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Encoding position by spins: Objectivity in the boson-spin model
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We investigate quantum objectivity in the boson-spin model, where a central harmonic oscillator interacts
with a thermal bath of spin- 1

2 systems. We analyze how information about a continuous position variable can be
encoded into discrete, finite-dimensional environments. More precisely, we study conditions under which the so-
called spectrum broadcast structures can be formed in the model. These are multipartite quantum-state structures,
representing a mode-refined form of decoherence. Working in the recoil-less limit, we use the Floquet theory
to show that despite its apparent simplicity, the model has a rich structure with different regimes, depending
on the motion of the central system. In one of them, the faithful encoding of the position and hence objectivity
are impossible irrespectively of the resources used. In another, large enough collections of spins will faithfully
encode the position information. We derive the characteristic length scales, corresponding to decoherence and
precision of the encoding.
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I. INTRODUCTION

Although quantum mechanics is believed to be the most
fundamental theory of Nature, it is mysterious and puzzling
that we still have not fully succeeded in explaining our daily
observed world by quantum mechanics. How is it possible for
all counterintuitive quantum natures like superposition, inter-
ference, disturbance, nonlocality, etc., clearly disappear in our
macroscopic world? Although many alternative approaches
compete for explaining the quantum-to-classical transition,
none of them has been agreed on so far. In this situation it
is important to restrict ourselves to the question how far the
classical-quantum discrepancy can be explained within the
current-state quantum mechanics. One of the aspects is the
problem is the objective character of the macroscopic world
as first noted by Zurek [1,2]. Objectivity may be viewed as an
observer independence bears some resemblance to the relativ-
ity theory. But due to the inevitable disturbances introduced
by observations in quantum mechanics, it is not a priori clear
how to achieve the observer independence, at least at the basic
level of measurement results.

In the history of physics, there has been an orthodox view
that the world existing outside of the system of interest plays
a role of a source of noise which can be, at least in principle,
perturbatively controlled, so when it is minimized, the “true
nature” will get more and more approachable. But quantum
mechanics changed that view: our macroscopic reality can be
considered a consequence of interaction between a system and
the rest of the world, as emphasized by the decoherence theory
[3,4]. Within this view there has been an idea developed,
called quantum Darwinism, aimed at explaining the apparent
observer independence in the macroscopic world [1,2,5,6]. It
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postulates that interactions between a system and an envi-
ronment redundantly transfer the information of a system to
the environment during decoherence. The idea has opened a
new field of objectivity studies (see, e.g., [7–11] for some of
the most recent developments). Although quantum Darwinism
does not completely explain the nonunitary collapse process,
the famous measurement problem, it is still remarkable that
within quantum mechanics some form of objective classicality
can be derived.

A further development of the quantum Darwinism idea is
represented by spectrum broadcast structures (SBS) [6,12,13],
which are specific quantum-state structures, encoding an op-
erational form of objectivity. SBS are a stronger form of
quantum Darwinism in a sense that SBS formation implies
the original quantum Darwinism conditions but not vice versa
[7]. Under appropriate conditions, SBS have been shown to
form in almost all the canonical decoherence models [4], i.e.,
a collisional decoherence [12], quantum Brownian motion
(QBM) in the recoil-less limit [14,15], a spin-spin model
[16,17], and a spin-boson model [14,18]. The only one left is a
boson-spin model, which we analyze in this work. The central
system is a massive oscillator interacting with a thermal bath
of spin- 1

2 systems. We use here a recoil-less approximation,
similarly as in the QBM studies [14,15], where the harmonic
oscillator influences the spin environment, but the recoil is
suppressed. This approximation leads to the same form of
Hamiltonian as for, e.g., a two-level atom interacting with
linearly polarized light [19]. As the effective Hamiltonian for
the spin environment is time periodic, this allows us to use the
Floquet theory and the high-frequency expansion. The most
interesting question arising in this model, and absent in pre-
vious studies, is how finite-dimensional environments encode
a continuous variable (the central oscillator’s amplitude). We
show that depending on the state of motion of a central oscil-
lator there can be either only a momentary formation of SBS
states or a permanent or asymptotic one. Interestingly, this
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behavior is opposite to the QBM model, showing once again
the stark difference between spin and oscillator environments.
We derive the length scales corresponding to decoherence and
faithful information encoding in the environment, which scale
1/

√
N , where N is the environment fraction size that is used

to store the information or decohere the system.
We will be interested in a so-called partially reduced state

ρS:oE , where a fraction of the environment, assumed unob-
served and denoted by uE , was traced out as an unavoidable
loss, but the remaining fraction, denoted by oE , is kept for
observation. The spectrum broadcast structure (SBS) or an
objective quantum state is then defined as follows [6,12]:

ρS: f E =
∑

i

pi|i〉S〈i| ⊗ ρ
E1
i ⊗ · · · ⊗ ρ

E f N

i , (1)

where

ρ
Ek
i ρ

Ek
j = 0 (2)

for i �= j, which is equivalent to the states ρ
Ek
i having orthog-

onal supports and thus being perfectly distinguishable. After
unobserved degrees of freedom traced out, the SBS structure
of a total density matrix is in an orthogonal convex combi-
nation form. The approach to the SBS structure is marked by
vanishing quantum coherence (off-diagonal elements) and a
perfect distinguishability (diagonal elements), corresponding
to a vanishing decoherence factor and a vanishing generalized
overlap (state fidelity), respectively [16]. These are the objec-
tivity markers that we will analyze in various regimes.

II. DYNAMICS OF SYSTEM

The total Hamiltonian H for a simple harmonic oscillator,
bilinearly interacting with spin- 1

2 environment [4]

H = HS +
∑

i

H (i)
E +

∑
i

H (i)
int , (3)

where

HS = P̂2

2M
+ 1

2
M�2X̂ 2,

H (i)
E = −�i

2
σ (i)

x , (4)

H (i)
int = giX̂ ⊗ σ (i)

z ,

where M and � are a mass and an angular frequency of an
oscillator, respectively, and gi and �i are a spin-environmental
coupling constant and a self-energy (also called the tunneling
matrix element) for the ith spin system, respectively. Here
only bipartite interactions H (i)

int between the ith spin and the
harmonic oscillator are considered, without mutual interac-
tions among the spins. Despite its simple form, the total
Hamiltonian (3) is difficult to solve directly. For the purpose
of our analysis it is, however, enough to use the so-called
recoil-less limit, at least as a first approximation. In this
limit, the central oscillator is assumed to be massive enough
not to feel the recoil of the environment, while each of the
environmental spins is affected by the motion of the central
oscillator, which acts as a classical force. This is an opposite
limit to the much more popular Born-Markov limit, where
it is an environment that is assumed not to be affected by

the system. The justification for such a choice comes from
the fact that we are primarily interested in an information
leakage from a system to an environment as cutting the in-
fluence of the system on the environment would also cut
the information leakage. Hence, it leads us to a study of the
opposite, recoil-less limit. It can be viewed as a version of
the Born-Oppenheimer approximation [20] and it was already
used in the objectivity studies in [14,21,22]. In the recoil-less
limit, the system S evolves unperturbed, according to its own
dynamics HS . It influences the environment via the interaction
Hamiltonian where the system’s position operator X̂ can be
approximated by the classical trajectory X (t ; X0), starting at
some initial position X (0) = X0. The resulting approximate
solution is given by the following ansatz [14]:

|�S:E 〉 =
∫

dX0φ0(X0)e−iĤSt |X0〉Ûeff(X (t ; X0))|ψ0〉. (5)

Here the h̄ = 1 convention has been used and will be applied
to the entire presentation. Ûeff(X (t ; X0)) is the evolution gen-
erated by

Heff =
∑

i

(
−�i

2
σ (i)

x + giX (t ; X0)σ (i)
z

)
, (6)

and |φ0〉 and |ψ0〉 are initial states of S and E , respectively.
Formally, (5) is generated by a controlled-unitary evolution

ÛS:E (t ) =
∫

dX0e−iĤSt |X0〉〈X0| ⊗ Ueff(X (t ; X0)), (7)

acting on the initial state |φ0〉|ψ0〉. For simplicity, we will limit
ourselves to trajectories obtained when the system is initially
in the displaced squeezed vacuum state (for a general solution
of a boson-boson model see [15]): |φ0〉 = D̂(α)Ŝ(r)|0〉, where
D̂(α) is the displacement operator and Ŝ(r) ≡ er(â2−â†2 )/2. Es-
pecially interesting is a highly momentum squeezed state due
to its large coherences in the position. Due to a position cou-
pling to a central oscillator, we expect a strong decoherence
in the position basis. We may then assume that the initial
velocity of each trajectory is zero and initial positions are
distributed according to the corresponding squeezed vacuum
wave function, so that

X (t ; X0) = X0 cos(�t ). (8)

The analysis of the high initial position squeezing, for
which we may assume X (t = 0) = 0 and take X (t ; X0) =
X0 sin(�t ), is analogous.

Assuming a fully product initial state

ρS:E (0) = ρS (0) ⊗
⊗

i

ρ
(i)
E (0), (9)

which is motivated here by the fact that we wish to study
buildup of the system-environment correlations, the full so-
lution is easily obtained from (7):

ρS:E (t ) =
∫

dX0dX ′
0ρ(X0, X ′

0)e−iHSt |X0〉〈X ′
0|eiHSt

N⊗
i=1

Ui(X0, t )ρ (i)
E (0)U †

i (X ′
0, t ), (10)

052204-2



ENCODING POSITION BY SPINS: OBJECTIVITY IN … PHYSICAL REVIEW A 109, 052204 (2024)

where

ρ(X0, X ′
0) ≡ 〈X0|ρS (0)|X ′

0〉 (11)

are the initial coherences and the conditional evolutions of the
ith spin, Ui(X0, t ), are generated by

Hi = −�i

2
σ (i)

x + giX0 cos(�t )σ (i)
z . (12)

This allows us to find the effective evolution of spin states.
The above Hamiltonian is well known and describes, e.g., an
interaction of a linearly polarized light with a two-level atom
[19]. The periodicity in time allows us to use the standard
methods of the Floquet theory (see [23] for the historical work
and, e.g., [24,25] for modern expositions) to find approximate
solutions.

The Floquet theorem states that a unitary evolution for a
periodic Hamiltonian can be written as a product of a unitary
evolution driven by a periodic time-dependent Hamiltonian
K (t ) with the same period of the Hamiltonian and a unitary
evolution by a time-independent Hamiltonian HF :

U (t, t0) = e−iK (t )e−i(t−t0 )HF eiK (t0 ). (13)

HF is responsible for a slow dynamics forming an overall
profile while K (t ) for a fast dynamics forming internal profile
with the same oscillator periodicity K (t ) = K (t + T ) as the
given periodic Hamiltonian (14). The operators K (t ) and HF

can be perturbatively identified by using the high-frequency
expansion [24,25]. One Taylor expands HF in 1/� 	 1, while
K (t ) is the remaining part after HF has been taken out. In
general, convergence of the expansion is not always guaran-
teed [24,25]. By imposing conditions on the rest of parameters
with �, the convergence of the series can be controlled, as we
remark below. Fourier expanding the Hamiltonian (14),

Hi = H0 +
∞∑
j=1

(V ( j)ei j�t + V (− j)e−i j�t ), (14)

where H0 = −(�/2)σx and V (1) = V (−1) = (gX0/2)σz, the
rest being zero, one finds the high-frequency expansion of HF

and K (t ) (we omit the environment index i for simplicity):

HF = H0 + 1

�

∞∑
j=1

1

j
[V ( j),V (− j)]

+ 1

2�2

∞∑
j=1

1

j2
([[V ( j), H0],V (− j)] + H.c.) + · · · (15)

and

K (t ) = 1

i�

∞∑
j

1

j
(V ( j)ei j�t − V (− j)e−i j�t )

+ 1

i�2

∞∑
j

1

j2
([V ( j), H0]ei j�t − H.c.) + · · · . (16)

For the purpose of this work, we take the lowest-order terms
only and t0 = 0. This gives

tHF = −�̃(1 − ξ 2)τσx, (17)

K (t ) = ξσz sin τ, (18)

where we introduced dimensionless position ξ , tunneling en-
ergy �̃, and time τ :

ξ ≡ gX0

�
, �̃ ≡ �

2�
, τ ≡ �t . (19)

Picking the initial time t0 = 0, there is no initial kick K (0) =
0. The convergence of the expansion is guaranteed for �̃, ξ 	
1. Using (17) and (18), the unitary evolutions defined in (13)
are easily found:

e−i(t−t0 )HF = cos[�̃(1 − ξ 2)τ ] + iσx sin[�̃(1 − ξ 2)τ ],

e−iK (t ) = cos[ξ sin τ ] − iσz sin[ξ sin τ ]. (20)

The first is the slow motion part of the dynamics, while the
second is the fast motion part (the micromotion), with the
time-periodic frequency proportional to sin τ . They lead to the
following effective evolution, modulo O(�−2) terms:

Uk (X0, t ) = [
cos(ξk sin τ ) − iσ (k)

z sin(ξk sin τ )
]

× [
cos

[
�̃k

(
1 − ξ 2

k

)
τ
] + iσ (k)

x sin
[
�̃k

(
1 − ξ 2

k

)
τ
]]

.

(21)

III. OBJECTIVE QUANTUM STATES

We now investigate possibilities of a formation of the
SBS-like state (1). The form of the evolution (7) dictates
that the corresponding pointer state eigenvalues are the initial
oscillator position X0, equivalently its amplitude, that controls
the evolution of the environment and hence leaks into it.
Following the general quantum Darwinism setup, we assume
that part of the environment, called oE , is under observation
while the rest, called uE , is unobserved. We are thus interested
in the partial trace of (10) over uE :

ρS:oE (t ) = TruEρS:E (t )

=
∫

dX0dX ′
0ρ(X0, X ′

0)�X0,X ′
0
e−iHSt |X0〉〈X ′

0|eiHSt

⊗
i∈oE

Ui(X0, t )ρ (i)
E (0)U †

i (X ′
0, t ), (22)

where

�X0,X ′
0
≡

∏
k∈uE

Tr
[
Uk (X0, t )ρ (k)

E (0)U †
k (X ′

0, t )
]

=
∏

k

�
(k)
X0,X ′

0
(23)

is the decoherence factor, associated with the unobserved part
of the environment uE . We note that since the decoherence
factor is a function, which magnitude is always less than one,
it can never be ∼δ(X0 − X ′

0), and hence a full decoherence and
a strict S : E disentanglement cannot happen, though they take
place for discrete variables, but they happen rather in an ex-
istence of some decoherence length, below which coherences
are preserved [15,26].

To identify under such conditions the candidates for the
information-encoding states ρ

Ek
i from (1), we recall that in

the Darwinism setup, the observers monitor the system only
indirectly, via portions of the environment. Since in realistic
conditions, a single environment will in general carry a van-
ishingly small information about the system, we assume that
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each observer has an access to a collection of environments,
called macrofraction [12], scaling with the total number of
environments N . The state of a macrofraction is obtained from
(22) by tracing out everything except for the given macfrofrac-
tion:

ρmac(t ) = TrSoE\macρS:oE (t )

=
∫

dX0 p(X0)ρmac(X0), (24)

where p(X0) ≡ 〈X0|ρS (0)|X0〉 is the probability distribution of
the initial position and

ρmac(X0) ≡
⊗

k∈mac

Uk (X0, t )ρ (k)
E (0)U †

k (X0, t ) (25)

is the conditional state corresponding to X0. Thus, to know
X0, each observer must be able to distinguish the states (25)
for different X0. There are different scenarios to study state
distinguishability [27], e.g., the quantum Chernoff bound
used already in some studies of quantum Darwinism [28,29]
or, more appropriate here due to the continuous parameter,
quantum metrology [30]. Here, like in the the previous SBS
studies, we will follow a simple form of the latter and will
study the generalized overlap (state fidelity), which is the
integral of the quantum Fisher information [31]:

B(ρ, ρ ′) ≡ [Tr
√√

ρρ ′√ρ]2. (26)

Note B(ρ, ρ ′) here is defined by squaring, which is different
from the usual definition. We note that B(ρ, ρ ′) vanishes if
and ony if the states have orthogonal supports, ρρ ′ = 0, pro-
viding a measure of distinguishability. Although it produces
less tight bounds on the probability of discrimination error
than the quantum Chernoff bound [28,32], it has the property
of factorizing with respect to the tensor product, making its
calculation easier and similar to the decoherence factor:

Bmac
X0,X ′

0
≡ B[ρmac(X0), ρmac(X ′

0)] =
∏

k∈mac

B(k)
X0,X ′

0
. (27)

From the metrological point of view, encoding X0 into a fully
product state (25) leads to a rather uninteresting classical
scenario [30], but encoding efficiency is not our goal here
and we postpone a study of more advanced scenarios with
entangled macrofraction states to a future research. Just like
with the decoherence, we expect that distinguishability will
be achieved only at some characteristic length scale.

Summarizing, the approach to the SBS structure will be
characterized by two quantities [16], the decoherence factor
(23) and the generalized overlap (27). We will call them
“objectivity markers.” We note that their factorized character,
i.e., a total measure is a product of measures for individual
environmental systems, which is due to the uncorrelated initial
state. As one expects, a single factor corresponding to a single
environmental spin will be oscillatory and of course will not
lead anywhere close to the SBS structure. However, due to
the factorized character, we expect that for a sufficiently large
group of spins a considerable dephasing will take place at
some length scales, leading to an approximate SBS structure.

IV. CALCULATION OF OBJECTIVITY MARKERS

We first focus on a single term in each expression (23)
and (27), dropping the environment indices for brevity. State
fidelity has a particularly simple form for spin- 1

2 states. Let
M ≡ √

ρρ ′√ρ, then

B(ρ, ρ ′) = TrM + 2
√

det M. (28)

Since in our case ρ and ρ ′ have the same initial state ρ0 but
different evolutions U and U ′, we obtain

M = U
√

ρ0U
†U ′ρ0U

′†U
√

ρ0U
†

and, finally,

BX0,X ′
0
= Tr

[
U †

X0,X ′
0
ρ0UX0,X ′

0
ρ0

] + 2 det ρ0,

where we defined a relative evolution operator:

UX0,X ′
0
≡ U †(X ′

0, t )U (X0, t ). (29)

We note that the decoherence factor also depends on it.
Before calculating the markers for the evolution (21), we

first derive general expressions. We will find it convenient to
use the Bloch representation, decomposing any operator into
identity and Pauli matrices. This representation will give a
nice geometrical interpretation for the decoherence factor and
the generalized overlap and their complementarity relation.
Let us decompose the initial state and the relative evolution
in the Pauli basis:

ρ0 = 1
2 (1 + a · σ ), (30)

where |a| � 1 and

UX0,X ′
0
= u0 + iu · σ , (31)

where

u2
0 + |u|2 = 1. (32)

Then it is easy to obtain the decoherence factor

�X0,X ′
0
= u0 + ia · u (33)

and its modulus ∣∣�X0,X ′
0

∣∣2 = u2
0 + (a · u)2, (34)

which controls the decoherence process in the position basis.
Calculation of the generalized overlap, in turn, leads to (see
Appendix A for the details)

BX0,X ′
0
= 1 − |a × u|2. (35)

Combining Eqs. (34) and (35) the relation between |�X0,X ′
0
|2

and BX0,X ′
0

is expressed by

BX0,X ′
0
− ∣∣�X0,X ′

0

∣∣2 = (1 − |a|2)
(
1 − u2

0

)
. (36)

This relation can be interpreted as a sort of complementarity
between decoherence factor and distinguishability.

Using (34) and (36), we can express the decoherence factor
and the generalized overlap in the high-frequency expansion
of Sec. II. As seen, the decoherence factor and the generalized
overlap are a function of only a vector a representing an initial
density matrix for a spin ρ0 and a relative unitary operator
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UX0,X ′
0

defined in Eq. (29). Using (21), we obtain in the first
order of the high-frequency expansion that

UX0,X ′
0
= U †

F (τ ; ξ ′)UK (τ ; ξ − ξ ′)UF (τ ; ξ )

= u0 + iu · σ , (37)

where

u0 = cos[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin τ ],

u1 = − sin[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin τ ],

u2 = sin[�̃(2 − ξ 2 − ξ ′2)τ ] sin[δξ sin τ ], (38)

u3 = − cos[�̃(2 − ξ 2 − ξ ′2)τ ] sin[δξ sin τ ],

with the notation δξ ≡ ξ − ξ ′ and the dimensionless param-
eters defined in (19). We recall that for the trajectories (8)
there is no initial kick at t0 = 0 [cf. (18)]. Each ui in (38) is a
product of a fast and a slow moving part, as one would expect
from the Floquet theory. The frequency of the slow motion is
proportional to the tunneling energy �̃, while the fast-moving
terms are independent of it and have the time-dependent fre-
quency δξ sin τ . There is also a distinction between (u0, u1)
and (u2, u3). The (u0, u1) pair has large overall sinusoidal
patterns with small internal vibrations while in (u2, u3) the
overall profiles are comparable to internal vibrations. As we
will see, the fast-moving parts are unwanted for objectivity.

To proceed further, we will assume that the environment is
initially in the thermal state, i.e.,

ρ
(k)
E (0) = e−βH (k)

E

Tr[e−βH (k)
E ]

= 1

2

[
1 + σx tanh

(
β�k

2

)]
, (39)

where β = 1/kBT , so that the parameters of the initial state
are given by a = (E (β ), 0, 0), where we introduced

E (β ) ≡ tanh

(
β�

2

)
= 〈E〉

�/2
, (40)

denoting the average thermal energy, rescaled by the tunneling
energy. We obtain the following single-factor expressions for
the decoherence and generalized overlap:∣∣�1

X0,X ′
0

∣∣2 = u2
0 + E (β )2u2

1, (41)

B1
X0,X ′

0
= 1 − E (β )2 + E (β )2

(
u2

0 + u2
1

)
, (42)

which leads to

∣∣�1
X0,X ′

0

∣∣2 =
[

1 − sin2[�̃(ξ 2 − ξ ′2)τ ]

cosh2(β�/2)

]
cos2[δξ sin τ ], (43)

B1
X0,X ′

0
= 1 − E (β )2 sin2[δξ sin τ ]. (44)

The time dependence of the decoherence factor is given by
the slow motion and the fast motion modulating each other.
In contrast, the generalized overlap depends only on the fast
oscillating part. We note that the decoherence factor depends
here on the temperature, contrasting the result in a boson-spin
system mapped from that of the quantum Brownian motion
in the Born-Markov approximation [4]. In particular, at zero
temperature the slow-motion part vanishes. Sample plots of
the markers as the functions of the rescaled time τ are pre-
sented in Figs. 1 and 2.

FIG. 1. Time dependence of decoherence factors for a single-
spin environment (43). The solid and dashed lines stand for ξ = 0.9
and 0.6, respectively, while ξ ′ = 0.1 is fixed. The rest of the parame-
ters are �̃ = 1

6 , β� = 1. Both slow and fast oscillations are clearly
visible.

The full decoherence and overlap functions are products
of the above factors [cf. (23) and (27)]. We begin their
analysis by first assuming small dimensionless amplitudes of
the central oscillator ξ, ξ ′ 	 1, which allows to expand the
trigonometric functions. In particular, sin2[�̃(ξ 2 − ξ ′2)τ ] ≈
(ξ 2 − ξ ′2)2t2�2/4 + O(ξ 8), which is valid for times

t 	 2�2

g2�
∣∣X 2

0 − X ′2
0

∣∣ . (45)

Similarly, we expand the fast-motion factors containing [(ξ −
ξ ′) sin τ ]. Keeping the terms at most quadratic in ξ , we obtain∣∣�1

X0,X ′
0

∣∣2 = 1 − δξ 2 sin2 τ + O(ξ 4)

≈ exp

[
−g2δX 2

0

�2
sin2 �t

]
, (46)

FIG. 2. Time dependence of generalized overlaps for a single-
spin environment (44). The solid and dashed lines stand for ξ = 0.9
and 0.6, respectively, while ξ ′ = 0.1 is fixed. The rest of the pa-
rameters are the same as in Fig. 1 for a better comparison: �̃ = 1

6 ,

β� = 1.
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where we came back to the original variable using (19) and de-
fined δX0 ≡ X0 − X ′

0. The temperature dependence, the whole
slow oscillating part, disappears in the lowest order and ap-
pears only in the ξ 4 terms and higher. The behavior of the
overlap is different in this respect and depends strongly on the
temperature even in the lowest order in ξ :

B1
X0,X ′

0
= 1 − δξ 2E (β )2 sin2 τ + O(ξ 4)

≈ exp

[
−g2δX 2

0

�2
E (β )2 sin2 �t

]
. (47)

To calculate the products (23) and (27), we will assume that
the constants gk and �k are identically and independently
distributed according to some probability distributions and
there are sufficiently many terms in the resulting sums in the
exponentials to apply the law of large numbers:

∣∣�X0,X ′
0

∣∣2 =
∏

k∈uE

∣∣�(k)
X0,X ′

0

∣∣2 = exp

[
−δX 2

0

�2

∑
k∈uE

g2
k sin2 �t

]

(48)

≈ exp

[
−Nu

〈g2〉δX 2
0

�2
sin2 �t

]
, (49)

where Nu, is the size of the unobserved fraction uE of the
environment and 〈g2〉 is the average of gk over the uE . This
procedure [16] can be viewed as a form of an introduction of
spectral density, but we keep control of the number of spins in
the fractions. Similarly for the generalized overlap,

BX0,X ′
0
=

∏
k∈mac

B(k)
X0,X ′

0

≈ exp

[
−Nmac

〈g2〉δX 2
0

�2
〈E (β )2〉 sin2 �t

]
, (50)

where Nmac is the observed macrofraction size and we as-
sumed that the distributions of g′s and �′s are independent;
〈E (β )2〉 is understood as the average over the � [cf. (40)].
Due to the periodicity of the markers (49) and (50), it is imme-
diately obvious that in the small displacement limit, there are
complete recoherences at the turning points tn = nπ/� and
there is no asymptotic behavior as t → ∞. We can thus speak
of the approach to the objective state only in the time intervals
between the turning points. As anticipated, this approach is
governed by two length scales, controlling the decoherence
and the distinguishability processes:

λdec ≡ �√
Nu〈g2〉 , (51)

λdist ≡ �√
Nmac〈g2〉〈E (β )2〉 . (52)

Their dependencies on the fraction sizes, or equivalently on
the Hilbert-space dimensionalities of the fractions, mean that
shorter distances are resolved as more spins are taken into
account. We call the above length scales the decoherence
and the distinguishability length scales. The distinguishability
length scale is temperature dependent and grows with the tem-

perature approximately linearly for high temperatures. This is
intuitively clear as hotter environment is closer to the totally
mixed state and thus its information-carrying capabilities are
worse. Moreover, for nonzero temperatures, λdist > λdec for
the same fraction sizes, meaning that one can extract the posi-
tion X0 from the environment with a worse resolution than one
at which the environment decoherences the central system.
This phenomenon of “bound information” in the environment
was observed in the QBM model in [15].

Let us now analyze the objectivity markers beyond the
small-amplitude approximation. We first look at the general-
ized overlap:

BX0,X ′
0
=

∏
k∈mac

[1 − Ek (β )2 sin2(δξk sin τ )]. (53)

It is immediately clear that the time-periodic frequency sin τ

dictates the periodic character of BX0,X ′
0
:

BX0,X ′
0
(t ) = BX0,X ′

0
(t + π/�), (54)

irrespectively of what are the distributions of gk and �k . In
particular, this periodicity implies a complete loss of distin-
guishability, BX0,X ′

0
(tn) = 1, at the turning points tn = nπ/�,

just like in the approximate analysis above. The behavior of
BX0,X ′

0
(t ) can be approximated using the law of large numbers

in the following way:

log BX0,X ′
0
=

∑
k∈mac

log B(k)
X0,X ′

0
≈ Nmac

〈
log B1

X0,X ′
0

〉
� Nmac log〈B1

X0,X ′
0
〉, (55)

where we used the concavity of the logarithm. Furthermore,〈
B1

X0,X ′
0

〉 = 1 − 〈E (β )2〉〈sin2(δξ sin τ )〉.
We are interested in the last average as it determines the
time dependence. For simplicity we will assume a uniform
distribution of g over some interval [0, ḡ]. This corresponds
to a spectral density with a sharp cutoff at ḡ. Elementary
integration gives

〈sin2(δξ sin τ )〉 = 1

ḡ

∫ ḡ

0
dg sin2

[
gδX0

�
sin τ

]
(56)

= 1

2

[
1 − sinc

(
2ḡδX0

�
sin τ

)]
, (57)

where sincx ≡ sin x/x, which leads to

BX0,X ′
0
≈

{
1 − 1

2
〈E (β )2〉

[
1 − sinc

(
2ḡδX0

�
sin τ

)]}Nmac

.

(58)

Since 1 − sincx ≈ x2/6 + O(x4) rises(decays) around the
turning points tn = nπ/� are given by the small-amplitude
approximation (50), with λdist rescaled by an unimportant
factor

√
3. A sample plot of (58) is presented in Fig. 3 for

different values of δξ̄ = ḡδX0/�. The decoherence factor can
be analyzed in the same steps (55)–(58) with the complica-
tion that it is composed of both slow- and fast-moving parts.
We need the average of (43). For simplicity we will assume
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FIG. 3. Generalized overlap for Nmac = 100 spin environments
with different interaction couplings ξ (the solid and dashed lines
stand for ξ̄ = 0.9 and 0.6, respectively). (�̃ = 1

6 , � = 3, β� =
1, ξ̄ ′ = 0.1) are chosen.

�k = � so the only randomness is in gk :〈∣∣�X0,X ′
0

∣∣2
〉
= 〈cos2(δξ sin τ )〉

− 〈sin2[�̃(ξ 2 − ξ ′2)τ ] cos2(δξ sin τ )〉
cosh2(β�/2)

= cosh(β�)

cosh(β�) + 1
〈cos2(δξ sin τ )〉 (59)

+ 1

2 cosh(β�) + 2
{〈cos[2�̃(ξ 2 − ξ ′2)τ ]

(60)

+〈cos[2�̃(ξ 2 − ξ ′2)τ ] cos(2δξ sin τ )〉} (61)

≡ �fast(τ ) + �slow(τ ), (62)

where we used trigonometric and hyperbolic identities to sim-
plify the expressions. The first term (59) is the fast oscillating
part which is equal to

�fast(τ ) = cosh(β�)

2 cosh(β�) + 2

[
1 + sinc

(
2ḡδX0

�
sin τ

)]
,

(63)

where we used above the same averaging as in (56) and (57).
It is clearly time periodic due to the periodic frequency sin τ ,
just like (58), but it is multiplied by a temperature-dependent
factor that is always smaller than 1. The behavior around
the turning points tn = nπ/� is again given by the Gaussian
law (49) with the λdec rescaled by

√
3. The terms (60) and

(61) are the slow oscillating parts, contributing for nonzero
temperatures. They can be calculated explicitly for a uniform
distribution by using Fresnel integrals as they contain g2 under
the cosine. For example, the term (60) is proportional to

f (τ ) ≡ 〈cos[2�̃(ξ 2 − ξ ′2)τ ]〉

= 1√
2�̃(ξ̄ 2 − ξ̄ ′2)τ

C(
√

2�̃(ξ̄ 2 − ξ̄ ′2)τ ), (64)

FIG. 4. Decoherence factors for Nu = 20 spin environments with
different interaction couplings ξ (the solid and dashed lines stand for
ξ = 0.9 and 0.6, respectively). (�̃ = 1

6 , � = 3, β� = 1, ξ ′ = 0.1
are chosen.)

where C(x) ≡ ∫ x
0 du cos u2 is the cosine Fresnel integral and

ξ̄ ≡ ḡX0/�. The long-time behavior of this term is determined
by an asymptotic expansion for large x, C(x) ≈ √

π/8 +
sin x2/2x + O(x−3) [33], which gives f (τ ) ∼ 1/

√
τ for long

times. The last term, (61), is a bit more complicated but can
be manipulated using basic trigonometric identities [refer to
(B2)]. As a result, from (64) and (B2) it follows that for large
times �slow(τ ) ∼ 1/

√
τ . And finally:

|�X0,X ′
0
|2 ≈ [�fast(τ ) + �slow(τ )]Nu (65)

= [�fast(τ )]Nu + O

(
1√
τ

)
(66)

=
[

cosh(β�)

cosh(β�) + 1

]Nu
[

1

2
+ 1

2
sinc

(
2ḡδX0

�
sin τ

)]Nu

+ O

(
1√
τ

)
. (67)

Despite the presence of a time-periodic term, unlike the gen-
eralized overlap (58) this function can effectively decay with
time, meaning decoherence can take place. This is due to the
temperature-dependent prefactor in (67), which multiplies the
sinc term and which decays with temperature and for high
temperatures (small β) is of the order ∼2−Nu . Thus, although
the sinc term is equal to one at the turning points tn = nπ/�,
its contribution is damped by the temperature-dependent term.
A sample plot of the exact expression (65) using (63), (64),
and (B2) is presented in Fig. 4.

We conclude that for cosine trajectories (8), although the
central ocillator can be effectively decohered, the environ-
ment, however, is unable to reliably store the amplitude
information for all times as there are periodic and complete
losses of distinguishability at the turning points. Thus, ob-
jective states can form only between the turning points. We
suspect these perfect revivals are caused by the recoil-less
approximation, which completely neglects the damping of the
central oscillator. They are also in contrast with the oscillator
environment, where for the same trajectory (8) and under the
same approximation (5) no such revivals were observed, but
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rather a steady decay [14]. The revivals, in turn, appeared in
the QBM model for sine trajectories, corresponding to initial
position squeezing, which was in agreement with the earlier
works [34]. It is therefore interesting to study more general
trajectories in the current model too.

A. Arbitrary trajectory

An arbitrary trajectory of the central oscillator is obtained
by adding a constant phase φ to (8):

X (t ) = X0 cos(τ + φ). (68)

It is then interesting to investigate how this phase can affect
the objectivity, especially whether there is a possibility to

overcome the asymmetry between the decaying decoherence
factor and the monotonously oscillating generalized overlap
found above. The phase changes the Fourier components V (1)

and V (−1) in high-frequency expansion in (14),

V (±1) = gX0

2
σz → gX0

2
σze

±iφ. (69)

Consequently, as seen in (15) and (16), K (t ) gets a phase
change (18):

K (t ) = ξσz sin(τ + φ), (70)

while the Floquet Hamiltonian HF remains the same as in
(17). In (13) φ �= 0 contributes to UX0,X ′

0
due to the nontrivial

initial kicks K (0). Explicitly, from (13) and (37), we obtain
UX0,X ′

0
= u0 + iu · σ with [cf. (38)]

u0 = cos[δξ sin φ] cos[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin(τ + φ)] + sin[δξ sin φ] cos[�̃(ξ 2 + ξ ′2 − 2)τ ] sin[δξ sin(τ + φ)],

u1 = − cos[(ξ + ξ ′) sin φ] sin[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin(τ + φ)] + sin[(ξ + ξ ′) sin φ]

× sin[�̃(ξ 2 + ξ ′2 − 2)τ ] sin[δξ sin(τ + φ)],

u2 = − sin[(ξ + ξ ′) sin φ] sin[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin(τ + φ)] − cos[(ξ + ξ ′) sin φ]

× sin[�̃(ξ 2 + ξ ′2 − 2)τ ] sin[δξ sin(τ + φ)],

u3 = sin[δξ sin φ] cos[�̃(ξ 2 − ξ ′2)τ ] cos[δξ sin(τ + φ)] − cos[δξ sin φ] cos[�̃(ξ 2 + ξ ′2 − 2)τ ] sin[δξ sin(τ + φ)]. (71)

The only relevant components for a decoherence factor (34) and a generalized overlap (35) associated with the thermal state (39),
i.e., with a = (E (β ), 0, 0), are u0 and u1, which follows from (32). We first analyze the small-ξ approximation as it is easier.
The factors u2

0 and u2
1 then read as

u2
0 = 1 − δξ 2[sin2 φ + sin2(τ + φ) − 2 sin φ sin(τ + φ) cos(2�̃τ )] + O[ξ 4],

u2
1 = O[ξ 4], (72)

which from (34) and (35) lead to the following single-spin expressions:∣∣�1
X0,X ′

0

∣∣2 = 1 − δξ 2[sin2 φ + sin2(τ + φ) − 2 sin φ sin(τ + φ) cos(2�̃τ )] + O[ξ 4],

= exp[−δξ 2| sin φ + ei2�̃τ sin(τ + φ)|2] + O(ξ 4),

B1
X0,X ′

0
= 1 − E (β )2δξ 2[sin2 φ + sin2(τ + φ) − 2 sin φ sin(τ + φ) cos(2�̃τ )] + O[ξ 4]

= exp[−δξ 2E (β )2| sin φ + ei2�̃τ sin(τ + φ)|2] + O(ξ 4). (73)

Figures 5 and 6 show sample plots of decoherence factors and fidelity, respectively. For multiple spins, the law of large numbers
gain can be used implies that the exponents above are rescaled by the fraction sizes, similarly to (49) and (50):

|�X0,X ′
0
|2 ≈ exp

[
− Nu

〈g2〉δX 2
0

�2
| sin φ + ei2�̃τ sin(τ + φ)|2

]
, (74)

BX0,X ′
0
≈ exp

[
−NmacE (β )2 〈g2〉δX 2

0

�2
| sin φ + ei2�̃τ sin(τ + φ)|2

]
. (75)

We see that the decays are governed by the same length scales (51) and (52) and the functions are doubly periodic with the
periods given by �−1 and �−1. Apart from this, the behavior in the small-ξ approximation is essentially the same as for φ = 0
case (49) and (50). We will see that this will change for a general φ. Some remarks are in order. For the purpose of this work,
we are assuming �k being the same for all spins. This avoids complicated averages of the type

∫
d� tanh(β�/2) cos(2�t )

although obviously different �k can introduce dephasing, helping to counter the periodicity. This possibility will be investigated
elsewhere. Here, we concentrate on randomized coupling constants gk .

We now estimate the objectvity markers for arbitrary parameters. According to our procedure [cf. (55)], we need the averages
of the single-spin functions. The detailed calculations are presented in Appendix B. As before, we separate between the fast and
slow oscillating parts: 〈∣∣�1

X0,X ′
0

∣∣2〉 = �fast(τ ) + �slow(τ ), (76)
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where oscillating parts are

�fast(τ ) ≡ 1

8
[2 + sinc{δξ̄ [sin φ + sin(τ + φ)]} + sinc{δξ̄ [sin φ − sin(τ + φ)]}] + E (β )2

8
[2 + sinc{(ξ̄ + ξ̄ ′) sin φ

+ δξ̄ sin(τ + φ)]} + sinc{(ξ̄ + ξ̄ ′) sin φ − δξ̄ sin(τ + φ)]}] (77)

and decaying parts behaving asymptotically as 1/
√

τ are

�slow(τ ) ≡
∑
a,b,c

d�
abcF�[a, b, c] = O

(
1√
τ

)
(78)

with F�[a, b, c] defined in (B5) and d�
abc can be identified in (B3) and (B4). Similarly,

〈BX0,X ′
0
〉 = Bfast(τ ) + Bslow(τ ), (79)

where

Bfast(τ ) ≡ 1 − E (β )2

8
[4 − sinc{δξ̄ [sin φ + sin(τ + φ)]} − sinc{δξ̄ [sin φ − sin(τ + φ)]}

− sinc{(ξ̄ + ξ̄ ′) sin φ + δξ̄ sin(τ + φ)]} − sinc{(ξ̄ + ξ̄ ′) sin φ − δξ̄ sin(τ + φ)]}] (80)

and

Bslow(τ ) ≡
∑
a,b,c

dB
abcF B[a, b, c] = O

(
1√
τ

)
(81)

with F B[a, b, c] defined in (B5) and dB
abc can be identified

in (B3) and (B4). As τ → ∞, �slow and Bslow die out as
1/

√
τ and only �fast and Bfast remain. Thus, as τ → ∞ a total

decoherence factor and a total generalized overlap are given
by the fast movers only:∣∣�X0,X ′

0

∣∣2 = [�fast(τ ) + �slow(τ )]Nu

= [�fast(τ )]Nu + O

(
1√
τ

)
, (82)

FIG. 5. Time dependence of decoherence factor for a single-spin
environment with φ = ±π/2 [Eq. (43)]. The solid and dashed lines
correspond to ξ = 0.9 and 0.6, respectively, while ξ ′ = 0.1 is fixed.
The rest of the parameters are �̃ = 1

6 , β� = 1. The separation be-
tween a slow and fast oscillation is less clear due to involvement of
another frequency than for φ = 0 in Fig. 1.

BX0,X ′
0
= [Bfast(τ ) + Bslow(τ )]Nmac

= [Bfast(τ )]Nmac + O

(
1√
τ

)
. (83)

The trajectory with φ = 0, i.e., X = X0 cos τ studied before, is
rather particular in the structure of UX0,X ′

0
[Eq. (38)] in that the

slow-moving part with the frequency �̃(ξ 2 − ξ ′2) completely
vanishes, leaving only the fast-moving part in BX0,X ′

0
. In this

oscillating case, it is not possible to have a decay BX0,X ′
0

regardless of the number of spins. However, as we see for
φ �= 0 the situation is different as even a small φ leads to the
dephasing of the sinc functions in (77) and (81), which in turn
lead to a decay of both functions for many spin environments
as we demonstrate below.

FIG. 6. Time dependence of the generalized overlap for a single-
spin environment with φ = ±π/2 [Eq. (43)]. The solid and dashed
lines correspond to ξ = 0.9 and 0.6, respectively, while ξ ′ = 0.1 is
fixed. The rest of the parameters are �̃ = 1

6 , β� = 1. The separation
between a slow and fast oscillation is less clear due to involvement
of another frequency than for φ = 0 in Fig. 2.
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FIG. 7. Decoherence factor for large-spin environments as a
function of time and different phases φ. The dotted, dashed, and
thick lines correspond to φ = π/10, π/4, π/2, respectively. (ξ̄ =
0.9, β� = 1, ξ̄ ′ = 0.1, Nu = 20 are chosen.)

We show that max[�fast(τ )] < 1, max[Bfast(τ )] < 1 for any
τ > 0, which means both functions are exponentially damped
as multiple spins are considered [cf. (82) and (83)]. It will be
convenient to introduce the following functions:

g−(τ ) ≡ sinc{δξ̄ [sin φ + sin(τ + φ)]}
+ sinc{δξ̄ [sin φ − sin(τ + φ)]}, (84)

g+(τ ) ≡ sinc{(ξ̄ + ξ̄ ′) sin φ + δξ sin(τ + φ)]}
+ sinc{(ξ̄ + ξ̄ ′) sin φ − δξ sin(τ + φ)]}. (85)

Their extrema for ξ, ξ ′ < 1, which guarantees the high-
frequency expansion and the positivity of sinc functions, are
given by

sin(τ + φ + π/2) = 0, (86)

sin(τ + φ) = 0. (87)

Since at φ = 0 the second condition indicates the maxima,
g±(τ ) continues being shifted to the left by φ �= 0 as sin(τ +
φ) = 0 moves to the left. So it can be recognized that the first
condition gives the minima while the other one the maxima,
which read as, for t > 0,

max(�fast ) = 1

4
{1 + sinc(δξ̄ sin φ) (88)

+ E (β )2(1 + sinc[(ξ̄ + ξ̄ ′) sin φ)])}

= 1 + E (β )2

2
− φ2

24
[δξ 2 + E (β )2(ξ̄ + ξ̄ ′)2]

+ O(φ4) (89)

and

max(Bfast ) = 1 − E (β )2

4
{2 − sinc(δξ̄ sin φ)

− sinc[(ξ̄ + ξ̄ ′) sin φ)]} (90)

= 1 − φ2

12
E (β )2(ξ̄ 2 + ξ̄ ′2) + O(φ4). (91)

FIG. 8. Generalized overlap for large-spin environments as a
function of time and different phases φ. The dotted, dashed, and
thick lines correspond to φ = π/10, π/4, π/2, respectively. (ξ̄ =
0.9, β� = 1, ξ̄ ′ = 0.1, Nmac = 100 are chosen.)

Note that these values depend on (ξ̄ , ξ̄ ′) and β� but not
directly on the tunneling energy �̃, which is nevertheless
necessary to damp the slow-moving parts as we have shown
earlier. We see from the above expressions that

(1) max(Bfast ) < 1 for any nonzero φ, provided E (β ) > 0,
i.e., the temperature is finite β > 0;

(2) max(�fast ) < 1 for any nonzero φ, provided E (β ) < 1,
i.e., the temperature is nonzero β < ∞.

This, in turn, implies via (82) and (83) that outside the
temperature extremes, both markers |�X0,X ′

0
|2 and BX0,X ′

0
are

asymptotically damped for Nu, Nmac � 1 and the state (23)
approaches the objective state. The amount of damping, and
hence the quality of the objectivity in the state, depends on
Nu, Nmac and the temperature. For small φ, we obtain from
(82) and (83) the following bounds:

∣∣�X0,X ′
0

∣∣2 �
[

1 + E (β )2

2
− φ2

24
[δξ 2 + E (β )2(ξ̄ + ξ̄ ′)2]

]Nu

≈
[

1 + E (β )2

2

]Nu

× exp

[
−Nuφ

2 δξ 2 + E (β )2(ξ̄ + ξ̄ ′)2

12[1 + E (β )2]

]
, (92)

BX0,X ′
0
�

[
1 − E (β )2φ2

12
(ξ̄ 2 + ξ̄ ′2)

]Nmac

≈ exp

[
−Nmac

E (β )2φ2

12
(ξ̄ 2 + ξ̄ ′2)

]
. (93)

This situation is to be contrasted with the previous section,
where we showed that the cosine trajectory (8) does not lead
to the permanent damping of the generalized overlap for any
amount of spins in the macrofraction and hence no permanent
objective states can be formed. Sample plots of both markers,
using the exact expressions calculated in Appendix B, are
presented in Figs. 7 and 8. We see in particular that it is more
difficult to damp the generalized overlap as it takes about 5×
more spins than needed to induce the decoherence. This is to
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be expected as the spins are encoding the continuous variable:
the oscillation amplitude X0.

V. CONCLUDING REMARKS

We analyzed the emergence of objectivity in the last canon-
ical models of decoherence, a boson-spin model in SBS state
formation that so far has not been used in the rest. Due to
the complicated dynamics, we used the recoil-less limit where
the influence of the environment on the central oscillator is
assumed to be negligible. This is an opposite limit to the usual
Born-Markov one, but the most appropriate for studying in-
formation transfer to the environment during the decoherence
process. The recoil-less limit can be viewed as a version of the
Born-Oppenheimer approximation, where the central system
evolves unperturbed and affects the environmental spins via
coupling to its classical trajectory, which acts as an external
time-dependent force. The resulting effective dynamics of the
environment allows for the use of the Floquet theory. We
perform the analysis in the first order of the high-frequency
expansion and demonstrate and find, in particular, an inter-
esting fact: fast-moving parts of the motion are detrimental
to the emergence of objectivity while the slow-moving parts
enable it. Another interesting aspect of the model, not present
in other canonical models, is a mismatch between the encoded
variable, which is a continuous positionlike variable (the os-
cillation amplitude), and the encoding system, which is finite
dimensional (a collection of spins). In this respect, we show
two facts. First, we derive two characteristic wavelengths: one
corresponding to the decoherence scale on the side of the cen-
tral system and another governing the resolution, with which
collections of environmental spins encode the continuous vari-
able. The lengths are different, in particular, the encoding one
depends on the temperature and is larger than the decoherence
one, which shows the phenomenon of “bound information” in
the environment: the resolution of a possible read-out from the
environment is lower than the scale on which coherences are
destroyed. Both length scales depend on the fraction size, i.e.,
the bigger the size, the lower the length scales, which is quite
intuitive. However, the presence of the length scales does not
guarantee a stable formation of objectivity. We show that the
latter depends on the type of motion of the central system.
In particular, for initial states with a well-defined momentum,
there can be only a momentary formation of objectivity, while
even a small departure from this specific initial condition
leads to an asymptotic formation of objective states. This is
exactly opposite to what one finds in QBM, where initially
well-defined momentum states lead to a stable appearance of
objectivity, and one of the examples showing how spin and
oscillator environments differ.

Our analysis can be applied for the quantum measure-
ment theory in the following points. First, our result is an
example of how a continuous variable can be measured by
finite-dimensional systems in a realistic scenario of an open
quantum dynamics. Second, from a broader perspective, it
could be used to have an exemplary answer to the fundamental
question of when the measurement is completed. One may
postulate that it is completed when the system+measuring
apparatus are close enough to the SBS state, which guarantees

an objective character of the measurement result. This remark
of course applies to the whole of the SBS and quantum Dar-
winism program.
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APPENDIX A: GENERALIZED OVERLAP IN BLOCH
REPRESENTATION

We will get a geometrical expression for a generalized
overlap B2(ρ, ρ ′) for a qubit when ρ and ρ ′ are unitarily
related and its relation with a decoherence factor |�X0,X ′

0
|2.

B(ρ, ρ ′) is defined in Eq. (26) as

B(ρ, ρ ′) = TrM + 2
√

det M, (A1)

where

M = √
ρρ ′√ρ (A2)

with

ρ ≡ Uρ0U
†, ρ ′ ≡ U ′ρ0U

′†.

Using the cyclic property of a trace and determinant, B(ρ, ρ ′)
in Eq. (A1) is rewritten as

B(ρ, ρ ′) = TrM̃ + 2
√

det M̃, (A3)

where W = U †U ′ = U †
X0,X ′

0
and

M̃ = W ρ0W
†ρ0. (A4)

With the notations W = u0 − iu · σ and ρ0 = (1 + a · σ )/2,
we express W ρ0 as

W ρ0 = 1
2 (v0 + v · σ ), (A5)

where

v0 ≡ u0 − ia · u,

vi ≡ u0ai − iui + (u × a)i. (A6)

With ρ0W = (W †ρ0)† and W †(u) = W (−u) we obtain ρ0W :

ρ0W = 1
2 (v0 + ̄v · σ ), (A7)

where

v̄i ≡ u0ai − iui − (u × a)i. (A8)

Using Eqs. (A4), (A5), and (A7), we obtain

M̃ = m̃0 +
∑

i

m̃iσi, (A9)

where

m̃0 ≡ 1
4 (|v0|2 + v · ̄v∗),

m̃i ≡ 1
4 [viv

∗
0 + v̄∗

i v0 + i(v × ̄v∗)i],

and hence TrM is expressed as

TrM = TrM̃ = 1
2 (|v0|2 + v · ̄v∗). (A10)
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From Eqs. (A6) and (A8)∑
i

viv̄
∗
i = u2

0|a|2 − |u × a|2 + |u|2,

|v0|2 = u2
0 + (a · u)2.

Using these TrM in Eq. (A10) is expressed in terms of a and
u:

TrM = 2m̃0 = 1
2

[
1 + (

2u2
0 − 1

)|a|2 + 2(a · u)2
]

= 1
2 [1 + |a|2] − [|u|2|a|2 − (a · u)2]

= 1
2 (1 + |a|2) − |a × u|2. (A11)

From Eq. (A2) and ρ0 = (1 + a · σ )/2, det M = (det ρ0)2 is

det M = 1
16 (1 − |a|2)2 � 0. (A12)

Plugging TrM and det M in Eqs. (A11) and (A12) into (A1),

B(ρ, ρ ′) = 1 − |a × u|2 � 1. (A13)

With the expression for a decoherence factor |�X0,X ′
0
|2 = 1 −

|u|2 + (a · u)2 in Eq. (34), B(ρ, ρ ′) expression can be related
to |�X0,X ′

0
|2:

B(ρ, ρ ′) = (1 − |a|2)|u|2 + ∣∣�X0,X ′
0

∣∣2

= (1 − |a|2)
(
1 − u2

0

) + ∣∣�X0,X ′
0

∣∣2
. (A14)

APPENDIX B: OBJECTIVITY MARKERS FOR A
GENERAL CLASSICAL TRAJECTORY

From (71) it can be seen that the structure of UX0,X ′
0
(φ) =

u0(φ) + iu(φ) · σ with a general classical trajectory with arbi-
trary phase φ becomes more complicated due to the nonunity
initial kick in (13). For a thermal state (39), in order to average
|�X0,X ′

0
|2 and B(ρ, ρ ′) over g, we need to average u2

0(φ) and

u2
1(φ) over g with a uniform distribution of g. The arguments

in cosines and sines in (71) are divided into one in the first
order in g and one quadratic in g. According to (71), we denote
the first-order arguments by

gk− ≡ g(X − X ′) sin φ,

gk+ ≡ g(X + X ′) sin φ,

gk(τ ) ≡ g(X − X ′) sin(τ + φ),

and the second-order arguments by

sτg2 ≡ �̃(X 2 − X ′2)τg2,

mτg2 + dτ ≡ �̃(X 2 + X ′2)τg2 − 2�̃τ.

Hence, UX0,X ′
0

in (71) is expressed by short notations c(x) ≡
cos x and s(x) ≡ sin x:

u0 = c(k−g)c(sτg2 )c[k(τ )g] + s(k−g)c(mτg2+dτ )s[k(τ )g],

u1 = −c(k+g)s(sg2τ )c[k(τ )g] − s(k+g)s(−mτg2−dτ )s[k(τ )g],

u2 = −s(k+g)s(sτg2 )c[k(τ )g] + c(lg)s(−mτg2−dτ )s[k(τ )g],

u3 = s(k−g)c(sτg2 )c[k(τ )g] − c(k−g)c(mτg2+dτ )s[k(τ )g].

|�X0.X ′
0
|2 with the thermal state a = (tanh[β�/2], 0, 0) is ex-

pressed as

|�X0.X ′
0
|2 = u2

0 + a2u2
1,

where

u2
0 = c2

(k−g)c
2
(sτg2 )c

2
[k(τ )g] + s2

(k−g)c
2
(mτg2+dτ )s

2
[k(τ )g]

+ 1
2 s[2k(τ )g]s(2k−g)c

2
(sg2τ )c

2
(mτg2+d ),

u2
1 = c2

(k+g)s
2
(sg2τ )c

2
[k(τ )g] + s2

(k+g)s
2
(−mτg2−dτ )s

2
[k(τ )g]

− 1
2 s[2k(τ )g]s(2k+g)s(sg2τ )s(−mτg2−dτ ). (B1)

Products of cosines and sines are decomposed into single
cosines and sines. For instance, the first term in u2

0 in (B1)
is decomposed into cosine functions

c2
(k−g)c

2
(sτg2 )c

2
(k(τ )g) = 1

8 + 1
8 (c(2k−g) + c(2sτg2 ) + c[2k(τ )g] ) + 1

16 (c(2sτg2+2k−g) + c(2sτg2−2k−g) + c[2sτg2+2k(τ )g] + c[2sτg2−2k(τ )g]

+ c[2k(τ )g+2k−g] + c[2k(τ )g−2k−g] + 1
32 (c[sτg2+2k(τ )g+k−g] + c[sτg2+2k(τ )g−k−g] + c[sτg2−2k(τ )g+k−g]

+ c[sτg2−2k(τ )g−k−g] ).

All terms in in (B1) are finally into cosine functions of linear or quadratic functions of g. We define an average value as an
integral of a function over g from 0 to a maximum value ḡ:

〈 f (g)〉 ≡ 1

ḡ

∫ ḡ

0
dg f (g).

Relevant functions to consider are only a cosine function with different arguments. For quadratic arguments of cosine 〈cos[ag2 +
bg + c]〉 for a �= 0 is

1

ḡ

∫ ḡ

0
dg cos[ag2 + bg + c] = 1√

aḡ
cos

(
b2

4a
− c

)[
C

(√
aḡ + b

2
√

a

)
− C

(
b

2
√

a

)]

+ 1√
aḡ

sin

(
b2

4a
− c

)[
S

(√
aḡ + b

2
√

a

)
− S

(
b

2
√

a

)]
,
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where C(x) ≡ ∫ x
0 du sin u2 and S(x) ≡ ∫ x

0 du sin u2. For linear arguments, 〈cos(bg + c)〉 for b �= 0 is

1

ḡ

∫ ḡ

0
dg cos[bg + c] = 1

ḡb
(sin[bḡ + c] − sin[c]).

Especially, for instance, the average value of 2 cos Ag2 cos Bg is given by

2〈cos Ag2 cos Bg〉 = 〈cos(Ag2 + Bg)〉 + 〈cos(Ag2 − Bg)〉
= cos(B2/4A)

〈
cos[A(g + B/2A)2] + cos[A(g − B/2A)2]

〉 + sin(B2/4A)〈sin[A(g + B/2A)2]

+ sin[A(g − B/2A)2]〉

= cos(B2/4A)√
ḡ2A

{C[
√

A(ḡ + B/2A)] + C[
√

A(ḡ − B/2A)]}

+ sin(B2/4A)√
ḡ2A

{S[
√

A(ḡ + B/2A)] + S[
√

A(ḡ − B/2A)]}. (B2)

Finally, average values of u2
0 and u2

1 in (B1) are written in terms of constants, sinc functions, and the Fresnel pairs F [a, b, c]:〈
u2

0

〉 = 1
4 + 1

8 (sinc[ω− + ω(τ )] + sinc[ω− − ω(τ )]) + 1
16 F [sτ, 0, 0] + 1

16 F [mτ, 0, dτ ]

+ 1
16 (F [sτ, ω−, 0] + F [sτ, ω(τ ), 0]) + 1

32 (F [sτ, ω− + ω(τ ), 0] + F [sτ, ω− − ω(τ ), 0])

− 1
16 (F [mτ, ω−, dτ ] + F [mτ, ω(τ ), dτ ]) + 1

32 (F [mτ, ω− + ω(τ ), dτ ] + F [mτ, ω− − ω(τ ), dτ ])

+ 1
16 F [(m + s)τ/2, ω− − ω(τ ), dτ /2] − 1

16 F [(m + s)τ/2, ω− + ω(τ ), dτ /2]

+ 1
16 F [(m − s)τ/2, ω− − ω(τ ), dτ /2] − 1

16 F [(m − s)τ/2, ω− + ω(τ ), dτ /2] (B3)

and 〈
u2

1

〉 = 1
4 + 1

8 (sinc[ω+ + ω(τ )] + sinc[ω+ − ω(τ )]) − 1
16 F [sτ, 0, 0] − 1

16 F [mτ, 0, dτ ]

− 1
16 (F [sτ, ω+, 0] + F [sτ, ω(τ ), 0]) − 1

32 (F [sτ, ω+ + ω(τ ), 0] + F [sτ, ω+ − ω(τ ), 0])

+ 1
16 (F [mτ, ω+, dτ ] + F [mτ, ω(τ ), dτ ]) − 1

32 (F [mτ, ω+ + ω(τ ), dτ ] + F [mτ, ω+ − ω(τ ), dτ ])

+ 1
16 F [(m + s)τ/2, ω+ − ω(τ ), dτ /2] − 1

16 F [(m + s)τ/2, ω+ + ω(τ ), dτ /2]

− 1
16 F [(m − s)τ/2, ω+ − ω(τ ), dτ /2] + 1

16 F [(m − s)τ/2, ω+ + ω(τ ), dτ /2] (B4)

where ξ ≡ ḡX , ξ ′ ≡ ḡX ′

ω(τ ) ≡ 2δξ sin(τ + φ),

ω− = 2δξ sin φ,ω+ = 2(ξ + ξ ′) sin φ,

F [a, b, c] ≡ 〈cos(ag2 + bg + c)〉 + 〈cos(ag2 − bg + c)〉

= 1√
aḡ

cos

(
b2

4a
− c

)[
C

(√
aḡ + b

2
√

a

)
+ C

(√
aḡ − b

2
√

a

)]

+ 1√
aḡ

sin

(
b2

4a
− c

)[
S

(√
aḡ + b

2
√

a

)
+ S

(√
aḡ − b

2
√

a

)]
(B5)

and

sinc[b] ≡ 1

ḡ

∫ ḡ

0
dg cos[bg] = sin[bḡ]

bḡ
.
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