃ α

ω

1 − e−βαω
, ω > 0 (16)

and satisfies the Kubo-Martin-Schwinger (KMS) condition,

J α
−ω = exp(−βαω)J α

ω ,∀ω. (17)

The principal and the spectral densities are related via the
Kramers-Kronig relation,

Sα
ω = 1

π
P

∫ ∞

−∞
dω′ J α

ω′

(ω − ω′)
, (18)

where P indicates the principal value. See Appendix A for
derivation of Eqs. (16)–(18).

A. Assumptions

We make the following assumptions on the system:
(1) System spectral density condition. We assume that in

the the thermodynamic limit, i.e., L → ∞,

J̃ α
ω → 2πλ2ωc

(
ω

ωc

)s

e− ω
ωc �(ω); s > 0. (19)

Here, and in the rest of the main text, the symbol → implies
that the thermodynamic limit is taken. The cutoff frequency
ωc, the power-law exponent s, and λ can implicitly vary be-
tween the baths. �(ω) is the Heaviside step function.

(2) Fermi golden rule condition. We assume that in the
thermodynamic limit,

Nb∑
α=1

∣∣Aα
nm

∣∣2J α
ωnm

> 0; n, m = 1, . . . , N, |n − m| > 0. (20)

(3) Dephasing condition. We assume that

Nb∑
α=1

N∑
n,m=1

∣∣Aα
nn − Aα

mm

∣∣ > 0. (21)

Equation (19) is the regularity condition on the spectral
density (SD). The Heaviside step function in Eq. (19) follows
from the definition in Eq. (10) and the fact that the frequencies
of the bath modes are positive. It complies with the second law
of thermodynamics, Clausius’s statement, that heat does not
spontaneously flow from a colder to a hotter body. Namely,
when the bath is at zero temperature, only energy quanta at
a positive frequency can be emitted from the system into the
bath.
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The bath is defined as sub-Ohmic for s < 1, Ohmic for
s = 1, and super-Ohmic for s > 1. In terms of physical con-
siderations, it has been observed that if the small quantum
system is connected to a local displacement of the bath’s oscil-
lator, then s = d − 2, with d representing the dimension of the
bath [72]. Consequently, a cube-shaped bath should be Ohmic.
We specifically require that s > 0 so that the ground-state
energy of the system is lower bounded [67]. This also ensures
that the Davies generator of the dynamics and its asymptotic
state are bounded [19]. The asymptotic and ground states,
however, need not lie in the Fock space of the infinite bath
because the number of bosons can diverge, if s < 1 [63,67],
invalidating the results of the second-order master equations
at a sufficiently long timescale. The sufficient condition for
HT to admit asymptotic [73,74] and ground states [75–80] is
s > 1, which is significantly stricter than the existence of the
lower energy bound and the Davies generator.

The weak-coupling constant, λ > 0, is defined such that an
unbiased spin boson model with energy splitting E2 − E1 =
1 has a Berezinskii-Kosterlitz-Thouless transition at λ = 1
when s = 1 and ωc � 1 [81]. Throughout the paper, we refer
to the dynamics as being infrared divergent if and only if it
diverges at t → ∞ for arbitrarily small but nonzero λ.

Consider infrared regular dynamics, where the asymptotic
generator lacks eigenvalues with positive real parts when λ <

λ0, for some λ0 > 0. We call such λ as sufficiently small. We
will assume throughout the paper that λ is sufficiently small
whenever the dynamics is regular. Thus, we do not consider
phase transitions driven by the coupling strength, such as the
Berezinskii-Kosterlitz-Thouless transition [81].

Inserting βα = ∞ and Eq. (19) into Eq. (11), we obtain

C̃α (t ) → 2�(s + 1)λ2ω2
c

1

(1 + iωct )s+1
, (22)

which has the real part,

Re[C̃α (t )] = 2�(s + 1)λ2ω2
c

cos[(s + 1) arctan(ωct )][
1 + ω2

ct2
] s+1

2

, (23)

and the imaginary part,

Im[C̃α (t )] = −2�(s + 1)λ2ω2
c

sin[(s + 1) arctan(ωct )][
1 + ω2

ct2
] s+1

2

.

(24)

Due to the imaginary part’s temperature independence in
Eq. (11), the bath correlations decay as power law at any
temperature. At Tα = 0, we see that the the real part of the
BCF decays as t−s−1 in the open interval 0 < s < 2. The
imaginary part of the BCF in Eq. (24) also decays as t−s−1,
except in the one and only one case, s = 1, where it decays as
t−s−2. The different decaying power laws in Eqs. (23) and (24)
will ultimately result in distinct order phase transitions in the
ground and asymptotic states at s = 1 (Theorem 1, Sec. II B).

If a theorem is valid under conditions (20) and (21), then
it may not be true for all open quantum systems. However,
since the open quantum systems satisfying (20) and (21) form
a dense set, all slight perturbations of them will also satisfy the
conditions, making these open quantum systems the most im-
portant to address in theorems. These open quantum systems
are referred to as generic.

The condition (20) implies that for each Bohr frequency,
there exists at least one system coupling operator with
a nonzero matrix element and nonzero spectral density.
This condition is the Fermi golden rule condition from
Refs. [39,40] extended for multiple independent baths. It en-
sures that the energy exchange between the system and the
baths has a unique asymptotic state, in the absence of infrared
divergence.

At least one Aα must have inhomogeneous diagonal matrix
elements in order to satisfy the requirement 21. The system
then displays inhomogeneous dephasing, where the bath states
corresponding to the various system energy eigenstates shift
over time and gradually become more orthogonal at irregular
rates (Sec. 4.2 in Ref. [12]). The conditions (20) and (21) are
realistic because relaxation and dephasing are prevalent in real
world.

The time-dependent spectral density, its derivative at zero
frequency, and the principal density, all at zero temperature,
are

�̃α
ω(t ) =

{
2iλ2�(s + 1)ωc

( − ω
ωc

)s
e− ω

ωc

[
�

( − s,− ω
ωc

− iωt
) − �

( − s,− ω
ωc

)]
, ω 
= 0;

2iλ2�(s)ωc[(1 + iωct )−s − 1], ω = 0,
(25)

∂�̃α
ω(t )

∂ω

∣∣∣∣
ω=0

=
⎧⎨
⎩−2iλ2�(s + 1)

[
1

s(s−1) − (1+iωct )1−s

s−1 + (1+iωct )−s

s

]
, s 
= 1;

−2iλ2�(s + 1)
[

1
2 ln[1 + (ωct )2] + i arctan(ωct ) − iωct

1+iωct

]
, s = 1,

(26)

S̃α
ω =

{
−2λ2�(s + 1)ωcRe

[( − ω
ωc

)s]
e− ω

ωc �
( − s,− ω

ωc

)
, ω 
= 0;

−2λ2�(s)ωc, ω = 0.
(27)

�(z) and �(μ, z) within Eqs. (25)–(27) are the
gamma and the upper incomplete gamma functions,
respectively.

Figures 1(a) and 1(b) display the zero frequency deriva-
tives of the time-dependent spectral and principal densities

versus time of the dynamics, as a function of s. At t → ∞,
∂J /∂ω|ω=0 approaches zero, a constant, and infinity if s > 1,
s = 1, and s < 1, respectively. In contrast, ∂S̃/∂ω|ω=0 ap-
proaches a constant dependent on s when s > 1 and infinity
when s � 1.
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FIG. 1. The derivatives of the spectral and principal density
divided by λ2 versus time. The derivatives are interpreted as the
number of soft bosons emitted into the bath in the asymptotic and
ground states, respectively. s varies the interval 0.5 � s � 1.5 in
increments of 0.025 from top to bottom. Red arrow points to the
Ohmic bath values.

Taking the limit t → ∞ in Eq. (26), we obtain the explicit
derivatives of the spectral and principal densities at ω = 0:

∂J̃ α
ω

∂ω

∣∣∣∣
ω=0

=

⎧⎪⎪⎨
⎪⎪⎩

0, s > 1;

πλ2, s = 1;

∞, s < 1.

(28)

∂S̃α
ω

∂ω

∣∣∣∣
ω=0

=
{−2λ2�(s − 1), s > 1;

∞, s � 1.
(29)

Recall from the discussion below Eq. (15) that the derivative
in Eq. (28) is valid at arbitrary temperature.

B. Number of emitted soft bosons

Let us establish a connection between the number of emit-
ted soft bosons in the bath at zero temperature and the spectral
density. In quantum field theory, the number of emitted bosons
is closely related to the problem of asymptotic completeness
[63]. In order to prove that the asymptotic states are spanned
by the Fock space basis, it is necessary to show that the
number of bosons released into the bath is limited [63].

Consider the small system initially in an excited eigenstate
with a Bohr frequency ε > 0. During the time interval t that
fulfills 1/ε < t < 1/(|A21|2J̃ε ), the population of the excited
state is decreased by |A21|2J̃εt according to the Fermi golden
rule. ε|A21|2J̃εt is the resulting energy emitted into the bath.
The number of emitted bosons is determined by dividing by
ε using |A21| ∼ 1 in our units, i.e., 〈Nsb(t )〉 ∼ J̃εt ∼ tεJ̃ε/ε.
By taking the limits ε → 0+, t → +∞, and εt = const, we
find the soft-boson number 〈Nsb(∞)〉 ≈ ∂J̃ω/∂ω|ω=0. On the
other hand, Eq. (29) gives the soft boson number in the com-
bined system-bath ground state. See Appendix B for further
details.

Roeck and Kupiainen computed rigorous boson number
bounds in generic scattering systems at zero temperature using
a polymer expansion in statistical physics [63]. At time t > 0,
they find

〈eκN (t )〉 �
{

C̆ exp(C), s � 1;

C̆ exp[Ct (1−s)], s < 1,
(30)

where N (t ) is the number of emitted bosons. C̆ and C are
independent of λ, κ , and t if 0 < λ � λ0 and |κ| � κ0 for
some λ0 > 0 and κ0 > 0.

On the other hand, we have the asymptotic behavior from
Eq. (26) at time t � 1/ωc,

∂J̃ α
ω (t )

∂ω

∣∣∣∣
ω=0

→
⎧⎨
⎩

2λ2�(s+1) sin (1−s)π
2

1−s (ωct )1−s, s 
= 1;

πλ2
(
1 − 2

πωct

)
, s = 1

.

Comparing this with Eq. (30), along with the previous para-
graph showing that ∂J̃ α

ω /∂ω|ω=0 is the soft boson number
at t → +∞, suggests that ∂J̃ α

ω (t )/∂ω|ω=0 is the number of
soft bosons that have been emitted up to time t . We shall
see that the TCL4 master equation’s generator is linear with
∂J̃ α

ω (t )/∂ω|ω=0. Consequently, the boson number determines
the existence of the generator of the TCL master equation.

The primary outcome of the work is the following theorem.
If we assume that the open quantum system is generic, the
states are computed up to the fourth order of the perturbation
theory, the interaction λ is arbitrarily small but not zero, and
the thermodynamic limit is conventional, then, as a function
of the dispersion s, we have the following theorem:

Theorem 1. The asymptotic states undergo a discontinuous
phase transition, whereas the ground states undergo a contin-
uous phase transition at s = 1.

Outline of the proof: We will demonstrate in Sec. IV A
that the reduced asymptotic states at T = 0K are linear with
∂J̃ /∂ω and independent of ∂S̃/∂ω. Consequently, Eq. (28)
represents a discontinuous transition from a bounded to an
unbounded reduced asymptotic state, which takes place when
s changes from 1 to 1−. The transition is consistent with the
discontinuous transition in the boson number bound 30. The
norm of the asymptotic state is the order parameter represent-
ing the discontinuous transition of the asymptotic state out of
the Fock space.

In Sec. IV B we will show that the reduced ground states
are linear with ∂S̃/∂ω. Consequently, Eq. (29) represents
a continuous transition from a bounded to an unbounded
reduced ground state, computed perturbatively, which takes
place when s approaches 1+.

III. TCL4 GENERATOR

The system and the bath are initialized into a factorized
state at time t = 0. If the resulting quantum-dynamical map
is invertible, then it may be represented by the exact time-
convolutionless master equation as follows [12]:

dρ

dt
= R(0)ρ + R(2)(t )ρ + R(4)(t )ρ + · · · . (31)

The generator of the dynamics is thus expressed in terms
of tensors R(2n)(t ), each proportional to λ2n. This will be
the TCL2n master equation when it is truncated to the first
2n terms. Due to the hermiticity preservation of the master
equation, the generator’s contributions can be written as

R(2k)
nm,i j (t ) = δR(2k)

nm,i j (t ) + δR(2k)�
mn, ji(t ), k = 0, 1, 2, . . . . (32)
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The matrix elements of the generator components are as follows:

δR(0)
nm,i j = −iEnδniδm j, (33)

δR(2)
nm,i j (t ) =

Nb∑
α=1

[
Aα

niA
α
jm�α

in(t ) − δ jm

N∑
k=1

Aα
nkAα

ki�
α
ik (t )

]
, (34)

δR(4)
nm,i j (t ) = δ jm

Nb∑
α,β=1

N∑
a,b,c=1

{
Aα

naAβ

abAα
bcAβ

ci

[
Fαβ

cb,ci,ac(t ) − Rαβ

cb,ab,bi(t )
] + Aα

naAβ

abAβ

bcAα
ciR

αβ

ic,ab,bi(t ) (35)

− Aα
naAα

abAβ

bcAβ
ciF

αβ

ba,ci,ac(t )
} +

Nb∑
α,β=1

N∑
a,b=1

{
Aβ

naAα
abAβ

biA
α
jm

[
Rαβ

ba,na,ai(t ) − Fαβ

ba,bi,nb(t )
]

(36)

+ Aα
naAβ

abAβ

biA
α
jmFαβ

an,bi,nb(t ) − Aβ
naAβ

abAα
biA

α
jmRαβ

ib,na,ai(t ) (37)

+ Aα
naAα

abAβ

biA
β
jm

[
Cαβ

ba, jm,ai(t ) + Rαβ

ba, jm,ai(t )
] − Aα

naAβ

abAα
biA

β
jm

[
Cαβ

ib, jm,ai(t ) + Rαβ

ib, jm,ai(t )
]

(38)

− Aα
naAβ

aiA
β

jbAα
bm

[
Cαβ

an, jb,ni(t ) + Rαβ

an, jb,ni(t )
] + Aβ

naAα
aiA

β

jbAα
bm

[
Cαβ

ia, jb,ni(t ) + Rαβ

ia, jb,ni(t )
]}

, (39)

Fαβ
ω1ω2ω3

(t ) = −
∫ t

0
dτ��α

ω1
(t, τ )��βT

ω2
(t, t − τ )e−i(ω1+ω2+ω3 )τ + i�βT

ω2
(t )

�α
−ω2−ω3

(t ) − �α
ω1

(t )

ω1 + ω2 + ω3
, (40)

Cαβ
ω1ω2ω3

(t ) = −
∫ t

0
dτ��α

ω1
(t, τ )��β�

ω2
(t, t − τ )e−i(ω1+ω2+ω3 )τ + i�β�

ω2
(t )

�α
−ω2−ω3

(t ) − �α
ω1

(t )

ω1 + ω2 + ω3
, (41)

Rαβ
ω1ω2ω3

(t ) = −
∫ t

0
dτ��α

ω1
(t, τ )��β

ω2
(t, τ )e−i(ω1+ω2+ω3 )τ + i�β

ω2
(t )

�α
−ω2−ω3

(t ) − �α
ω1

(t )

ω1 + ω2 + ω3
, (42)

where

��α
ω(t, τ ) = �α

ω(t ) − �α
ω(τ ). (43)

The derivation of the TCL4 generator is given in Ap-
pendix C. Equations (40)–(42) define the system’s three-
dimensional (3D) spectral densities. In Equations (35)–(39),
Fαβ

(ab)(cd )(e f )(t ) = Fαβ
ω1ω2ω3

(t ), where ω1 = ωab, ω2 = ωcd , and
ω3 = ωe f ; mutadis mutandis C and R. The superscript
T in Eq. (40) represents transposition in the energy ba-
sis, e.g., ��βT

ω2
= ��

β
−ω2

. The star in the superscript in
Eq. (41) indicates complex conjugation. The right-hand side
of Eqs. (40)–(42) should be interpreted as a limit in the case
of ω1 + ω2 + ω3 = 0, i.e.,

lim
�iωi→0

�α
−ω2−ω3

(t ) − �α
ω1

(t )

ω1 + ω2 + ω3
= −∂�α

ω1
(t )

∂ω1
. (44)

Once we have the time-dependent spectral density, we can
express both the second- and fourth-order generator contribu-
tions in terms of that spectral density. Therefore, the TCL4
master equations, in this particular form, has the same level of
universality as the TCL2 master equation. The TCL4 master
equation is trickier to use at this time because we have to
integrate over the products of the time-dependent spectral
densities in Eqs. (40)–(42). Nevertheless, this may be simply
managed through numerical computations. The integrals may
be computed with a moderate amount of diligence, approach-
ing double-precision accuracy, as we shall elaborate on in
Sec. IV C. After calculating the integrals, we may modify

the system operators without the need to recalculate the 3D-
spectral densities, resulting in faster computing.

We take note of the claim made by Karasev and Teretenkov
that the TCL expansion was expressed without the use of
any integrals in time [62], which suggests that the remaining
integrals in Eqs. (40)–(42) can be further reduced. We will
defer this for future investigation.

A. Asymptotic TCL4 generator

In the thermodynamic limit, we substitute the smooth func-
tion from Eq. (26) into the spectral density. Then the analytical
characteristics of the TCL4 generator can be different from
those of the TCL2 generator, because they depend on the
derivative of the SD. In particular, Eqs. (28) and (29) are
infrared divergent in a sub-Ohmic bath leading to a diverging
generator and diverging asymptotic state.

Let us consider the baths in the thermodynamic limit.
According to the definition in Eq. (43), ��α

ω(t, τ ) and
��βT

ω (t, t − τ ) vary from �α
ω(t ) to 0 and from 0 to �βT

ω (t ),
respectively, when τ changes from 0 to t . If now we take the
asymptotic limit, e.g., t → ∞, then ��α

ω(t, τ ) → ��α
ω(τ ) =

�α
ω − �α

ω(τ ), which approaches zero when τ is larger than the
characteristic timescale of the bath. In contrast, ��βT

ω (t, t −
τ ) approaches zero when τ is smaller than t minus the charac-
teristic timescale of the bath, when t is very large. As a result,
we have

lim
t→∞ ��α

ω1
(t, τ )��βT

ω2
(t, t − τ ) = 0,∀τ ∈ (0, t ). (45)
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The same applies after replacing ��βT
ω2

with ��β�
ω2

in the
above. Furthermore, we propose a stronger condition,

lim
t→∞

∫ t

0
dτ ��α

ω1
(t, τ )��β T,�

ω2
(t, t − τ )e−i(ω1+ω2+ω3 )τ = 0.

(46)

See Appendix D for the verification of (45) and (46) for any
s > 0.

Hence, we obtain the asymptotic TCL4 generator by utiliz-
ing the asymptotic 3D spectral densities, defined as

Fαβ
ω1ω2ω3

= i�βT
ω2

�α
−ω2−ω3

− �α
ω1

ω1 + ω2 + ω3
, (47)

Cαβ
ω1ω2ω3

= i�β�
ω2

�α
−ω2−ω3

− �α
ω1

ω1 + ω2 + ω3
, (48)

Rαβ
ω1ω2ω3

= i�β
ω2

�α
−ω2−ω3

− �α
ω1

ω1 + ω2 + ω3
(49)

−
∫ ∞

0
dτ��α

ω1
(τ )��β

ω2
(τ )e−i(ω1+ω2+ω3 )τ .

(50)

These formulas are applicable for any s > 0, temperature,
and frequencies |ω1| + |ω2| + |ω3| > 0 but not at ω1 = ω2 =
ω3 = 0 and s < 1/2, as shown in Appendix D. However, the
Appendix also shows that the TCL4 generator is independent
of the 3D spectral densities at ω1 = ω2 = ω3 = 0. Thus, the
asymptotic TCL4 generator is computed accurately by replac-
ing the time-dependent 3D spectral densities in Eqs. (35)–(39)
with the respective asymptotic limits in Eqs. (47)–(50).

B. TCL4 generator’s convergence at T = 0 K.

At zero temperature, according to Eqs. (19) and (27), �̃α
ω =

J̃ α
ω + iS̃α

ω is continuous when s > 0. However, at a positive
temperature, the spectral density diverges at zero frequency
if s < 1 [71], as 1/ω1−s. To keep the paper simple, we will
narrow the scope of the convergence analysis to T = 0 K
only and defer the analysis of the convergence at a positive
temperature to a future publication.

We first determine the 3D spectral density existence con-
dition. At T = 0 K, we only need to find the convergence
condition for the three ratios in Eqs. (47)–(49). That is, we
can ignore the integral in Eq. (50) for the time being because
it will converge at any s > 0 and |ω1| + |ω2| + |ω3| > 0. This
claim is justified in Appendix D.

The three ratios diverge if and only if ω1 + ω2 + ω3 = 0.
After taking the limit t → ∞ in Eq. (44),

�̃α
−ω2−ω3

− �̃α
ω1

ω1 + ω2 + ω3
= −∂�̃α

ω1

∂ω1
= −i

∫ ∞

0
dt tC̃α (t )eiω1t . (51)

For the BCF that decays as t−s−1, the integrand alternates in
sign versus time at ω1 
= 0. In this case the integral exists
under the original premise that s > 0. However, if ω1 = 0,
then, in addition to ω1 + ω2 + ω3 = 0, the integral will di-
verge if s � 1. The infrared divergence at T = 0 K is due to
the frequency subset ω1 = 0 and ω2 = −ω3 
= 0.

To assess the impact of the divergence in the 3D spectral
densities on the generator, we will isolate the contributions

from this frequency subset in Eqs. (35)–(39). After adding
those terms up, we determined that Eqs. (35)–(37) result in
zero. In the remaining Eqs. (38) and (39), the requirement
ω2 + ω3 = 0, for ω2 = ωab and ω3 = ωcd , splits into two pos-
sibilities: (a = b ∧ c = d ) ∨ (a = d ∧ b = c). The scenario
a = b ∧ c = d has all frequencies equal to zero, which do
not contribute to the generator, as previously stated. However,
the divergences corresponding to a = d ∧ b = c do not cancel
and may involve nonzero frequencies.

After adding the Hermitian conjugate to Eq. (35) and some
algebra, the sum of all the terms that can diverge for 0 < s � 1
is

R(4,d )
nm,i j (t ) = 2δi j

Nb∑
αβ=1

{
i
(
Aα

mm − Aα
j j

)
Aα

nm

∣∣Aβ
m j

∣∣2
Im[C(t )

+ R(t )]αβ

0, jm,m j − i
(
Aα

nn − Aα
ii

)
Aα

nm

∣∣Aβ
ni

∣∣2
Im[C(t )

+ R(t )]αβ

0,in,ni

}
. (52)

The second term on the right-hand side of Eq. (52) is ob-
tained from the first term through complex conjugation and
realignment n � m and i � j, ensuring the preservation of
hermiticity defined in Eq. (32).

It can be easily demonstrated through index substitutions
that R(4,d )

nn,ii (t ) = 0 and R(4,d )
ni,ni (t ) = 0. Therefore, R(4)

nn,ii and

R(4)
ni,ni are bounded. These rates are the ones that survive time

averaging in the interaction picture. As a result, the secular
approximation of the TCL4 (e.g., the fourth-order Davies
master equation) is infrared regular.

Due to the δi j on the right-hand side of Eq. (52), only
the population-to-coherence transfer matrix elements R(4,d )

nm,ii,
n 
= m can diverge. When the ratios in Eqs. (41) and (42) are
inserted into the equation for C + R, the real part in �β

ω is
isolated. In more precise terms, �β

ω + �β�
ω = 2 Re(�β

ω ). The
result is

Im[C(t ) + R(t )]αβ

0,in,ni = Im

{
−2iRe

[
�

β
in(t )

]∂�α
ω(t )

∂ω

∣∣∣∣
ω=0

}

= −2J β
in (t )

∂J α
ω (t )

∂ω

∣∣∣∣
ω=0

. (53)

Substituting into Eq. (52) for i = j, we isolate the diverging
term into its final form:

R(4,d )
nm,ii(t ) = −4i

Nb∑
αβ=1

∂J α
ω (t )

∂ω

∣∣∣∣
ω=0

(54)

× [(
Aα

mm − Aα
ii

)
Aα

nmJ
β

im(t )
∣∣Aβ

im

∣∣2
(55)

− (
Aα

nn − Aα
ii

)
Aα

nmJ
β

in (t )
∣∣Aβ

in

∣∣2]
. (56)

The terms on lines (55) and (56) converge at t → ∞ for
any s > 0. It follows that R(4,d )

nm,ii(t ) diverges if and only if
the derivative of the real part of the spectral density diverges
at ω = 0 [see line (54)]. Thus, the sufficient and necessary
condition for the existence of the fourth-order asymptotic
generator is

∂J α
ω

∂ω

∣∣∣∣
ω=0

= −
∫ ∞

0
tIm[C(t )]dt < ∞. (57)
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FIG. 2. Soft boson emission in a two-level system. Picture
(a) represents the Fermi golden rule for the relaxing system. The
fourth-order relaxation-dephasing hybrid process is depicted in pic-
ture (b). The red arrows in Fig. 2(b) represent the production of
infrared bosons in addition to the population decay (the green arrow).

Figure 2 illustrates the Fermi golden rule and the
relaxation-dephasing hybrid processes [Eqs. (54)–(56)] in a
two-level system, which is initially in the excited state. The
system relaxes into a quasistatic equilibrium state because the
Fermi golden rule rate, sketched in Fig. 2(a), is initially much
higher than the rate of the fourth-order hybrid process. But the
latter grows in time as the soft bosons are emitted into the bath
and will out-compete the Fermi golden rule over a long time
if s < 1.

The dephasing subprocess has a probability proportional to
A12(A11 − A22) and to the derivative of the spectral density at
zero frequency, from Eqs. (54)–(56). As previously discussed,
the derivative represents the number of soft bosons emitted
until time t . The system dynamics described by the TCL4
master equation initially reaches a steady state at the Fermi-
golden rule rate and for any s > 0. However, when the boson
number diverges at s < 1 and t → ∞, the global quantum
state leaves the Fock space and the perturbative approach
diverges. In the sub-Ohmic regime, the second-order Bloch-
Redfield and Davies master equations lack this divergence,
rendering them invalid.

The asymptotic TCL4 generator is uniformly bounded
in the interval s � 1, since the left-hand side of Eq. (57)
is bounded according to Eq. (28). The condition (57) is
temperature-independent [recall Eq. (11)] and less stringent

than the existence of Eq. (51), where the derivatives of the
real and imaginary parts must both be bounded to guarantee
that the 3D spectral functions are bounded.

IV. APPROACH TO A GROUND STATE

As an application, we examine if and how the open quan-
tum system dynamics approaches the combined system and
bath ground state. Our method for calculating the asymptotic
and ground states will be detailed in the next two parts.

A. Asymptotic states

Here we use the perturbation theory of the asymptotic
TCL4 generator to compute the corrections to the system’s
asymptotic dynamics. The working hypothesis will be that the
asymptotic limit exists for s � 1.

Let us begin with the master Eq. (31), which can be rewrit-
ten in the asymptotic limit as

dρ(t )

dt
= R(0)ρ(t ) + λ2R(2)ρ(t ) + λ4R(4)ρ(t ) + · · · . (58)

For clarity, the generator’s explicit dependency on λ has been
excised as a prefactor in each term of the expansion. Since the
coefficients of this equation are time independent, we seek the
solution ρ(t ) = eνtρ, which leads to the linear system

(R(0) + λ2R(2) + λ4R(4) + · · · )ρ = νρ, (59)

with the unknowns ν and ρ. We will solve this eigenvalue
equation using the perturbation theory, which is sometimes re-
ferred to as the canonical perturbation theory. This method has
been applied to explore the asymptotic states in Refs. [17,18].

ν and ρ are expanded in the Taylor series as ν = ν (0) +
λ2ν (2) + λ4ν (4) + · · · and ρ = ρ (0) + λ2ρ (2) + λ4ρ (4) + · · · .
Inserting in the eigenvalue Eq. (59), we find

(R(0) + λ2R(2) + λ4R(4) + · · · )

× (ρ (0) + λ2ρ (2) + λ4ρ (4) + · · · )

= (ν (0) + λ2ν (2) + λ4ν (4) + · · · )

× (ρ (0) + λ2ρ (2) + λ4ρ (4) + · · · ). (60)

Expanding the requirement trρ = 1 in Taylor series in λ, we
find

trρ (2k) = δk0. (61)

Next we equalize the coefficients of the expansion on the
left-hand side and the right-hand side of Eq. (60). In the zeroth
order and using Eq. (33), we find

−iωnmρ (0)
nm = ν (0)ρ (0)

nm , (62)

where ωnm = En − Em. Since we assume that the eigenener-
gies of the isolated system are nondegenerate, it follows that
there are N2 − N nondegenerate eigenvalues −iωnm, n 
= m,
with the eigenvectors equal to the coherences ρ = |n〉〈m|. In
addition, there is a zero eigenvalue with a degenerate manifold
of populations ρ = |n〉〈n|, n = 1, 2, . . . , N .

The application of the Fermi golden rule on the Liouvillian
operating in the representation of the algebra of local opera-
tors shows that N2 − 1 of these N2 eigenvalues disintegrate
in the continuous spectrum when the interaction is turned in
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Ref. [70], which leads to return to equilibrium. In our case, the
reduced system’s Liouvillian retains a fully discrete spectrum.
Proceeding with the perturbation theory, in the second order,
we find

R(2)ρ (0) + R(0)ρ (2) = ν (2)ρ (0) + ν (0)ρ (2). (63)

The examination of the dephasing modes and their rates,
while intriguing on its own, does not offer any data directly
pertinent to this section and will be skipped. The relax-
ation modes and their rates are computed using degenerate
perturbation theory. We have ν (0) = 0 and consider the super-
positions ρ (0) = ∑N

k=1 ρ
(0)
kk |k〉〈k|. Then let us take the matrix

element 〈n| · · · |m〉 of Eq. (63). The result is

N∑
k=1

R(2)
nm,kkρ

(0)
kk − iωnmρ (2)

nm = ν (2)ρ (0)
nn δnm. (64)

For n = m, we find

N∑
k=1

R(2)
nn,kkρ

(0)
kk = ν (2)ρ (0)

nn , (65)

which is the usual eigenvalue problem in degenerate perturba-
tion theory.

Let us make a few remarks. First, it should be noted that
(65) determines both the eigenvalues ν (2) and the popula-
tions ρ (0)

nn to precision O(λ0). However, after multiplying ν (2)

with λ2, the eigenvalues of the generator will be known to
precision O(λ2). Second, trace preservation of the master
equation requires that

∑
k R

(2q)
kk,i j = 0. When we take the sum

over n in Eq. (65) we see that ν (2) ∑
k ρ

(0)
kk = 0. If ν (2) = 0,

then
∑

k ρ
(0)
kk can be nonzero. This eigenvector represents the

reduced system’s asymptotic state in the zeroth order, which
is unique by condition (20). If ν (2) 
= 0, then

∑
k ρ

(0)
kk = 0.

These eigenvectors turn out to be the same as the decaying
population modes in the Davies master equation [19]. There
are N − 1 such modes.

The nonsecular matrix elements of the generator will gen-
erate coherences in these modes. Let n 
= m in Eq. (64). Then

ρ (2)
nm = − i

ωnm

N∑
k=1

R(2)
nm,kkρ

(0)
kk . (66)

Thus from the O(λ2) generator, the coherences are known to
precision O(λ2).

At this time, the coherences are more precise than the
populations, which is one of the flaws of the Bloch-Redfield
equation. To make the precision of the populations consistent
with the coherences, we must look at the populations’ fourth-
order corrections, where we have

R(0)ρ (4) + R(2)ρ (2) + R(4)ρ (0) = ν (4)ρ (0) + ν (2)ρ (2). (67)

Taking the matrix element 〈n| . . . |m〉, this equation transforms
into

−iωnmρ (4)
nm +

N∑
i, j=1

R(2)
nm,i jρ

(2)
i j +

N∑
k=1

R(4)
nm,kkρ

(0)
kk

= ν (4)δnmρ (0)
nn + ν (2)ρ (2)

nm . (68)

Take n = m to obtain the next in-order population correction.
We have the following linear system:

N∑
k=1

[
R(2)

nn,kk − ν (2)δnk
]
ρ

(2)
kk

= ν (4)ρ (0)
nn −

N∑
i, j=1

′R(2)
nn,i jρ

(2)
i j −

N∑
k=1

R(4)
nn,kkρ

(0)
kk . (69)

The primed sum indicates summations over unequal indices
i and j. Both the fourth-order corrections of the relaxation
rates and the second-order corrections of the populations are
generated by this equation.

The key finding is that the second-order populations de-
pend on R(4)

nn,kk . So, in order to compute the population
dynamics to precision O(λ2) of the TCL2-generator, we
must compute the population-to-population matrix elements
of the TCL4 generator. This discovery extends the findings of
Refs. [17,18] from asymptotic states to asymptotic dynamics.
As an example, see Appendix E for the Bloch-Redfield equa-
tion’s dynamics inaccuracy at times longer than the relaxation
time.

Let us summarize the corrections to the asymptotic state,
which can be obtained by substitution ν (0) = ν (2) = · · · = 0
in all of the above equations. For the coherences, i 
= j, we
find

ρ
(0)
i j = 0, (70)

ρ
(2)
i j = −i

ωi j

N∑
k=1

R(2)
i j,kkρ

(0)
kk , (71)

ρ
(4)
i j = −i

ωi j

[
N∑

k=1

(
R(2)

i j,kkρ
(2)
kk + R(4)

i j,kkρ
(0)
kk

)

+
N∑

l,m=1

′R(2)
i j,lmρ

(2)
lm

]
, (72)

ρ
(6)
i j = −i

ωi j

[
N∑

k=1

(
R(2)

i j,kkρ
(4)
kk + R(4)

i j,kkρ
(2)
kk + R(6)

i j,kkρ
(0)
kk

)

+
N∑

l,m=1

′(R(4)
i j,lmρ

(2)
lm + R(2)

i j,lmρ
(4)
lm

)]
, (73)

while for the populations, we have
N∑

k=1

R(2)
nn,kkρ

(0)
kk = 0, (74)

N∑
k=1

R(2)
nn,kkρ

(2)
kk = −

N∑
k=1

R(4)
nn,kkρ

(0)
kk −

N∑
l,m=1

′R(2)
nn,lmρ

(2)
lm , (75)

N∑
k=1

R(2)
nn,kkρ

(4)
kk = −

N∑
k=1

(
R(6)

nn,kkρ
(0)
kk + R(4)

nn,kkρ
(2)
kk

)

−
N∑

k,l=1

′(R(4)
nn,klρ

(2)
kl + R(2)

nn,klρ
(4)
kl

)
. (76)

Applying Eqs. (34) to (74) and applying Eq. (61) results
in ρ

(0)
kk = δk1, showing that the isolated system’s ground state
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is the zeroth-order asymptotic reduced state. The right-hand
side of the first line in Eq. (75) demonstrates that we need to
compute the diagonal elements of the fourth-order asymptotic
generator in order to compute the second-order corrections of
the populations, as already demonstrated in Refs. [17,47].

When s < 1, the TCL4 generator’s infrared divergences
will propagate via these equations, leading to a diverging
asymptotic density matrix. First, let us look at Eq. (72), which
gives us the fourth-order coherence correction. The infrared-
divergent terms make a contribution of (−i/ωi j )R(4,d )

i j,11 , given

that ρ
(0)
kk = δk1. In this case, it can be demonstrated from

Eqs. (54)–(56) that as time approaches infinity, R(4,d )
i j,11 (t ) tends

to zero given that J̃1k = 0 for all k. That is, in the relaxation-
dephasing hybrids, a nonzero relaxation rate requires that the
initial population’s energy be higher than an energy of the
two states involved in the final coherence. With the diverging
terms going to zero, the asymptotic coherences in the fourth
order are finite.

By inserting the corrections of the excited-state popula-
tions, e.g., ρ

(2)
kk , into Eq. (73), we can see that they induce

infrared divergence through the fourth-order population to
coherence transfers. As a result, the density matrix is divergent
in the sixth order of coupling to the bath but not before that.
This completes the proof of the first claim stated in Theorem
1 that the function ∂J̃ /∂ω|ω=0 determines the infrared diver-
gence of the asymptotic states of the TCL4 master equation.

B. Ground states

To make the discussion easier, let us proceed with the
assumption that there is only one bath. Nondegenerate
Rayleigh-Schrödinger perturbation theory will be used to de-
termine the ground state of the whole Hamiltonian, which
is nondegenerate for the free Hamiltonian. After that, we
will take the thermodynamic limit, to be consistent with
how we determine the generators. Recently, Cresser and
Andrés adapted this method to the second-order Rayleigh-

Schrödinger perturbation theory [82], which we now extend
to the fourth order.

We are attempting to calculate the ground state’s reduced
density matrix. That is, we are assuming that the perturbed
(coupled) Hamiltonian H̃ = H0 + λV has a ground state |0̃〉
that can be expanded in powers of λ, and |0̃〉 = |0〉 + O(λ1).
From this total ground-state approximation, we will then cal-
culate the reduced density matrix for just the system part, that
is,

�̃S = TrB|0̃〉〈0̃|.

In the zeroth order, the ground state of the free Hamiltonian
is the tensor product of the ground states of the system and
the bath. See Appendix F for the derivation of the second-
and fourth-order corrections of the ground state. Reducing the
ground state of the total system to the density matrix of the
system, we find the second-order corrections,

ρ
(2)
mfgs,nn = −|A1n|2∂S̃1n, n = 2, 3, . . . , N ; (77)

ρ
(2)
mfgs,i j = Ai1A1 j (S̃1i − S̃1 j )

Ei − Ej

+
∑

k

(δ1iA1kAk j − δ1 jAikAk1)S̃1k

Ei − Ej
, (78)

where S̃1k = S̃ω1k and ∂S̃ab = ∂S̃ (ω)/∂ω at ω = ωab. Here
mfgs refers to the mean-force ground state, which is equiv-
alent to the mean-force Gibbs state at zero temperature.
Alternatively, the mean-force ground state is the reduced
ground state of the combined system and bath.

These findings are identical to Ref. [82] after applying
the Kramers-Kronig transform S̃ → J̃ . There is a bounded
perturbative ground state in the second order of the coupling
at any s > 0.

The perturbative corrections of the reduced ground-state
coherences in the fourth order of coupling are

ρ
(4)
mfgs,i j =

N∑
a,b=1

AibAb1A1aAa j

ω1iω1 j
S̃1aS̃1b −

N∑
a=1

[
A1aAa1Ai1A1 j

S̃1a(∂S̃1i − ∂S̃1 j ) + ∂S̃1a(S̃1i − S̃1 j )

ωi j

]

+
N∑

a=1

N∑
b=2

(Ai1A1aAabAb j + AibAbaAa1A1 j )
S̃1a(S̃1 j − S̃1i )

ωb1ωi j

+
N∑

a=1

N∑
b=2

(Ai1A1aAabAb j + AibAbaAa1A1 j )
S̃1a

ωi j

∫ ∞

−∞

dω′

π

J̃ω′

(ωab − ω′)

[
1

(ω1 j − ω′)
− 1

(ω1i − ω′)

]

+
N∑

a=1

N∑
b=1

AibAb1Aa jA1a
S̃1a

ωi j

∫ ∞

−∞

dω′

π

J̃ω′

(ω1b − ω′)

[
1

(ωa j − ω′)
− 1

(ωai − ω′)

]

−
N∑

a=1

N∑
b=1

AibAb1Aa jA1a
1

ωi j

∫ ∞

−∞

dω′

π

[
J̃ω′ S̃1 j−ω′

(ω1b − ω′)(ω1a − ω′)
− J̃ω′ S̃1 j−ω′

(ω1b − ω′)(ωa j − ω′)

]
+ H.c.

−
N∑

a=1

N∑
b=1

(Ai1A1aAabAb j + AibAbaAa1A1 j )
1

ωi j

∫ ∞

−∞

dω′

π

[
J̃ω′ S̃ω1b−ω′

(ω1 j − ω′)(ωab − ω′)
− J̃ω′ S̃ω1b−ω′

(ω1 j + ω′)(ω1a + ω′)

]
+ H.c.

i, j = 2, 3, . . . , N ; i 
= j. (79)
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The derivative ∂S̃ is present on the first line, as well as certain
cases of both the third and fourth lines, demonstrating that
both ∂S̃ as well as S̃ govern the ground states. According to
Eq. (29), ∂S̃ at zero frequency diverges in the limit s → 1+.
Isolating the terms in the summations in (79) that contain this
derivative, we find

ρ
(4)
mfgs,i j = · · · + A11(Ai1A1 jA11 − |Ai1|2Ai j )

×
[
S̃ω1i∂S̃0

ωi j
+

∫ ∞

−∞

dω′

π

J̃ω′ S̃ω1i−ω′

ωi j (ω′)2

]

− Ai1A1 jA11(A11 − Aj j )

×
[
S̃ω1 j ∂S̃0

ωi j
+

∫ ∞

−∞

dω′

π

J̃ω′ S̃ω1 j−ω′

ωi j (ω′)2

]
. (80)

As a result, the fourth-order correction to the coherence
ρ

(4)
mfgs,i j diverges continuously in the limit s → 1+ due to the

term ∂S̃0 given by Eq. (29). See Appendix F for the terms
ρ

(4)
mfgs,1 j , which also diverge due to the term ∂S̃0. The distinc-

tion between asymptotic and ground states lies not only in
their continuity at s = 1 but also in their perturbative order,
which exhibits divergence. This completes the proof of the
second claim stated in Theorem 1 that the function ∂S̃/∂ω|ω=0

controls the infrared divergence of the reduced ground state.

C. Approach to ground state to precision O(λ2 )

In the traditional thermodynamic limit method, it is rela-
tively easy to show and widely known that the ground-state
coherences provided by Eq. (78) and the coherences of the
asymptotic solutions of the TCL2 master equation are identi-
cal [17,18,83–85]. However, establishing the identity of the
second-order populations is substantially more challenging.
Recently, there has been some progress in finding a solution
to this problem [85]. According to Eqs. (77) and (78), the
ground state in the second order in λ is bounded at any s > 0.
Since it solely depends on the secular matrix elements of the
TCL4 generator, which are infrared regular, the asymptotic-
state populations determined using Eq. (76) are bounded, too.
Still, it is not evident that the asymptotic and ground-state
populations are identical.

Hänggi and coworkers hypothesized that the asymptotic
coherences can be analytically continued into the asymptotic
populations [83]. In that situation, they discovered agreement
between the asymptotic and equilibrium populations to pre-
cision O(λ2). This is due to the fact that such analytical
continuation holds true for the equilibrium states. In our case,
as an example, when i and j are equal to n, it may be said
that Eq. (77) is the limit of Eq. (78). Given that the asymptotic
and the ground-state coherences are identical, the analytical
continuations of their coherences are clearly also identical.
Therefore, the analytic continuation cannot provide new in-
formation until it can be demonstrated that it is applicable
to the asymptotic states. Here we numerically computed the
second-order population corrections from the TCL4 generator
and compared them to the second-order corrections in the
ground states using the following example.

The system Hamiltonian has N = 35 eigenenergies taken
from the eigenvalue distribution of a Gaussian unitary

FIG. 3. Histogram of Bohr frequency of the random-matrix ex-
ample (N = 35). In these units, the bath cutoff frequency is ωc = 10.

ensemble of big matrices at the spectrum’s center (GUE).
The histogram in Fig. 3 displays the Bohr frequency distribu-
tion. There are 1191 distinct Bohr frequencies, with 0.0114,
0.4194, and 1.2108 being the lowest, average, and greatest
absolute oscillation frequency, respectively. The energy level
repulsion, which prevents energy levels from being too close
to one another, is what causes the minimum around 0 fre-
quency. The bath cutoff frequency is ωC = 10 the BCF-decay
is Ohmic (s = 1), which guarantees the existance of the TCL4
generator. The vast number of frequencies is significant since
it indicates our TCL4 generator’s capacity to account for a
large plethora of frequencies. This will be useful when extend-
ing the generator to time-dependent system Hamiltonians.

For the system coupling operator, we randomly select an
N × N Hermitian matrix from the GUE. All levels of the
system are connected by this matrix in a way that allows
for direct relaxation between them. It also exhibits signifi-
cant diagonal element fluctuations, indicating the existence of
dephasing. We separated the integration region into sections
before computing the integral in (50). Smaller time steps are
employed when the integrand is big. We may accept larger
time steps without compromising accuracy if the integrand is
small.

The results for the asymptotic states in the Ohmic bath
at T = 0 K are shown in Fig. 4. In Fig. 4(a), we compute
the absolute negativity, or the absolute sum of the negative
eigenvalues of the asymptotic states of the TCL2 and TCL4
generators. The figure shows that the negativity scales as λ2

and λ4 in the TCL2 and TCL4 asymptotic states, respectively.
The negativity also measures the state inaccuracy because the
precise quantum state’s negativity must be zero. Therefore, the
inaccuracy of the asymptotic states scales as λ2 and λ4, which
is in agreement with the downgrade in accuracy of quantum
master equations discussed by Fleming and Cummings [17].
The decrease in the negativity of the TCL4 asymptotic states
relative to those of the TCL2 shows that all inaccuracies owing
to the second order have been properly canceled out by the
fourth-order terms. So the negativity may be used as a test
to confirm that there are no algebraic errors in the TCL2n
generators’ computation. The asymptotic states turn positive
in the limit n → ∞ since the time-convolutionless master
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FIG. 4. Asymptotic-state properties in a 35-level system. (a) Ab-
solute negativity of the asymptotic density matrix versus coupling
constant. (b) Populations of the excited states ρ (2)

nn and the absolute
value of the difference between the populations of the asymptotic and
the reduced ground state versus n; ωc = 10, s = 1, and T = 0 K.

equation is exact. This is implied here by the observation that
the asymptotic-state negativity seems to scale with λ2n, based
on n = 1 and 2.

The second-order corrections of the asymptotic and
ground-state populations computed using Eqs. (75) and (77)
are shown in Fig. 4(b). The difference between the corrections
is approximately 10 orders of magnitude smaller than the
corrections. The similarity is unlikely to be coincidental and
provides an additional proof that our calculation of the TCL4
generator is error free. As a function of N , we have reached the
limit of computing precision at N = 4, where we discovered
that the asymptotic and ground-state populations agree in 13
significant digits (not shown).

Within the second-order perturbation theory, we can relax
the working hypothesis s � 1, since the asymptotic states
converge at any s > 0. For s = 0.9, 1.1, and 1.2, the 13-digit
agreement was valid. In the open range 0 < s < 5, we have
likewise discovered numerical agreement; however, assuming
the same computational bandwidth, the number of significant
digits decreases dramatically when s is much lower than 1.
This is due to the longer integration time required to achieve
the necessary accuracy at lower s.

In summary, the reduced asymptotic state of a small open
quantum is almost certainly identical to the reduced ground
state computed in order of O(λ2) in the entire physical range
of baths (s > 0). We believe that algebraic proof of this state-
ment is within reach.

D. Approach to a ground state to precision O(λ4)

Because the canonical perturbation theory requires the
TCL6 generator to generate the asymptotic populations in the
fourth order [17], we can only directly compare the coher-
ences between the asymptotic and ground states in the fourth
order, based on the work done so far. According to Theorem 1,
the asymptotic states of the TCL4 master equation have a first-
order phase transition at s = 1, represented by Eq. (28). On
the other hand, the ground-state coherences diverge continu-
ously in the limit s → 1+ as 1/(s − 1) according to Eqs. (29).

Therefore, the asymptotic and ground states cannot be the
same. Their distance is larger the closer s approaches 1 and
diverges in the limit s → 1+.

The following asymptotic limits capture the approach to
ground state in the zeroth and second order in λ and its
breakdown in the fourth order:

lim
t→∞ ‖ρTCL4(t ) − ρmfgs,0‖ = O(λ2); s � 1, (81)

lim
t→∞ ‖ρTCL4(t ) − ρmfgs,2‖ = O(λ4); s � 1, (82)

lim
t→∞ ‖ρTCL4c(t ) − ρmfgs,4c‖ = O

(
λ4

s − 1

)
; s > 1, (83)

where ρmfgs,2k = ρ
(0)
mfgs + λ2ρ

(2)
mfgs + · · · λ2kρ

(2k)
mfgs for k = 0, 1,

and 2. The inequality (83) applies to the ground and
asymptotic-state coherences only, which are both computed
with errors of order O(λ6). Since their distance is of order
O(λ4) while the error of this distance is of order O(λ6), the
dynamics does not approach the ground state to precision
O(λ4).

Proof of Eqs. (81)–(83): Applying the perturbation theory,
we have limt→∞ ρTCL4(t ) ≡ ρ̃ = ρ̃ (0) + λ2ρ̃ (2) + λ4ρ̃ (4) +
. . . , which we substitute in the steady-state equation for the
TCL4 generator. Equations (70)–(76) result from this; how-
ever, they lack the sixth- and higher-order terms. Since the
sixth-order terms are absent from Eqs. (70) and (71) as well
as (74) and (75), the solutions for ρ̃ (0) and ρ̃ (2) will match
those found with the canonical perturbation theory, which also
match the mean-force ground states based on the previous sec-
tion. It follows that ρ̃ = ρmfgs,0 + λ2ρmfgs,2 + λ4ρ̃ (4) + · · · .

ρ̃ (4) is determined by Eqs. (72) and (76) after excluding
the sixth- and higher-order terms. Since the TCL4 generator
is bounded uniformly in s when s � 1, then ρ̃ (4) will also be
bounded uniformly in s. Inserting ρ̃ in the left-hand sides of
Eqs. (81) and (82), these equations are proven. The left-hand
side of Eq. (83) yields λ4‖ρ̃ (4)

c − ρ
(4)
mfgs,c‖ when ρ̃ is substi-

tuted, where subscript “c” indicates the coherence part of the
density matrix. For s � 1, ρ

(4)
mfgs,c is linear with 1/(s − 1), as

shown in Sec. IV B, while ρ̃ (4)
c is bounded uniformly in s. As

a result, the bound (83) is proportional to O(λ4) and is not
uniform in s. QED.

Prior investigations of the return to equilibrium demon-
strated agreement between asymptotic and equilibrium states
in all orders of λ [86]. The difference between our technique
and others is how we perform the thermodynamic limit. In
the usual return-to-equilibrium computations, the thermody-
namic limit is assumed from the start of the problem, e.g., the
bath has an infinite size, and the computation is done in the
algebra of local observables (i.e., the C� algebra) [69,70]. In
our example, we perform the usual thermodynamic limit by
substituting a sum over discrete bath modes of a finite-sized
bath with an integral over the wave vectors of bath excitations.
It is well known that the selection of the thermodynamic limit
can influence the outcome of the computation [86].

1. Counterexamples

We briefly discuss two nongeneric open quantum systems.
If (Aα

ii − Aα
nn)Aα

nmJ
β

in |Aβ
in|2 = 0, ∀i, n, α, β, then equation

lines (55) and (56) demonstrate that the TCL4 generator’s
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divergence at s < 1 is suppressed. Consider for example the
unbiased spin boson model where A = σz/2 and HS = σx/2,
with σx and σz the Pauli sigma matrices. A has no diagonal
matrix elements in the energy eigenbasis, and hence the TCL4
generator exhibits no infrared divergence for any s > 0. In
Ohmic and sub-Ohmic baths, ground states are known to exist
for the unbiased spin boson model Hamiltonian [67,79,87,88].
Theorem 1 does not apply.

Another example is the exactly solvable reduced dynam-
ics of pure dephasing Hamiltonians where [A, HS] = 0. This
dynamics converges at any s > 0. There are no off-diagonal
matrix elements in the energy eigenbasis of A. As a conse-
quence, the TCL4 generator converges for any s > 0. Again,
Theorem 1 does not apply. It is reassuring to know that in
these two well-proven examples of infrared regular dynamics
and ground states, the TCL4 generator is also infrared regular
at zero temperature.

V. CONCLUSION

For the fourth-order perturbative time-convolutionless
quantum master equation, we provided a concise yet exact
generator given by Eqs. (35)–(42). To set up the genera-
tor, only the bath’s time-dependent spectral density and one
integral over time need to be determined. As a result, this
equation can now be used to study a variety of complex
dynamical systems without worrying about the inaccuracies
that build up over timescales exceeding the relaxation time.
These systems may include glasses, conjugated polymers,
light-harvesting biomolecular complexes, black holes, as well
as quantum-state preparation and gate fidelity in noisy quan-
tum computing.

As an application, we investigated the approach to ground-
state characteristics in rather large open quantum systems.
The approach is numerically exact only in the second-order
perturbation theory. The situation is considerably more com-
plex in the fourth order, though. The system asymptotic and
ground states are both present in super-Ohmic baths, but they
can differ significantly. The system’s asymptotic state is still
present in Ohmic baths, but the ground state is not perturba-
tively present. In contrast, the system initially stabilizes near
a Fock space ground state in sub-Ohmic baths, which is still
present in the order of O(λ2), but after an escape time, the
generator approaches divergence and the the reduced state
starts to diverge.

We expect the reformulated fourth-order time convolution-
less master equation to pave the way for new approaches
to solid-state quantum computing noise comprehension and
reduction. The presence of 1/ f noise in these systems at
very low temperatures [89–92] indicates sub-Ohmic spectral
density [93]. As demonstrated here, this necessitates a strategy
for open quantum systems that considers the emission of soft
bosons and renders second-order master equations invalid.
The loss of phase coherence in this situation is caused by the
entanglement with soft bosons emitted by relaxation. Carney
et al. [94] created the term “infrared quantum information” to
describe this phenomenon. The emission of infrared quantum
information could potentially have consequences that are still
unexplored in the field of quantum computing. In quantum
gauge field theories, the presence of infrared bosons leads

to intricate memory effects, soft theorems, and asymptotic
symmetries [68]. We believe that the TCL4 master equation
will let us explore these effects in mesoscopic devices and in
today’s noisy quantum computers.
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APPENDIX A: KMS AND THE
KRAMERS-KRONIG RELATIONS.

In this section we rewrite the spectral functions of the
finite-sized system bath in terms of the sums over discrete bath
modes, as opposed to the integrals over frequency. In the main
text, we introduced a highly irregular spectral density func-
tion [Eq. (10)] and expressed the generators in terms of that
function so that the thermodynamic limit can be performed
simply by replacing the irregular spectral density with the
smooth function (19). Here we convert the integrals back to
the sums over discrete bath modes and demonstrate that the
key relationships in Sec. II hold without the assumption (19).

The BCF of the finite-sized combined system, correspond-
ing to Eq. (11), translates to

Cα (t ) =
∑

k

(
gα

k

)2[
cos

(
ωα

k t
)

coth
(
βαωα

k /2
) − i sin

(
ωα

k t
)]

.

(A1)

The time-dependent spectral density given by Eq. (12) recasts
as

�α
ω(t ) =

∫ t

0
dτCα (τ )eiωτ

=
∑

k

(
gα

k

)2
∫ t

0
dτeiωτ

[
eiωα

k τ f α
k + e−iωα

k τ
(
1 + f α

k

)]
,

(A2)

where f α
k = 1/(eβαωα

k − 1). Performing the integral over time,
and taking the real and imaginary parts, we obtain

J α
ω (t ) =

∑
k

(
gα

k

)2
[

sin
(
ω + ωα

k

)
t

ω + ωα
k

f α
k

+ sin
(
ω − ωα

k

)
t

ω − ωα
k

(
1 + f α

k

)]

Sα
ω (t ) =

∑
k

(
gα

k

)2
[

1 − cos
(
ω + ωα

k

)
t

ω + ωα
k

f α
k

+ 1 − cos
(
ω − ωα

k

)
t

ω − ωα
k

(
1 + f α

k

)]
. (A3)

These are the spectral functions on which the TCL2n gen-
erators depends. Neither the asymptotic (t → ∞) nor the
thermodynamic (L → ∞) limits have been applied.

Let us now take the limit t → ∞ in Eq. (A3) before
the thermodynamic limit. Using the representation of the
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delta function, e.g., δ(y) = limx→∞ sin(xy)/(πy), we get the
asymptotic spectral density,

J α
ω = π

∑
k

(
gα

k

)2[
δ
(
ω + ωα

k

)
f α
k + δ

(
ω − ωα

k

)(
1 + f α

k

)]
.

(A4)

At ω > 0, we can drop the left delta function since ωα
k � 0.

Using the general property δ(x − y)h(x) = δ(x − y)h(y), we
can pull (1 + f α

k ) as 1 + f (ω) in front of the sum, where
f (ω) = 1/[exp(βαω) − 1]. This results in the relation (16).
Using similar manipulations, at ω < 0, this equation repro-
duces the KMS condition (17).

We can rewrite the principal density at time t in Eq. (A3)
as

Sα
ω (t ) = 1

π

∫ ∞

0
dω′J̃ α

ω′

[
1 − cos(ω + ω′)t

ω + ω′ f (ω′)

+ 1 − cos(ω − ω′)t
ω − ω′ (1 + f (ω′)

]
. (A5)

Changing the variable on the first line ω′ → −ω′, and utilizing
the relations (16) and (17), we find

Sα
ω (t ) = 1

π

∫ ∞

−∞
dω′J α

ω′
1 − cos(ω − ω′)t

ω − ω′ . (A6)

This equation is an extension of the Kramers-Kronig relation
to the time-dependent spectral density. The ratio in the inte-
grand is regular at ω = ω′. We can thus pull a principal value
in front of the integral, with the understanding that the integra-
tion region excludes an infinitesimal interval [ω − ε, ω + ε]
only, e.g., the singularities of the delta functions within J α

ω

do not count under the principal value. Then we take the limit
t → ∞ and apply the Rieman-Lebesgue lemma. This results
in the Kramers-Kronig relation (18).

APPENDIX B: BOSON NUMBERS IN THE VAN HOVE
AND PURE DEPHASING HAMILTONIANS

Let us take a look at the boson numbers in the ground and
asymptotic states of the van Hove [95] and pure dephasing
Hamiltonians [12], where these can be calculated exactly.

For the van Hove Hamiltonian, we take HS = 0, Nb = 1,
and A = 1. We rewrite the Hamiltonian in Eq. (1) as

HT =
∑

k

ωk

(
bk + gk

ωk

)†(
bk + gk

ωk

)
−

∑
k

g2
k

ωk
, (B1)

by “completing the square.” The ground state is a displaced
vacuum with the oscillator displacements αk = −gk/ωk . The
ground-state energy is

Eg = 1

π

∫ ∞

0
dω

J̃
ω

→ 2πλ2�(s)ωc, (B2)

where we note that → means taking the thermodynamic
limit. It is bounded if and only if s > 0. The average boson

number is

〈N〉 =
∑

k

g2
k

ω2
k

= 1

π

∫ ∞

0
dω

J̃ (ω)

ω2
→ −∂S̃

∂ω

∣∣∣∣
ω=0

. (B3)

The last equality can be shown by integrating by parts (e.g.,∫
udv = uv − ∫

vdu, where u = J̃ , dv = dω/ω2), and re-
placing J̃ and S̃ with ∂J̃ /∂ω and ∂S̃/∂ω, respectively, in the
Kramers-Kronig equation (18). This assumes that J̃ (ω)/ω =
0 at ω = 0, ∂J̃ /∂ω < ∞, and ∂S̃/∂ω < ∞, all of which
holds true for the spectral density in Eq. (19) if s > 1.

Next, we compute the dynamics at T = 0K . The annihila-
tion operators in the Heisenberg picture satisfy the equation of
motion,

dbk

dt
= i[HT , bk] = −iωkbk − igk, (B4)

which has the solution

bk (t ) = bk (0)e−iωkt − gk

ωk
(1 − e−iωkt ). (B5)

In the Heisenberg picture the bath is in the vacuum state
|0〉. Thus, bk (t )|0〉 = αk (t )|0〉, where αk (t ) = −(gk/ωk )(1 −
e−iωkt ). After rotating back to the Schrödinger picture, the
bath state, exp(−iHT t )|0〉, is the displaced vacuum with the
oscillator displacements αk (t ). The state of the small system
does not change while the bath is being displaced because the
Hilbert space of the system is one dimensional.

The average boson number is

〈N (t )〉 =
∑

k

|αk (t )|2 = 2

π

∫ ∞

0
dω

J̃ (ω)

ω2
[1 − cos(ωt )]

→ 4λ2�(s − 1)

⎧⎨
⎩1 − cos[(s − 1) arctan(ωct )](

1 + ω2
ct2

) s−1
2

⎫⎬
⎭.

(B6)

The number of bosons grows as |t |1−s for s < 1 and as log(t )
at s = 1. For s > 1, the boson number is bounded uniformly
in time.

Taking the limits t → ∞ and L → ∞ on the first line of
Eq. (B6) (in arbitrary order), applying the Riemann-Lebesgue
lemma, and integrating by parts as described below Eq. (B3),
we find

lim
t→∞〈N (t )〉 = −2

∂S̃
∂ω

∣∣∣∣
ω=0

; s > 1. (B7)

By Eq. (29), the ground and asymptotic-state boson numbers
both diverge as 1/(s − 1) in the limit s → 1+.

Equations (29), (B3), and (B7) show that the Hamilto-
nian admits both asymptotic and ground states if and only
if s > 1. No infrared divergence is present in the system’s
reduced dynamics since there is no dynamics. Extension to
pure dephasing Hamiltonians yields similar boson numbers
[12, Sec. 4.2]. In this case, we can take Hs = 0 and A = σz

(Pauli σ matrix). Once again, the diverging boson numbers
at s � 1 have no impact on the dynamics. Pure dephasing
Hamiltonians do not satisfy the Fermi golden rule condition
2 in Sec. II.
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APPENDIX C: DERIVATION OF THE TCL4 GENERATOR

Let us begin with Ref. [57, Eq. (29)] as the expression of the TCL4 generator in the interaction picture,(
∂�

∂t

)
4

=
Nb∑

α,β=1

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3{〈02〉α〈13〉β [0̂α, [1̂β, 2̂α]3̂β�] − 〈02〉α〈31〉β [0̂α, [1̂β, 2̂α]�3̂β]

+ 〈03〉α〈12〉β ([0̂α, [3̂α, 2̂β ]�1̂β] + [0̂α, [1̂β 2̂β, 3̂α]�]) − 〈03〉α〈21〉β [0̂α, [1̂β, 3̂α]�2̂β]} + H.c. (C1)

Here we have expanded the authors’ original short-hand notation to account for our multiple uncorrelated baths, defining îα =
Aα (ti ) and 〈i j〉α = Cα (ti − t j ) with i = 0, . . . , 3, where t0 = t . We have omitted the explicit time dependence of the reduced
density matrix as well, defining � = �(t ), the interaction picture operator.

1. Integral simplification

For finite t , the integration in Eq. (C1) is over a bounded region in D ⊂ R3.
Let us consider three general operators,

Kαβ

i jk = 〈0i〉α〈 jk〉β [0̂α, [îα, k̂β ]� ĵβ], (C2)

Hαβ

i jk = 〈0i〉α〈 jk〉β[0̂α, [ ĵβ k̂β, îα]�], (C3)

Mαβ

i jk = 〈0i〉α〈 jk〉β[0̂α, ĵβ[îα, k̂β ]�], (C4)

with which we can rewrite Eq. (C1) as(
∂�

∂t

)
4

=
Nb∑

α,β=1

∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

(
Kαβ

231 + Hαβ

213 + Mαβ

213 + Kαβ

321 + Kαβ

312 + Hαβ

312

) + H.c. (C5)

Note that the variables t1, t2, t3 are independent and that, for any two successive integrals, we can visualize the region of
integration as a triangle in R2. Assuming the integral is bounded, we can change the order of integration as∫ tn−1

0
dtn

∫ tn

0
dtn+1 →

∫ tn−1

0
dtn+1

∫ tn−1

tn+1

dtn. (C6)

We will use this to transform the integral over D. Our choice of transformation will depend only on the order of the time
arguments within the bath correlation functions, which we separate into two cases, i = 2 and i = 3. Let us also employ the
short-hand notation ∫ i

0
d j =

∫ ti

0
dt j . (C7)

Case 1 (i = 2): ∫∫∫
D

=
∫ t

0
d1

∫ 1

0
d2

∫ 1

0
d3 +

∫ t

0
d3

∫ 3

0
d2

∫ 3

0
d1 −

∫ t

0
d3

∫ 3

0
d2

∫ t

0
d1 (C8)

and we have
Case 2 (i = 3) : ∫∫∫

D
=

∫ t

0
d2

∫ t

0
d1

∫ 2

0
d3 −

∫ t

0
d2

∫ 2

0
d1

∫ 2

0
d3. (C9)

While the overall ordering of the time arguments is not arbitrary, as long as the relation between the scalar correlation
functions and the and operator product ordering is preserved with the α, β bath index labels, we are free to swap the arbitrary
t1, t2, t3 labels. Thus, we will permute the labels such that the bounds only depend on time t1 as the outermost integration variable.
Applying, we arrive at a simplified form of Eq. (C5),(

∂�

∂t

)
4

=
Nb∑

α,β=1

{ ∫ t

0
dt1

∫ t1

0
dt3

∫ t1

0
dt2

(
Qαβ

213 + Mαβ

231

) +
∫ t

0
dt1

∫ t

0
dt3

∫ t1

0
dt2Pαβ

231

}
+ H.c., (C5′)

where we have defined two new functions,

Qα,β

i jk = Hα,β

i jk + Mα,β

i jk = 〈0i〉α〈 jk〉β[0̂α, [ ĵβ, îα]k̂β�], (C10)

Pα,β

i jk = Kα,β

i jk − Mα,β

i jk = 〈0i〉α〈 jk〉β[0̂α, [ ĵβ, [k̂β, îα]�]]. (C11)
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We will also define the double integrals of our remaining functions as

Qαβ (t, t1) =
∫ t1

0
dt2

∫ t1

0
dt3Qαβ

213, (C12a)

Pαβ (t, t1) =
∫ t1

0
dt2

∫ t

0
dt3Pαβ

231, (C12b)

Mαβ (t, t1) =
∫ t1

0
dt2

∫ t1

0
dt3Mαβ

231. (C12c)

Our goal now is to write Eq. (C5′) as single quadrature,

(
∂�

∂t

)
4

=
Nb∑

α,β=1

∫ t

0
dt1[Qαβ (t, t1) + Pαβ (t, t1) + Mαβ (t, t1)] + H.c., (C13)

by evaluating the integrals in Eq. (C12), which can be expressed in terms of products of system operators and the time-dependent
spectral density for each bath, �α

ω(t ), defined in Eq. (12).

2. Time-dependent spectral density

As mentioned in the main text, we assume that for each bath the BCF has the property Cα (−s) = C∗
α (s), from which we can

define the complex conjugate of �α
ω(t ) as

�α∗
ω (t ) =

∫ t

0
dsC∗

α (s)e−iωs = −�α
ω(−t ). (C14)

We define transposition as �αT
ω (t ) = �α

−ω(t ), since we will be evaluating the function only for the Bohr frequencies, which
can be expressed in terms of the system energies as ωnm = En − Em, leading to an antisymmetric matrix representation in the HS

eigenbasis, ωT
mn = −ωmn. With these two operations, we have a Hermitian conjugate, �α†

ω (t ) = −�α
−ω(−t ).

We will define a Hadamard product in the system energy basis which is equivalent to a pointwise product in the frequency
domain,

f ◦ g = f (ωnm)g(ωnm) = fωgω. (C15)

With this product we can express the interaction picture operators as

îα = Aα (ti ) = U †(ti )A
αU (ti ) = Aα ◦ eiωti , (C16)

where Aα is a time-independent Hermitian system coupling operator and U (t ) is the unitary time evolution operator U (t ) =
e−iĤSt .

To evaluate (C12), we could rotate each expression to the Schrödinger picture and expand each coefficient in the system
energy basis, in which can we would find that each bath index contributes an integral of one of the following forms:

∫ tb

ta

dsC(t − s)eiωs = eiωt��T
ω (t − ta, t − tb), (C17a)

∫ tb

ta

dsC(s − t )eiωs = eiωt��∗
ω(t − ta, t − tb), (C17b)

where we have used the Eq. (43) definition of ��ω(t, τ ).
However, examining the operators Pαβ

213, Qαβ

213, Mαβ

231, we note that since only a single system operator will depend on t2 and t3,
we can use the linearity of integration and the linearity of operators themselves to see that the results of (C17) can be accounted
for while still in the interaction picture using

∫ tb

ta

dt j〈i j〉α ĵα = îα ◦ ��αT (ti − ta, ti − tb), (C18a)

∫ tb

ta

dt j〈 ji〉α ĵα = îα ◦ ��α∗(ti − ta, ti − tb), (C18b)

where we have removed frequency subscript, as it is determined by the product. Equations (C18) define our “Hadamard trick,”
which enables fast evaluation of the TCL4 generator kernels over the different integration regions.
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Explicitly evaluating (C12), we find

Qαβ (t, t1) =
∫ t1

0
dt2

∫ t1

0
dt3〈02〉α〈13〉β [0̂α, [1̂β, 2̂α]3̂β�] = [0̂α, [1̂β, {0̂α ◦ ��αT (t, t − t1)}]{1̂β ◦ ��βT (t1, 0)}�], (C19)

Pαβ (t, t1) =
∫ t1

0
dt2

∫ t

0
dt3〈02〉α〈31〉β [0̂α, [3̂β, [1̂β, 2̂α]�]] = [0̂α, [{1̂β ◦ ��β∗(t1, t1 − t )}, [1̂β, {0̂α ◦ ��αT (t, t − t1)}]�]],

(C20)

Mαβ (t, t1) =
∫ t1

0
dt2

∫ t1

0
dt3〈02〉α〈31〉β [0̂α, 3̂β [2̂α, 1̂β ]�] = −[0̂α, {1̂β ◦ ��β∗(t1, 0)}[1̂β, {0̂α ◦ ��αT (t, t − t1)}]�]. (C21)

Note that Mαβ will cancel with part of Pαβ . So we can define

Pαβ (t, t1) + Mαβ (t, t1) = Kαβ (t, t1) − Yαβ (t, t1), (C22)

where

Kαβ (t, t1) = [0̂α, [{1̂β ◦ �β (t − t1)}, [1̂β, {0̂α ◦ ��αT (t, t − t1)}]�]], (C23)

Yαβ (t, t1) = [0̂α, [1̂β, {0̂α ◦ ��αT (t, t − t1)}]�{1̂β ◦ �β∗(t1)}]. (C24)

So we have (
∂�

∂t

)
4

=
Nb∑

α,β=1

∫ t

0
dt1(Qαβ (t, t1) + Kαβ (t, t1) − Yαβ (t, t1)) + H.c. (C13′)

Let us adjust our notation to use Aα = A, Aβ = B. Define

�A(t, t1) = A(t ) ◦ ��αT (t, t − t1), (C25)

B†(t1) = B(t1) ◦ �β∗(t1). (C26)

Translating into this notation we find

Qαβ (t, t1) = [A(t ), [B(t1),�A(t, t1)]B(t1)�], (C27)

Yαβ (t, t1) = [A(t ), [B(t1),�A(t, t1)]�B†(t1)], (C28)

Kαβ (t, t1) = [A(t ), [B(t1) ◦ �β (t − t1), [B(t1),�A(t, t1)]�]]. (C29)

Looking at the common terms, in each case we can factor the unitary operators such that the time dependence is grouped with
the time-dependent spectral density,

[B(t1),�A(t, t1)] = eiωt1 ◦ [B(0), A(t − t1) ◦ ��αT (t, t − t1)], (C30)

�B†(t1) = eiωt ◦ {ρ[B(t1 − t ) ◦ �β∗(t1)]}, (C31)

B(t1)� = eiωt ◦ {[B(t1 − t ) ◦ �βT (t1)]ρ}. (C32)

We now rotate each term to the Schrödinger picture, noting that as we transform d�

dt → dρ

dt our fourth-order generator will pick
up an additional factor of U (t ) on the left, and U †(t ) on the right, such that overall we have the expression

Qα,β (t, t1) = [A, {e−iω(t−t1 ) ◦ [B, A ◦ ��αT (t, t − t1)eiω(t−t1 )]}{B ◦ �βT (t1)e−iω(t−t1 )}ρ], (C33)

Yα,β (t, t1) = [A, {e−iω(t−t1 ) ◦ [B, A ◦ ��αT (t, t − t1)eiω(t−t1 )]}ρ{B ◦ �β∗(t1)e−iω(t−t1 )}], (C34)

Kα,β (t, t1) = [A, [B ◦ �β (t − t1)e−iω(t−t1 ), {e−iω(t−t1 ) ◦ [B, A ◦ ��αT (t, t − t1)eiω(t−t1 )]}ρ]]. (C35)

Next, indexing each term in the HS eigenbasis, using implicit notation for inner contractions [i.e., (AB)i j = AikBk j] we will
set i, j for the indices of ρ and n, m as outer, open indices of the total product of each term in the summation. With this notation,
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for Qα,β (t, t1) we find

Qα,β (t, t1) → +Anaρi jδ jmBabAbcBci��α
cb(t, t − t1)�βT

ci (t1)e−i(ωcb+ωci+ωac )(t−t1 )

− Anaρi jδ jmAabBbcBci��α
ba(t, t − t1)�βT

ci (t1)e−i(ωba+ωci+ωac )(t−t1 )

− ρi jA jmBnaAabBbi��α
ba(t, t − t1)�βT

bi (t1)e−i(ωba+ωbi+ωnb)(t−t1 )

+ ρi jA jmAnaBabBbi��α
an(t, t − t1)�βT

bi (t1)e−i(ωan+ωbi+ωni )(t−t1 ). (C36)

Using → to indicate the translation of the operator from matrix product form to the indexed form of its nmth coefficient. We
likewise compute the other two operators,

Yα,β (t, t1) → +Anaρi jAabBbiB jm��α
ba(t, t − t1)�β∗

jm(t1)e−i(ωba+ω jm+ωai )(t−t1 )

− Anaρi jBabAbiB jm��α
ib(t, t − t1)�β∗

jm(t1)e−i(ωib+ω jm+ωai )(t−t1 )

− Abmρi jAnaBaiB jb��α
an(t, t − t1)�β∗

jb (t1)e−i(ωan+ω jb+ωni )(t−t1 )

+ Abmρi jBnaAaiB jb��α
ia(t, t − t1)�β∗

jb (t1)e−i(ωia+ω jb+ωni )(t−t1 ), (C37)

Kα,β (t, t1) → +Anaρi jδ jmAbcBciBab��α
cb(t, t − t1)�β

ab(t − t1)e−i(ωcb+ωab+ωbi )(t−t1 )

− Anaδ jmρi jBbcAciBabδ jm��α
ic(t, t − t1)�β

ab(t − t1)e−i(ωic+ωab+ωbi )(t−t1 )

− Anaρi jAabBbiB jm��α
ba(t, t − t1)�β

jm(t − t1)e−i(ωba+ω jm+ωai )(t−t1 )

+ Anaρi jBabAbiB jm��α
ib(t, t − t1)�β

jm(t − t1)e−i(ωib+ω jm+ωai )(t−t1 )

− ρi jA jmAabBbiBna��α
ba(t, t − t1)�β

na(t − t1)e−i(ωba+ωna+ωai)(t−t1 )

+ ρi jA jmBabAbiBna��α
ib(t, t − t1)�β

na(t − t1)e−i(ωib+ωna+ωai )(t−t1 )

+ Abmρi jAnaBaiB jb��α
an(t, t − t1)�β

jb(t − t1)e−i(ωan+ω jb+ωni )(t−t1 )

− Abmρi jBnaAaiB jb��α
ia(t, t − t1)�β

jb(t − t1)e−i(ωia+ω jb+ωni )(t−t1 ). (C38)

We will introduce the following three-dimensional spectral densities that will encode the integration of the time-dependent
component of each of the coefficients contributing to Eq. (C13′):

Fαβ

ab,cd,e f (t ) = Fαβ
ω1ω2ω3

(t ) =
∫ t

0
ds��α

ω1
(t, t − s)�βT

ω2
(s)e−i(ω1+ω2+ω3 )(t−s), (C39)

Cαβ

ab,cd,e f (t ) = Cαβ
ω1ω2ω3

(t ) =
∫ t

0
ds��α

ω1
(t, t − s)�β∗

ω2
(s)e−i(ω1+ω2+ω3 )(t−s), (C40)

Rαβ

ab,cd,e f (t ) = Rαβ
ω1ω2ω3

(t ) =
∫ t

0
ds��α

ω1
(t, t − s)�β

ω2
(t − s)e−i(ω1+ω2+ω3 )(t−s). (C41)

We will rewrite these expressions by making a trivial insertion of the type 0 = −�β (t ) + �β (t ) and making the change of
variables τ = t − s within each of the equations (C39)–(C41), we arrive at

Fαβ
ω1ω2ω3

(t ) =
∫ t

0
dτ��α

ω1
(t, τ )��βT

ω2
(t − τ, t )e−i(ω1+ω2+ω3 )τ + �βT

ω2
(t )

∫ t

0
dτ��α

ω1
(t, τ )e−i(ω1+ω2+ω3 )τ , (C39′)

Cαβ
ω1ω2ω3

(t ) =
∫ t

0
dτ��α

ω1
(t, τ )��β∗

ω2
(t − τ, t )e−i(ω1+ω2+ω3 )τ + �β∗

ω2
(t )

∫ t

0
dτ��α

ω1
(t, τ )e−i(ω1+ω2+ω3 )τ , (C40′)

Rαβ
ω1ω2ω3

(t ) =
∫ t

0
dτ��α

ω1
(t, τ )��β

ω2
(τ, t )e−i(ω1+ω2+ω3 )τ + �β

ω2
(t )

∫ t

0
dτ��α

ω1
(t, τ )e−i(ω1+ω2+ω3 )τ . (C41′)
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Evaluating the second integral in each case, we have∫ t

0
dτ��α

ω1
(t, τ )e−i(ω1+ω2+ω3 )τ =

∫ t

0
dτ

∫ t

τ

dsCα (s)eiω1se−i(ω1+ω2+ω3 )τ =
∫ t

0
dsCα (s)

i(e−i(ω2+ω3 )s − eiω1s)

ω1 + ω2 + ω3

= i[�α
−ω2−ω3

(t ) − �α
ω1

(t )]

ω1 + ω2 + ω3
. (C42)

Plugging this back into Eqs. (C39′)–(C41′), we arrive at the densities defined in Eqs. (40)–(42). Using these definitions, and
combining (C36)–(C38) back into the generator (C13′), using the original α, β bath indices, we arrive at the following equation:

[(
∂ρ

∂t

)
4

]
nm

=
Nb∑

α,β=1

N∑
i, j=1

ρi j

{
N∑

a,b,c=1

Aα
naδ jmAβ

abAα
bcAβ

ci

[
Fαβ

cb,ci,ac(t ) − Rαβ

cb,ab,bi(t )
]

(C43a)

−
N∑

a,b,c=1

Aα
naδ jmAβ

bc

[
Aβ

ciA
α
abF

αβ

ba,ci,ac(t ) − Aα
ciA

β

abR
αβ

ic,ab,bi(t )
]

(C43b)

−
N∑

a,b=1

Aα
jmAβ

naAα
abAβ

bi

[
Fαβ

ba,bi,nb(t ) − Rαβ

ba,na,ai(t )
]

(C43c)

+
N∑

a,b=1

Aα
jmAβ

ab

[
Aα

naAβ

biF
αβ

an,bi,nb(t ) − Aβ
naAα

biR
αβ

ib,na,ai(t )
]

(C43d)

+
N∑

a,b=1

Aα
naAα

abAβ

biA
β
jm

[
Cαβ

ba, jm,ai(t ) + Rαβ

ba, jm,ai(t )
]

(C43e)

−
N∑

a,b=1

Aα
naAβ

abAα
biA

β
jm

[
Cαβ

ib, jm,ai(t ) + Rαβ

ib, jm,ai(t )
]

(C43f)

−
N∑

a,b=1

Aα
naAα

bmAβ
aiA

β

jb

[
Cαβ

an, jb,ni(t ) + Rαβ

an, jb,ni(t )
]

(C43g)

+
N∑

a,b=1

Aβ
naAβ

jbAα
bmAα

ai

[
Cαβ

ia, jb,ni(t ) + Rαβ

ia, jb,ni(t )
]} + H.c. (C43h)

The superoperator δR(4)
nm,i j can immediately be identified from

Eq. (C43) as the expression within the curly brackets, giving
us Eqs. (35)–(39).

APPENDIX D: CONVERGENCE
OF THE TCL4 INTEGRALS.

Both the verification of proposition (46) and the existence
of integral (50) have yet to be demonstrated. We can assume
the spectral densities of the baths are identical without losing
generality because the generator is summing over the baths,
i.e., see Eqs. (35)–(39). If not, then the spectral density with
the smallest s will result in the generator’s convergence being
determined by the same criterion.

The values of the 3D spectral densities at zero frequency,
e.g., F000(t ), R000(t ), and C000(t ), have no effect on the TCL4
generator δR(4)

nm,i j (t ) given by Eqs. (35)–(39). Thus, the fre-
quency set ω1 = ω2 = ω3 = 0 is irrelevant to the dynamics
governed by the TCL4 master equation. To show this, we trim
the sum over a, b, and c in Eqs. (35)–(39) to only include terms
with zero frequencies in the subscripts, resulting in zero.

The convergence analysis is aided by the well-
known asymptotic formula for the incomplete gamma
function [96,97]:

�(a, x) = xa−1e−x[1 + O(1/x)], |x| � 1. (D1)

Substituting into Eq. (25), we find

��ω(t ) = �ω − �ω(t ) ∼
{

t−s−1eiωt , ω 
= 0;
t−s, ω = 0.

(D2)

The integral (50) at large t becomes∫ t

a
dτ

e−iω3τ

τ 2s+2
, ω1 
= 0 and ω2 
= 0;

∫ t

a
dτ

e−iω3τ

τ 2s+1
, ω1 = 0, ω2 
= 0 or vice versa;

∫ t

a
dτ

e−iω3τ

τ 2s
, ω1 = ω2 = 0, (D3)

where a > 0. At the relevant frequencies, e.g., |ω1| + |ω2| +
|ω3| > 0, these integrals converge when s > 0. If ω1 = ω2 =
ω3 = 0 and s < 1/2, then the third integral diverges as t1−2s,
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but this is irrelevant because the generator is independent of
the 3D spectral densities when all three frequencies are zero.

Next we verify the proposition (46). First, we want to show
that

lim
t→∞ ��ω1 (t, τ )��ω2 (t, t − τ ) = 0,∀ω1,2 and 0 < τ < t .

(D4)

This condition is invariant with respect to the exchange t ↔
t − τ and ω1 ↔ ω2. Thus, we can assume τ = xt where x �
1/2, without loss in generality. In this range of x we find,
applying Eq. (D2),

��ω(t, t − τ ) = ��ω(t − xt ) − ��ω(t )

∼
{

t−s−1, ω 
= 0;
t−s, ω = 0,

(D5)

uniformly in x. So ��ω1 (t, τ )��ω2 (t, t − τ ) reaches zero at
t → ∞. Similarly, we find∫ t/2

0
��ω1 (t, τ )��ω2 (t, t − τ )e−i(ω1+ω2+ω3 )τ dτ

=
{

t−2s−c, c � 0, |ω1| + |ω2| + |ω3| > 0;
t−2s+1, ω1 = ω2 = ω3 = 0.

(D6)

This integral reaches zero at t → ∞ and any s > 0, con-
firming proposition (46), except for s � 1/2 when all three
frequencies are zero, but this is irrelevant for the TCL4 gener-
ator.

APPENDIX E: INACCURACY
OF THE BLOCH-REDFIELD MASTER EQUATION

By comparing the TCL2 and TCL4 dynamics, it is possible
to determine the accuracy of the TCL2 dynamics as follows.
The reduced dynamics is approximated by a semigroup with
the reduced state propagator exp (Rt ), where R is the asymp-
totic generator of the TCL master equation. In Fig. 5, the Ky
Fan k-norms [98] defined as

‖X‖(k) =
k∑

j=1

s j (X ), (E1)

where X is a superoperator and s j (X ) are the singular values
of X in descending order and characterize the inaccuracy of
the TCL2 dynamics. For k = 1 and k = N2, the operator and
trace norms are, respectively, the Ky Fan k-norm. The norms
are determined on the difference between TCL2 and TCL4
state propagators. After rescaling by λ2, they are displayed on
the vertical axis. Excellent scaling can be seen in the results,
which were computed for two alternative values of λ2.

We see that all norms collapse on the operator norm at very
long time intervals. The system relaxes to the asymptotic state
with a single nonzero singular value. The linear scaling of the
norm with λ2 indicates once more that the asymptotic TCL2’s
state error is O(λ2).

The significant dispersion in the Ky Fan k-norms over
shorter timescales shows that there may be a variety of de-
viations between the TCL2 and TCL4 dynamics. The crucial
issue is that the dynamics’ inaccuracy endures through-
out time exceeding the relaxation time ∼1/(λ2ωc). This

FIG. 5. Rescaled Ky Fan norms of the difference between the
TCL2 and TCL4 reduced state propagators versus rescaled time. k =
1, 2, . . . , 1225, bottom to top. N = 35, T = 0 K, ωc = 10, and s = 1.

demonstrates that the Bloch-Redfield master equation cannot
accurately capture the dynamics above the relaxation time.
The Davies master equation has the same problem [19].

APPENDIX F: RAYLEIGH-SCHRÖDINGER
PERTURBATION THEORY

FOR FOURTH-ORDER COHERENCES

Here we will derive the Rayleigh-Schrödinger perturba-
tion theory reduced density results seen in Sec. IV E. As
mentioned in the text, we are considering the ground state
of HT = H0 + λV to be a perturbation of the ground state of
H0 = HS + HB by the interaction HI = λV , where λ is a small
dimensionless coupling constant. We will expand the ground
state |0̃〉 and energy ε̃0 of HT in a power series of λ,

|0̃〉 =
∞∑

k=0

λk|0(k)〉, (F1)

ε̃0 =
∞∑

k=0

λkε (k). (F2)

To zeroth order in λ, the ground state is that of the free Hamil-
tonian, |0(0)〉 = |0〉 and ε (0) = ε0. Since the system and bath
are isolated for H0, we can express |0〉 = |E1〉 ⊗ |ω0〉 and then
ε0 = E1 + ω0, where HS|E1〉 = E1|E1〉 and HB|ω0〉 = ω0|ω0〉.
We will assume E1 = ω0 = 0.

We will require both our unperturbed and perturbed state
to be normalized, that is, 〈0|0〉 = 〈0̃|0̃〉 = 1, which gives the
condition that at each order k � 1 we have

k∑
q=0

〈0(q)|0(k−q)〉 = 0. (F3)

We will set 〈0|0(k)〉 = 〈0(k)|0〉 at each order. Inserting (F1)
and (F2) into the eigenequation HT |0̃〉 = ε̃0|0̃〉, and iteratively
for the ground-state corrections up to fourth order in λ,

052205-20



INVALIDATION OF THE BLOCH-REDFIELD EQUATION … PHYSICAL REVIEW A 109, 052205 (2024)

we have

|0(1)〉 = Vk0

d0k
|k〉, (F4)

|0(2)〉 = VklVl0

dk0dl0
|k〉 − 1

2

|V0k|2
d2

k0

|0〉, (F5)

|0(3)〉 = VklVlmVm0

dl0dk0dm0
|k〉 + Vk0|Vl0|2

dk0dl0

(
1

dk0
+ 1

2dl0

)
|k〉, (F6)

|0(4)〉 = |Vkl |2|Vm0|2
dk0dm0d2

kl

|k〉 + VklVl0|Vm0|2
dk0dm0dl0

(
1

d0m
+ 1

d0k

)
|k〉 − VklVlmVmnVn0

dk0dl0d0md0n
|k〉 − 1

2

V0kVklVlmVm0

dk0dl0dm0

(
1

dl0
+ 1

dm0

)
|0〉

− 1

2

|V0k|2
dk0d2

l0

(
3

4

|V0l |2
dk0

− VmlVlk

dm0

)
|0〉, (F7)

where we have used notation Vnm = 〈n|V |m〉, dnm = εn − εm, and each term has a an implicit summation over the eigenbasis of
H0 for each index, excluding the states that would cause dnn = 0 factors. We have excluded terms from the perturbative expansion
that include Vnn terms, as well as terms with Vkl where the bath components of the eigenstates would necessarily have the same
or an even number difference of bosons, since we have 〈F 〉 = 0, since our bath coupling operator is linear in bosonic operators.
Expanding then the density matrix in orders of λ, we find

ρ̃ = |0̃〉〈0̃| = 1

2
|0〉〈0| + λ|0(1)〉〈0| + λ2|0(2)〉〈0(0)| + λ2

2
|0(1)〉〈0(1)|) + λ3|0(2)〉〈0(1)| + λ3|0(3)〉〈0(0)| + λ4

2
|0(2)〉〈0(2)|

+ λ4|0(3)〉〈0(1)| + λ4|0(4)〉〈0(0)| + H.c. + O(λ5). (F8)

When calculating ρ̃S = TrB(ρ̃), we see that odd order terms go to zero, again because 〈F 〉 = 0. Thus we have

ρ̃S = 1
2 |E1〉〈E1| + λ2TrB

(|0(2)〉〈0(0)| + 1
2 |0(1)〉〈0(1)|) + λ4TrB

(|0(4)〉〈0(0)| + |0(3)〉〈0(1)| + 1
2 |0(2)〉〈0(2)|) + H.c. + O(λ6). (F9)

When evaluating these terms, we encounter expressions such as∑
ωα 
=0

g2
α

(w + ωα )
=

∫ ∞

−∞
dω

∑
ωα 
=0

g2
αδ(ω − ωα )

(w + ωα )
= −

∫ ∞

−∞
dω

∑
ωα 
=0

g2
αδ(ω − ωα )

[(−w) − ωα]
= −S̃−w (F10)

for −w 
= ωα , which will always be the case due to our limitation of only nonzero dmn.
Similarly, we will encounter ∑

ωα 
=0

g2
α

(w + ωα )2
= −∂S̃−w. (F11)

Looking at just at the second-order terms from (F9), tracing over the bath degrees of freedom we find

ρ̃
(2)
S = λ2TrB

(
|0(2)〉〈0(0)| + |0(0)〉〈0(2)| + 1

2
|0(1)〉〈0(1)|

)

=
N∑

n=2
k=1

∑
α

AnkAk1g2
α

En(Ek + ωα )
|En〉〈E1| + 1

2

N∑
n,m=1

∑
α

An1A1mg2
α

(En + ωα )(Em + ωα )
|En〉〈Em|

− 1

2

N∑
n=1

∑
α

|A1n|2g2
α

(En + ωα )2
|E1〉〈E1| + H.c. (F12)

Note that when using the Eq. (6) definition of the bath coupling operator F when tracing over the bath (all Fock space
eigenstates), we find ∑

ωk 
=0

|F0k|2 = 〈0|F |ωk〉〈ωk|F |0〉 =
∑

α

g2
α. (F13)

That is, for these terms the only nonzero contribution is from the single-particle states, and we can express these products in
terms of the form factors.

It should be noted that the last term in the (F12) results from the normalization of |0̃〉 giving a second-order condition that
〈0|0(2)〉 = − 1

2 〈0(1)|0(1)〉. We will see that this term cancels a possible divergence in the populations. If we instead required the
perturbations be orthogonal to the isolated state, 〈0|0(k)〉 = 0∀k > 0, then at second order in alpha we would have a ∂S(−E1 )

∂E1
diverging term, in the case when a = b = 1.
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We will now relate our second-order term to our continuum limit spectral densities; using (F10) and (F11), we have

ρ̃
(2)
S = −

N∑
a=2
b=2

S1b

ωa1
(AabAb1|Ea〉〈E1| + A1bAba|E1〉〈Ea|) +

N∑
a,b=2
a 
=b

Aa1A1b
(S1a − S1b)

ωab
|Ea〉〈Eb|

+
N∑

a=2

|A1a|2∂S1a(|Ea〉〈Ea| − |E1〉〈E1|), (F14)

leading to Eqs. (78) and (79) in the main text. Using this same approach for the O(λ4) terms, we find

ρ̃ (4) = |n〉〈m|
[

(VnlVl0VkmV0k − VnlVlkV0mVk0 − Vn0VklVlmV0k )

dl0dk0dm0dn0
− Vn0V0m|Vk0|2

dn0dm0dk0

(
1

dn0
+ 1

dk0
+ 1

dm0

)]
(F15)

+ |0〉〈0|
[

1

2

|V0k|2(VklVlm + VmlVlk )

dm0dk0d2
l0

− 1

2

|V0k|2|V0l |2
d2

k0d2
l0

− 1

2

Vk0VlkVmlV0m

dm0dl0dk0

(
1

dm0
+ 1

dk0
+ 2

dl0

)]
(F16)

+ |n〉〈0|
[ |Vnl |2|Vk0|2

dn0dk0d2
nl

− VnlVlmVmkVk0

dn0dl0dm0dk0
− VnlVl0|Vk0|2

dn0dk0dl0

(
3

2dk0
+ 1

dn0

)]
(F17)

+ |0〉〈m|
[ |Vml |2|Vk0|2

dm0dk0d2
ml

− VlmVklVnkV0n

dm0dl0dk0dn0
− |Vk0|2VlmV0l

dm0dk0dl0

(
3

2dk0
+ 1

dm0

)]
. (F18)

Tracing over the bath degrees of freedom, we will use the notation introduced in (F13) as well as a new definition Dka = Ek + ωa,
assigning indices to the system and bath part of the total energy eigenvalues, i.e., |εi〉 = |Ek〉 ⊗ |ωa〉, to find

ρ̃
(4)
S = AnlAl1AkmA1k

|F0a|2|Fb0|2
EmEnDlaDkb

|En〉〈Em| + AnlAl1AkmA1k
FcaFa0FbcF0b

DncDmaDkbDla
|En〉〈Em|

− (AnlAlkA1mAk1 + An1AklAlmA1k )
|F0a|2|F0b|2

El DnaDmaDkb
|En〉〈Em|

−
(

AnlAlkA1mAk1
FacFcbF0aFb0

DnaDmaDkbDlc
+ An1Akl AlmA1k

FbcFcaFa0F0b

DnaDmaDkbDlc

)
|En〉〈Em|

− An1A1m|Ak1|2 |Fa0|2|Fb0|2
DkbDnaDma

(
1

Dna
+ 1

Dkb
+ 1

Dma

)
|En〉〈Em|

+ |A1k|2|F0b|2
DmaDkb

[
Re(AklAlmFbcFca)

D2
lc

+ Re(AklAlmFb0F0a)

El

]
|E1〉〈E1|

− 1

2
Ak1AlkAml A1m

|F0a|2|F0b|2
El DmaDkb

(
1

Dma
+ 1

Dkb
+ 2

El

)
|E1〉〈E1| − 1

2
|A1k|2|A1l |2 |F0a|2|F0b|2

D2
kbD2

la

|E1〉〈E1|

− 1

2
Ak1AlkAml A1m

Fb0FacFcbF0a

DmaDkbDlc

(
1

Dma
+ 1

Dkb
+ 2

Dlc

)
|E1〉〈E1|

+ |Aml |2|Ak1|2 |F0a|2|Fb0|2
EmDkb(wml − ωa)2

|E1〉〈Em| − AlmAkl AnkA1n
|F0a|2|F0b|2

EmEkDlaDnb
|E1〉〈Em|

− |Ak1|2AlmA1l
|F0b|2|F0a|2
EmDkbDla

(
3

2Dkb
+ 1

Em

)
|E1〉〈Em| − AlmAkl AnkA1n

Fa0FbcFcaF0b

EmDlaDkcDnb
|E1〉〈Em| + (|En〉〈E1| terms), (F19)

where the |En〉〈E1| terms are the Hermitian conjugate of the |E1〉〈Em| expressions, with the additional change of m ↔ n. There
are implicit summations for each index, and it should be noted that each bath energy index (e.g., a, b, c), represents a sum over
the occupied states only, as the nonzero terms from an index being the vacuum state have been separated off. To evaluate these
terms, plugging the bosonic operators in as in (F13), we find

∑
a,b,c

Fa0FcaFbcFb0

DlaDkbDic
=

∑
a,b

g2
ag2

b

Dla(Ei + ωa + ωb)

(
1

Dka
+ 1

Dkb

)

=
∑
a,b

{
g2

b

(Ei + ωa + ωb)

[
g2

a

DkaDla
− g2

a

(ωik + ωa)Dla

]
+ g2

a

(ωik + ωa)Dla

g2
b

Dkb

}
. (F20)
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We consider the case ρ̃
(4)
S,nm with n 
= m and n, m = 2, . . . , N , applying (F20), and after some algebra we find

ρ̃
(4)
S,nm = Anl Al1AkmA1k

g2
ag2

b

EmEnDlaDkb
− An1A1m|Ak1|2

[
g2

b

ωnmDkb

(
g2

a

D2
ma

− g2
a

D2
na

)
+ g2

b

ωnmD2
kb

(
g2

a

Dma
− g2

a

Dna

)]

+ (AnlAlkA1mAk1 + An1Akl AlmA1k )
1

ωnm

g2
b

Dkb

[
g2

a

Dna(ωlk + ωa)
− g2

a

Dma(ωlk + ωa)
− g2

a

ElDna
+ g2

a

ElDma

]

+ Anl Al1AkmA1k
1

ωnm

g2
b

Dkb

[
g2

a

Dla(ωmk + ωa)
− g2

a

Dla(ωnk + ωa)

]

+ Anl Al1AkmA1k
1

ωnm

g2
b

(Em + ωa + ωb)

[
g2

a

DlaDka
− g2

a

Dla(ωmk + ωa)

]

− Anl Al1AkmA1k
1

ωnm

g2
b

(En + ωa + ωb)

[
g2

a

DlaDka
− g2

a

Dla(ωnk + ωa)

]

+ (AnlAlkA1mAk1 + An1Akl AlmA1k )
1

ωnm

g2
b

(El + ωa + ωb)

(
g2

a

DnaDka
− g2

a

DmaDka

)

− (AnlAlkA1mAk1 + An1Akl AlmA1k )
1

ωnm

g2
b

(El + ωa + ωb)

[
g2

a

Dna(ωlk + ωa)
− g2

a

Dma(ωlk + ωa)

]
, (F21)

with summations over all the indices (excluding n, m) still implicit. We then map from the discrete frequencies to a continuous
distribution using Eqs. (F10) and (F11) and the general mapping∑

a

g2
a f (ωa) →

∫ ∞

−∞

dω

π
J̃ω f (ω), (F22)

with f (ωa) a function describing the dependence of ωa within each term. This gives Eq. (79). Evaluating the other coherence
terms in Eq. (F19), ρ̃

(4)
S,1m with m = 2, . . . , N , we find

ρ̃
(4)
S,1m = A1lAl1AkmA1k

g2
a

(ω1k + ωa)Dla

[
g2

b

EmDkb
− g2

b

Em(ωa + ωb)

]
− A1lAl1AkmA1k

g2
a

(ωmk + ωa)Dla

[
g2

b

EmDkb
− g2

b

Em(Em + ωa + ωb)

]

− ApmAl pAklA1k
g2

a

(ωlk + ωa)Dpa

[
g2

b

EmDkb
− g2

b

Em(El + ωa + ωb)

]

+ (A1l AlkA1mAk1 + A11AklAlmA1k )
g2

a

(ωlk + ωa)Dma

[
g2

b

EmDkb
− g2

b

Em(El + ωa + ωb)

]

− (A1l AlkA1mAk1 + A11AklAlmA1k )
g2

a

(ωlk + ωa)D1a

[
g2

b

EmDkb
− g2

b

Em(El + ωa + ωb)

]

+ (A1l AlkA1mAk1 + A11AklAlmA1k )
g2

b

Em(El + ωa + ωb)

(
g2

a

DmaDka
− g2

a

D1aDka

)

+ A1lAl1AkmA1k
g2

a

DkaDla

[
g2

b

Em(ωa + ωb)
− g2

b

Em(Em + ωa + ωb)

]

− ApmAl pAklA1k
g2

a

DkaDpa

[
g2

b

Em(El + ωa + ωb)

]
− 3

2
A1lAlm|Ak1|2 g2

a

D2
ka

g2
b

EmDlb

− A11A1m|Ak1|2 g2
a

D2
ka

(
g2

b

EmD1b
− g2

b

EmDmb

)
+ |Aml |2|Ak1|2 g2

a

(ωml − ωa)2

g2
b

EmDkb

− A11A1m|Ak1|2 g2
a

D2
1a

g2
b

EmDkb
− (A1mAmkA1lAk1 + A11AkmAml A1k )

g2
a

D1aDla

g2
b

EmDkb

−
(

AkmApkAl pA1l
1

Ep
+ A1l Alm|Ak1|2 1

Em

)
g2

b

EmDlb

g2
a

Dka
+ A11A1m|Ak1|2 g2

a

D2
ma

g2
b

EmDkb
, (F23)

where the summations over open system indices are still implicit.
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