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Non-Abelian phase and geometric force in a quantum-classical hybrid system
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It is well known that the dynamics of a hybrid system, which consists of a quantum subsystem and a
classical subsystem, can be studied by transforming the quantum subsystem into a classical one. Based on our
previous work [Phys. Rev. A 102, 032213 (2020)], we present the formalism of the quantum-classical hybrid
system containing a quantum subsystem with energy degeneracy. By simulating the non-Abelian dynamics and
geometric phases for the quantum subsystem with classical non-Abelian dynamics and geometric angles, the
effect of the non-Abelian gauge field and the geometric phase of the quantum (sub)system on the dynamics of
the classical subsystem is revealed by a simple canonical transformation. Remarkably, the non-Abelian angle
geometric vector potential is found not only to induce the Wilczek-Zee phase in the dynamics of the quantum
subsystem but also to give rise to a Lorentz-like non-Abelian geometric force. To illustrate the dynamics of
the hybrid system, we examine the interaction between a spin-half particle and a magnetic field coupled with a
magnetic particle. The explicit expression of the non-Abelian magneticlike gauge field is presented, introducing
a different form of non-Abelian geometric force in the realm of quantum-classical dynamics.

DOI: 10.1103/PhysRevA.109.052203

I. INTRODUCTION

In the study of the adiabatic evolution of general quantum
systems, the Berry phase has stood for several decades as
a profound concept in quantum mechanics which depends
on the geometry of the parameter space of the Hamiltonian
since its notion was introduced by Berry [1–3]. With the
generalization of the definition of the geometric phase [4–9],
the investigation of this phenomenon has gained increasing
prominence across diverse fields, including the quantum Hall
effect [10], molecular dynamics [11], linear-response theory
[12], adiabatic passage [13,14], and adiabatic shortcut tech-
niques [15], but not limited to branches of physics [16–24].
Furthermore, there is a mechanics analog of the Berry phase
in classical integrable systems called Hannay’s angle which
is the additional angle shift acquired over the evolution of
a system undergoing slow changes of the parameters [6,25].
It is already known that the Berry phase possesses a geo-
metric connection with Hannay’s angle under a semiclassical
approximation [26]. Consequently, considerable efforts have
been directed toward unraveling the implications for quantum-
classical correspondence.

The Hilbert space of quantum systems has been demon-
strated to share the same mathematical structure with the
phase space of canonical classical Hamiltonians [27,28]. This
revelation allows for some fundamental properties of quantum
mechanics such as wave functions and observable symmetries
to be seamlessly mapped into a classical system without los-
ing any physics [29–36]. As a result, a set of applications
simulating quantum dynamics with classical oscillators has
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arisen [37–40], since the analogy between the time-dependent
Schrödinger equation and the classical Hamilton equation was
pointed out by Dirac. Moreover, the quantum-classical map-
ping (QCM) does not rest upon nondegenerate quantum
(sub)systems [41]. Since there is an absence of energy gaps
in quantum degenerate systems, there will be a nonadiabatic
evolution in the degenerate subspace [42] giving rise to an ef-
fective non-Abelian gauge field [43] and a non-Abelian phase
called the Wilczek-Zee (WZ) phase [4]. After the definition
of the WZ phase was clarified, it has garnered increasing at-
tention in the domains of quantum computation and quantum
control [44–50], and the simulation of quantum systems with
energy degeneracy using classical resonant oscillators has also
been achieved [41,51].

Previous studies primarily focused on nondegenerate
quantum-classical hybrid systems [52–65] or the simulation
of the dynamics of the quantum degenerate systems [42,45–
50]. Other insights have pointed out that both subsystems of
a hybrid system can be treated classically [3,66,67], and they
influence each other not only through subsystem-subsystem
coupling interactions but also via a vector potential [68,69].
For quantum degenerate systems, the WZ gauge potential can
be put into the framework of classical mechanics by summing
its mean value of each quantum subspace which is just the
geometric angle induced by classical non-Abelian evolution
[41,51]. In this context, we are motivated to address some
questions: How can we describe the interaction between sub-
systems of a hybrid system with degeneracy in the quantum
subsystem? What is the role of the non-Abelian gauge po-
tential in affecting the dynamics of the classical subsystem?
These questions serve as the focal point of our investigation.

This paper is organized as follows. In Sec. II B, we present
the dynamical evolution and WZ phases of the quantum
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degenerate subsystem of a hybrid system in the framework of
classical resonant oscillators based on QCM. In Sec. II C, we
briefly outline the theoretical framework of the generation of
the non-Abelian geometric force in the classical dynamics of
a hybrid system containing a quantum degenerate subsystem.
Then, the general form of the non-Abelian geometric force is
provided. To illustrate our result above, we study a cantilever-
spin system in a single spin detection experiment [68,70,71],
where the classical subsystem is a magnetic particle and
the quantum subsystem is a spin-half particle in a magnetic
field replacing the Pauli matrices by the Dirac matrices as
an example in Sec. III. Finally, we conclude our results in
Sec. IV.

II. NON-ABELIAN ADIABATIC DYNAMICS
IN A HYBRID SYSTEM

According to the Born-Oppenheimer approximation
(BOA), the Hamiltonian of a hybrid coupled system, which
consists of a fast quantum subsystem with energy degeneracy
and a slow classical subsystem, can be written as [34]

Hhybrid = 〈ψ |Ĥ1(Q|ψ〉 + H2(P, Q), (1)

where |ψ〉 is the state of the quantum subsystem, and P is
the momentum of the slow classical subsystem. The coupling
of the two subsystems is indicated by the dependency of
the Hamiltonian of the fast quantum subsystem Ĥ1(Q) on Q,
which is the coordinate of the slow classical subsystem.

A. Dynamics and Non-Abelian phase in a quantum subsystem

First, we focus on the adiabatic dynamics of a fast non-
Abelian quantum subsystem governed by Ĥ1(Q), with the
adiabatic parameters Q. The instantaneous spectrum is deter-
mined by the instantaneous eigenequation

Ĥ1(Q)|Eka(Q)〉 = Ek (Q)|Eka(Q)〉, (2)

where Ek (Q) and |Eka(Q)〉 are the degenerated eigenenergy
and energy eigenstate, respectively. a = 1, 2, . . . , N with the
degree of degeneracy N . For an initial state

|ϕk (Q0)〉 =
∑

a

ϕka(Q0)|Eka(Q0)〉, (3)

the states driven by the Schrödinger equation would be

|ϕk (Q)〉 =
∑

a

ϕka(Q)e− i
h̄

∫ t
0 Ek (Q)dτ

n∑
b=1

U k
ab|Ekb(Q)〉, (4)

where U k
ab = Pei

∫
c Ak

ab(Q)·dX is the geometric WZ phase factor
given by the path-ordered integral, and the geometric WZ
potential which reads [4,27]

Ak
ab(Q) = i〈Eka(Q)|∂XEkb(Q)〉 (5)

is the matrix element of the non-Abelian gauge potential Ak .
As the slowly varying parameters Q = (Q1, Q2, Q3) are the
coordinates of the slow classical system, the gauge potential
Ak (Q) is related to a curvature Fαβ or an effective “magnetic”

field B as [4,27,41,43]

Bk
γ = 1

2εαβγ F k
αβ,

F k
αβ = ∂Qα

Ak
β − ∂Qβ

Ak
α − i

h̄

[
Ak

α, Ak
β

]
(α, β, γ = 1, 2, 3),

(6)

where the non-Abelian term − i
h̄ [Ak

α, Ak
β ] emerges since the

matrices Ak
α do not commute with each other.

B. QCM of Non-Abelian adiabatic dynamics and angle
in a hybrid system

To study the dynamics of the whole hybrid system, we
next map this quantum non-Abelian dynamics of the quantum
subsystem into a classical one [41]. The dynamical evolution
of the fast quantum subsystem governed by Ĥ1(Q) on a bare
basis {|n〉} can be described by the Schrödinger equation

ih̄
dcn

dt
= ∂H1

∂cn
, (7)

with |ψ〉 = ∑
n cn|n〉 and H1(p, q; Q) = 〈ψ |Ĥ1|ψ〉. By de-

composing the probability amplitudes cn into real and
imaginary parts cn = (qn + ipn)/

√
2h̄, the Schrödinger equa-

tion can be rewritten as

q̇n = ∂H1

∂ pn
, ṗn = −∂H1

∂qn
, (8)

where qn and pn can be regarded as the “position variable”
and “momentum variable,” respectively.

On the other hand, the quantum states |ψ〉 can also be
expanded in terms of instantaneous eigenstates

|ψ〉 =
∑

ka

ϕka|Eka(Q)〉, (9)

where {|Eka(Q)〉} is determined by Eq. (2). Then, one
can introduce the angle-action variables (θ, I) by |ϕka〉 =√

Ika/h̄e−iθka [32,68,72], and they satisfy the similar structure
of canonical equations

θ̇ka = ∂H1

∂Ika
+ ∂

∂Ika

[
∂S(q, I; Q)

∂Q
· Q̇

]
,

İka = − ∂

∂θka

[
∂S(q, I; Q)

∂Q
· Q̇

]
, (10)

where the mean value of energyH1(I; Q) = ∑
ka Eka(Q)Ika/h̄

and S is a generating function induced by the canonical trans-
formation (p, q) → (θ, I).

The unitary transformation connecting the two bases {|n〉}
and {|Eka(Q, X1)〉},

c = Uϕ, (11)

corresponds to the classical canonical transformation
(p, q) → (θ, I),

pn(t ) =
∑

ka

√
2Ika{cos θkaIm[Un,ka(t )] − sin θkaRe[Un,ka(t )]},

qn(t ) =
∑

ka

√
2Ika{cos θkaRe[Un,ka(t )] + sin θkaIm[Un,ka(t )]}.

(12)
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Therefore, the Hamiltonian in the adiabatic basis
{|Eka(Q)〉} can be obtained as Ĥ1a = Û †Ĥ1Û − ih̄Û † ˙̂U with
|Eka(Q)〉 = Û |n〉. Correspondingly, under the canonical trans-
formation Eq. (12), the Hamiltonian H1(p, q; Q) becomes
H1(I; Q) but differs from the old one by

H1(p, q; Q) =H̄1(θ, I; Q)

=H1(I; Q) + ∂S1(q, I; Q)

∂t
, (13)

where the partial differential of generating function S1 can be
written as

∂S1(q, I; Q)

∂t
=

[
∂S1

∂Q
− p(θ, I; Q)

∂q(θ, I; Q)

∂Q

]
· Q̇. (14)

By a cyclic evolution of θ, the single-valued function S1

will be trivial gradient vanished for zero contribution to the
equations of motion.

By taking the averaging principle for the non-Abelian clas-
sical dynamics by averaging

〈· · · 〉θ =
{ · · · (k = k′),∮

dθ (k �= k′), (15)

the average over θ of the new Hamiltonian of the total sys-
tem after the canonical transformation (p, q) → (θ, I) can be
written as

H = H1(I; Q) + H2(P, Q) −
〈

p(θ, I; Q)
∂q(θ, I; Q)

∂Q

〉
θ

· Q̇,

(16)

where the first two terms are the effective Hamiltonian, and
the latter is the classical non-Abelian angle gauge potential

A(θ, I; Q) =
〈

p(θ, I; Q)
∂q(θ, I; Q

∂Q

〉
θ

(17)

which is just the one-form for the sum of the mean value of
the WZ potential Ak

ab = i〈Eka|∂Ekb〉 in each subspace

A(θ, I; Q) =
∑
kab

ϕ∗
ka(θ, I)Ak

ab(Q)ϕkb(θ, I)

=
∑

k

ϕ†
k(θ, I)Ak (X )ϕk(θ, I). (18)

The WZ phase in the quantum subsystem can then be repre-
sented by a classical non-Abelian geometric angle [41]

�θka = − ∂

∂Ika

∮
A(θ, I; Q) · dQ. (19)

It is worth noticing that the angle gauge potential A is
no longer a linear function of action variables I and contains
angle variables θ. Therefore, the Poisson brackets between the
component matricesA in the parameter space are

{Aα,Aβ} ≡
∑

ka

∂Aα

∂θka

∂Aβ

∂Ika
− ∂Aβ

∂θka

∂Aα

∂Ika
�= 0. (20)

The classical non-Abelian curvature can be defined as

Wαβ = ∂Qα
Aβ − ∂Qβ

Aα + {Aα,Aβ}
=

∑
k

ϕ†
k(θ, I)Fk (X )ϕk(θ, I), (21)

which corresponds to the mean value of F k
αβ for the quantum

degenerate system.

C. Geometric forces in a non-Abelian hybrid system

For hybrid systems in which the Hamiltonian of the
classical subsystem is H2 = P2/2M + V2(Q), the quantum
subsystem will provide an additional vector potential in mo-
menta P [68] by introducing a canonical transformation from
p, q, P, Q to I, θ, P, Q,

p =∂S

∂q
, θ = ∂S

∂I
,

P = ∂S

∂Q
= ∂S

∂Q
+P, Q = ∂F

∂P
= Q, (22)

with a generating function

S = S1(q, I, Q) + q · P. (23)

After the averaging principle, the equations of motion for
canonical variables I, θ can be written as [41,62,68]

İ = Q̇ · ∂Ā
∂θ

= 0,

θ̇ = ∂H1

∂I
− Q̇ · ∂Ā

∂I
, (24)

and the classical canonical variables P, Q can be given as

Ṗ = − ∂H1

∂Q
− ∂V2

∂Q
+ Q̇ · ∂Ā

∂Q
,

Q̇ =Q̇ = P− Ā
M

. (25)

One then can write a more explicit form for the equation of
coordinate Q as

mQ̈ = −∂H1

∂Q
− ∂V2

∂Q
+ Q̇ ×B, (26)

where the extra geometric term is brought by the effective
non-Abelian magnetic field B with

Bγ = 1
2εαβγWαβ (α, β, γ = 1, 2, 3). (27)

III. EXAMPLE

To illustrate the formalism explicitly, we consider a simple
hybrid system where the classical subsystem is a magnetic
particle with magnetic moment mF pointing in the negative
direction of the z axis moves freely in the xy plane, and
the quantum subsystem is a four-level system with magnetic
moment μ placed below the plane at distance d as shown in
Fig. 1 [68,70]. The total Hamiltonian reads

H = 〈ψ |Ĥ1|ψ〉 + H2, (28)
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FIG. 1. Sketch of the hybrid system. The origin of the coordinate
system is placed in the xy plane above the quantum subsystem. As
the classical magnetic particle moves freely in the xy plane, the
two interacting spin-half particles placed beneath the plane with a
distance of d feel the magnetic field from the classical magnetic
particle.

and the Hamiltonian operator for the quantum subsystem with
twofold degeneracy is [42,73,74]

Ĥ1 = −μγ · B, (29)

where the Dirac matrices

γk = σ1 ⊗ σk =
(

0 σk

σk 0

)
, (30)

with the Pauli matrices σk . This Hamiltonian may describe
two interacting spin-half particles since γk = σ1 ⊗ σk or a
single four-level particle in the magnetic field {Bx, By, Bz} =
μ0mF {3xd,3yd,2d2−r2}

4π (d2+r2 )5/2 with r2 = x2 + y2 which is provided by the
coordinates of the classical subsystem because of the mag-
netic dipolar interaction [42,68], whose Hamiltonian is

H2 = P2

2m
+ V2(r), (31)

with r = {x, y} and the mass of the particle m. Therefore, the
coordinates x and y act as the adiabatic parameters for the
quantum subsystem. For the quantum subsystem, the Hamilto-
nian Ĥ1 has two eigenvalues E± = ±μB, with two degenerate
eigenstates each,

|E−1〉 = 1√
2

⎛
⎜⎜⎜⎜⎝

Bx−iBy

B

−Bz

B

0

1

⎞
⎟⎟⎟⎟⎠, |E−2〉 = 1√

2

⎛
⎜⎜⎜⎜⎝

Bz

B
Bx+iBy

B

1

0

⎞
⎟⎟⎟⎟⎠,

|E+1〉 = 1√
2

⎛
⎜⎜⎜⎜⎝

−Bx−iBy

B
Bz

B

0

1

⎞
⎟⎟⎟⎟⎠, |E+2〉 = 1√

2

⎛
⎜⎜⎜⎜⎝

−Bz

B

−Bx+iBy

B

1

0

⎞
⎟⎟⎟⎟⎠,

(32)

where B =
√

B2
x + B2

y + B2
z = μ0mF (4d2+r2 )

4π (d2+r2 )3/2 .

The geometric WZ gauge potential (18) can be written
as [4]

A =
(

A− 0
0 A+

)
, (33)

where

A− = A+ =
⎛
⎝ −ByḂx+BxḂy

2B2
−iBzḂx+BzḂy+(iBx−By )Ḃz

2B2

iBzḂx+BzḂy−(iBx+By )Ḃz

2B2
ByḂx−BxḂy

2B2

⎞
⎠

(34)

are non-Abelian vector potentials in the two degenerate
subspaces.

Next, we transform this quantum adiabatic dynamics into
a classical one. The equivalent classical Hamiltonian function
H1 can be given as the average of Eq. (29) in the bare basis
{|n〉}, i.e.,

H1 = − μ

h̄
[(q1q4 + p1 p4 + q2q3 + p2 p3)Bx.

+ (q1 p4 − p1q4 + q3 p2 − p3q2)By

+ (q1q3 + p1 p3 − q2q4 − p2 p4)Bz]. (35)

The canonical transformation (p, q) → (θ, I) corresponding
to the unitary transformation {|n〉} → {|Ek〉} can be given by
Eq. (12),

p1 =−√
I−1

(
By

B
cos θ−1 + Bx

B
sin θ−1

)
−√

I−2

(
Bz

B
sin θ−2

)

+√
I+1

(
By

B
cos θ+1 + Bx

B
sin θ+1

)
+√

I+2

(
Bz

B
sin θ+2

)
,

q1 =√
I−1

(
Bx

B
cos θ−1 − By

B
sin θ−1

)
+ √

I−2

(
Bz

B
cos θ−2

)

−√
I+1

(
Bx

B
cos θ+1 − By

B
sin θ+1

)
−√

I+2

(
Bz

B
cos θ+2

)
,

p2 =√
I−1

(
Bz

B
sin θ−1

)
+ √

I−2

(
By

B
cos θ−2 − Bx

B
sin θ−2

)

−√
I+1

(
Bz

B
sin θ+1

)
−√

I+2

(
By

B
cos θ+2− Bx

B
sin θ+2

)
,

q2 =−√
I−1

(
Bz

B
cos θ−1

)
+√

I−2

(
Bx

B
cos θ−2 + By

B
sin θ−2

)

+√
I+1

(
Bz

B
cos θ+1

)
−√

I+2

(
Bx

B
cos θ+2 + By

B
sin θ+2

)
,

p3 = − √
I−2 sin θ−2 − √

I+2 sin θ+2,

q3 =√
I−2 cos θ−2 + √

I+2 cos θ+2,

p4 = − √
I−1 sin θ−1 − √

I+1 sin θ+1,

q4 =√
I−1 cos θ−1 + √

I+1 cos θ+1. (36)

The mean value of the Hamiltonian after this canonical trans-
formation can be obtained as

H1 = H1 +A · Q̇, (37)

with

H1 = μB

h̄
(−I−1 − I−2 + I+1 + I+2). (38)
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By the averaging principle (15), the non-Abelian angle gauge potential (18) can be written as

A = 3d

2(d2 + r2)(4d2 + r2)
{−3dy(I−1 − I−2 + I+1 − I+2) + 2(2d2 + x2 − y2)[

√
I−1I−2 sin �θ− + √

I+1I+2 sin �θ+]

+ 4xy[
√

I−1I−2 cos �θ− + √
I+1I+2 cos �θ+]} · êx + 3d

2(d2 + r2)(4d2 + r2)
{3dx(I−1 − I−2 + I+1 − I+2)

+ 2(2d2 − x2 + y2)[
√

I−1I−2 cos �θ− + √
I+1I+2 cos �θ+] + 4xy[

√
I−1I−2 sin �θ− + √

I+1I+2 sin �θ+]} · êy, (39)

where �θ− = θ−1 − θ−2 and �θ+ = θ+1 − θ+2. The dynam-
ics of the action and angle variables of the degenerate quantum
subsystem can be calculated by Eq. (24) straightforwardly,

İ±1 = −İ±2 = 3d
√

I±1I±2

(d2 + r2)(4d2 + r2)
(−G±1ẋ + G±2ẏ), (40)

θ̇±1 = − ∂A
∂I±1

+ ∂H1

∂I±1

= − 3d

2(d2 + r2)(4d2 + r2)

⎡
⎣

⎛
⎝−3dy + K±1

√
I±2

I±1

⎞
⎠ẋ

+
⎛
⎝3dx + K±2

√
I±2

I±1

⎞
⎠ẏ

⎤
⎦ ± μμ0mF

√
4d2 + r2

4π h̄(d2 + r2)2
,

θ̇±2 = − ∂A
∂I±2

+ ∂H1

∂I±2

= − 3d

2(d2 + r2)(4d2 + r2)

⎡
⎣

⎛
⎝3dy + K±1

√
I±1

I±2

⎞
⎠ẋ

+
⎛
⎝−3dx + K±2

√
I±1

I±2

⎞
⎠ẏ

⎤
⎦ ± μμ0mF

√
4d2 + r2

4π h̄(d2 + r2)2
,

(41)

with G±1 ≡ 2xy sin(θ±1 − θ±2) − (2d2 + x2 − y2) cos(θ±1 −
θ±2), G±2 ≡ 2xy cos(θ±1 − θ±2) − (2d2 − x2 +
y2) sin(θ±1 − θ±2), K±1 ≡ 2xy cos(θ±1 − θ±2) + (2d2 +
x2 − y2) sin(θ±1 − θ±2), and K±2 ≡ 2xy sin(θ±1 − θ±2) +
(2d2 − x2 + y2) cos(θ±1 − θ±2). Notably, the sums of action
variables I−1 + I−2 and I+1 + I+2 remain conserved, while the
individual action variables do not. The non-Abelian geometric
angles can then be derived by solving

�θ±1 =
∫
− 3d

2(d2 + r2)(4d2 + r2)

⎡
⎣

⎛
⎝−3dy + K±1

√
I±2

I±1

⎞
⎠dx

+
⎛
⎝3dx + K±2

√
I±2

I±1

⎞
⎠dy

⎤
⎦,

�θ±2 =
∫
− 3d

2(d2 + r2)(4d2 + r2)

⎡
⎣

⎛
⎝3dy + K±1

√
I∓1

I±2

⎞
⎠dx

+
⎛
⎝−3dx + K±2

√
I±1

I±2

⎞
⎠dy

⎤
⎦. (42)

To illustrate the non-Abelian adiabatic evolution of the
quantum subsystem, we choose the parameters as

x = r cos

(
π − π sin

πt

τ

)
, y = r sin

(
π − π sin

πt

τ

)
.

(43)

As shown in Figs. 2(a) and 2(b), the action variables I±i

(i = 1, 2) of each quantum subsystem no longer remain invari-
ant during adiabatic evolution. However, the respective sums
of the action variables, I− = I−1 + I−2 and I+ = I+1 + I+2,
are conserved under adiabatic evolution. We also analytically
solving the Schrödinger equation driven by the Hamiltonian
in the adiabatic basis

Ĥ1a = Û †Ĥ1Û − ih̄Û † ˙̂U

= μ

⎛
⎜⎜⎝

−B 0 0 0
0 −B 0 0
0 0 B 0
0 0 0 B

⎞
⎟⎟⎠ + h̄

(
M −M

−M M

)
,

(44)

where

M =
⎛
⎝ ByḂx−BxḂy

2B2
iBzḂx−BzḂy−(iBx−By )Ḃz

2B2

−iBzḂx−BzḂy+(iBx+By )Ḃz

2B2
−ByḂx+BxḂy

2B2

⎞
⎠. (45)
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t/T
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3/2
2
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t/T

- /2

0
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FIG. 2. The evolution of the action variables and probabilities
in one period T with (a) τ = 100/� and (b) τ = 5000/�. The
evolution of (c) the angle variables (wrapped to the interval [0, 2π ]),
(d) the classical angle differences �θ±, and the phase differences
�γ± in one period T with τ = 5000/�. The initial condition and
other parameters are chosen as I±1 = I±2 = h̄/4, θ±1 = θ±2 = 0,
μB/h̄ = �, and d = 4r.
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It is obvious that the time-dependent probabilities ϕ±i =
〈E±i|ψ〉 of a generic quantum state on the eigenstates |E±i〉
are in accord with the action variables I±i, and the total prob-
abilities |ϕ+1|2 + |ϕ+2|2 and |ϕ−1|2 + |ϕ−2|2 are unchanged
as I− and I+. Moreover, the adiabatic dynamics of I−1 and
I+1 are identical, as are those of I−2 and I+2. The angle
variables will accumulate dynamic angles and non-Abelian
geometric angles during the adiabatic evolution, as shown
in Fig. 2(c). To illustrate the non-Abelian geometric ef-
fect, we draw the classical angle differences after QCM
�θ+ = θ+1 − θ+2 = �θ+1 − �θ+2, and �θ− = θ−1 − θ−2 =
�θ−1 − �θ−2 in Fig. 2(d). These non-Abelian effects of
phase differences corresponding to the same eigenfrequencies
±μB are due to the degeneracy of the eigenenergy spectrum
of the quantum subsystem Ĥ1. Additionally, the quantum
phase differences �γ+ = γ+2 − γ+1 = �γ+2 − �γ+1, and
�γ− = γ−2 − γ−1 = �γ−2 − �γ−1, which are also shown

in Fig. 2(d), are consistent with the classical angle differ-
ences. Thus the feasibility of the non-Abelian QCM method
is demonstrated.

Next, we study these non-Abelian effects on the dynamics
of the classical subsystem. We obtain the total Hamilto-
nian (16) for the hybrid system (28) under the averaging
principle as

H = μB

h̄
(−I−1 − I−2 + I+1 + I+2) + (P −A)2

2m

= μB(−|ϕ−1|2 − |ϕ−2|2 + |ϕ+1|2 + |ϕ+2|2)

+ (P −A)2

2m
, (46)

with V2(r) = 0. By Eqs. (26), (27), and (39), the equations of
motion for the classical subsystem are

mẍ = − 3μμ0mF x(5d2 + r2)(−|ϕ−1|2 − |ϕ−2|2 + |ϕ+1|2 + |ϕ+2|2)

4π (d2 + r2)3
√

4d2 + r2
+ ẏBz,

mÿ = − 3μμ0mF y(5d2 + r2)(−|ϕ−1|2 − |ϕ−2|2 + |ϕ+1|2 + |ϕ+2|2)

4π (d2 + r2)3
√

4d2 + r2
− ẋBz, (47)

where

Bz = h̄9d2(2d2 + r2)

2(d2 + r2)2(4d2 + r2)2
{(2d2 − r2)(|ϕ−1|2 − |ϕ−2|2 + |ϕ+1|2 − |ϕ+2|2)

− 3dx(ϕ∗
−1ϕ−2 + ϕ−1ϕ

∗
−2 + ϕ∗

+1ϕ+2 + ϕ+1ϕ
∗
+2) + 3idy[−ϕ∗

−1ϕ−2 + ϕ−1ϕ
∗
−2 − ϕ∗

+1ϕ+2 + ϕ+1ϕ
∗
+2]} (48)

is a non-Abelian magneticlike field. In contrast to the geomet-
ric force brought by the Abelian effective magnetic field [68],
the non-Abelian effective magnetic field is not exclusively
dictated by the classical subsystem dynamics. Rather, it is
also influenced by the quantum subsystem dynamics. This
influence stems from the nonconservation of probabilities
P±i = |ϕ±i|2 on the eigenstates and the emerging interference
terms in the expression of Bz.

To illustrate the effect of the non-Abelian potential of the
quantum subsystem, we choose the initial motion of the parti-
cle in the classical subsystem as

x(0) =0, y(0) = 0,

ẋ(0) =0.03d/t f , ẏ(0) = 0.04d/t f , (49)

where t f is the total evolution time. As shown in Fig. 3(a),
the dynamics of the quantum subsystem is adiabatic, since the
populations P− = |ϕ−1|2 + |ϕ−2|2 and P+ = |ϕ+1|2 + |ϕ+2|2
on the two degenerate energy levels and the population dif-
ferences �P− = |ϕ−1|2 − |ϕ−2|2 and �P+ = |ϕ+1|2 − |ϕ+2|2
between the degenerate states of the same eigenenergies are
consistent with those under the BOA and remain nearly un-
changed. In the meantime, the effective magnetic field Bz

evolves as shown in Fig. 3(b). The non-Abelian nature of this
field (48) lies in its dependence not only on the evolution of
probability amplitudes ϕ±i in the quantum subsystem induced
by the degeneracy but also on the position of the magnetic
particle in the classical subsystem.

For the initial condition (49), the dynamics of the classical
subsystem driven by H2 will not change the symmetry of
the trajectory of the particle in the real space as shown in
Fig. 3(d). While influenced by the non-Abelian effect field
Bz, the motion of the slow particle is presented in Fig. 3(c)
which is not a straight line but a curve and is in agreement
with the trajectory without BOA. Thus the validity of this
method is demonstrated. It is worth noting that this geometric
force is brought by Bz breaking the real-space symmetry by
the non-real-space dynamics of the spin states’ non-Abelian
phases, akin to the Abelian case [68].

IV. CONCLUSION

We have demonstrated that the versatility of the approach
to present the quantum-classical hybrid system in the general
theoretical framework of classical theory can be generalized
to a process with energy degeneracy in the quantum sub-
system. To interpret the impact of the non-Abelian gauge
potential induced by the nonadiabatic evolution in the degen-
erate subspace, we employ a special canonical transformation
to transform the quantum subsystem into a classical counter-
part. Following this canonical transformation, a distinct vector
potential emerges, inducing a non-Abelian magneticlike field
attributed to the non-Abelian geometric force, along with a
non-Abelian geometric angle, which is just the sum of the
mean values of the WZ phase in the individual quantum
degenerate subspace. To illustrate our theoretical framework,
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FIG. 3. The time evolution of (a) the probabilities
on the eigenstates of the quantum subsystem under the
BOA, PBO

− = |ϕ−1|2 + |ϕ−2|2, PBO
+ = |ϕ+1|2 + |ϕ+2|2, and

�PBO
− + �PBO

+ = |ϕ−1|2 − |ϕ−2|2 + |ϕ+1|2 − |ϕ+2|2, and them
without the BOA, P− = |ϕ−1|2 + |ϕ−2|2, P+ = |ϕ+1|2 + |ϕ+2|2,
and �P− + �P+ = |ϕ−1|2 − |ϕ−2|2 + |ϕ+1|2 − |ϕ+2|2. The time
evolution of (b) the effective magnetic field Bz. The trajectories
of motion in the classical subsystem (c) with Bz, without the
BOA, and (d) without Bz. The motion of the particle with initial
condition x(0) = 0, ẋ(0) = 0.03d/t f , y(0) = 0, ẏ(0) = 0.04d/t f .
The parameters are chosen as 3μμ0mF t2

f /(πmd5) = −1.28 × 104,
h̄t f /(md2) = 800.

we apply it to a general hybrid system in which the classical
subsystem is a magnetic particle and the quantum subsystem
is a spin-half particle in a magnetic field replacing the Pauli
matrices with the Dirac matrices as an example. The explicit
formula for the non-Abelian magneticlike field depending on
the non-Abelian geometric force is given. The result shows
that even though the dynamics of the quantum subsystem
is adiabatic, the population differences between the degen-
erate states of the same eigenenergies and interference will
bring a non-Abelian effective magnetic field to the classical
subsystem. This non-Abelian field depends not only on the
position of the magnetic particle in the classical subsystem
but also on the evolution of probability amplitudes in the
quantum subsystem induced by the degeneracy. The trajectory
of the particle in real space can be significantly influenced by
the non-Abelian effect field. The non-real-space dynamics of
the spin states’ non-Abelian phases generate a non-Abelian
geometric force breaking the real-space symmetry. Our theory
could be expected to find applications in the non-Abelian
quantum-classical hybrid dynamics with a fast subsystem and
a slow subsystem, such as non-Abelian spin-electron dynam-
ics [69] and non-Abelian spin torque [75].
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[43] J. Ruseckas, G. Juzeliūnas, P. Öhberg, and M. Fleischhauer,
Non-Abelian gauge potentials for ultracold atoms with degen-
erate dark states, Phys. Rev. Lett. 95, 010404 (2005).

[44] R. Unanyan, M. Fleischhauer, B. W. Shore, and K. Bergmann,
Robust creation and phase-sensitive probing of superposition
states via stimulated Raman adiabatic passage (STIRAP) with
degenerate dark states, Opt. Commun. 155, 144 (1998).

[45] J. Pachos, P. Zanardi, and M. Rasetti, Non-Abelian Berry con-
nections for quantum computation, Phys. Rev. A 61, 010305(R)
(1999).

[46] K. Singh, D. M. Tong, K. Basu, J. L. Chen, and J. F. Du, Ge-
ometric phases for nondegenerate and degenerate mixed states,
Phys. Rev. A 67, 032106 (2003).

[47] J. Gong and S. A. Rice, General method for complete popula-
tion transfer in degenerate systems, Phys. Rev. A 69, 063410
(2004).

[48] K. Takahashi, Transitionless quantum driving for spin systems,
Phys. Rev. E 87, 062117 (2013).

[49] L. S. Simeonov and N. V. Vitanov, Generation of non-Abelian
geometric phases in degenerate atomic transitions, Phys. Rev. A
96, 032102 (2017).

[50] K. Snizhko, R. Egger, and Y. Gefen, Non-Abelian Berry phase
for open quantum systems: Topological protection versus geo-
metric dephasing, Phys. Rev. B 100, 085303 (2019).

[51] Q. Zhang, Quantum adiabatic evolution with energy degeneracy
levels, Phys. Rev. A 93, 012116 (2016).

[52] C. A. Mead and D. G. Truhlar, On the determination of
Born-Oppenheimer nuclear motion wave functions including
complications due to conical intersections and identical nuclei,
J. Chem. Phys. 70, 2284 (1979).

[53] H. Kuratsuji and S. Iida, Effective action for adiabatic process:
Dynamical meaning of Berry and Simon’s phase, Prog. Theor.
Phys. 74, 439 (1985).

[54] M. Stone, Born-Oppenheimer approximation and the origin
of Wess-Zumino terms: Some quantum-mechanical examples,
Phys. Rev. D 33, 1191 (1986).

[55] E. Gozzi and W. D. Thacker, Classical adiabatic holonomy and
its canonical structure, Phys. Rev. D 35, 2398 (1987).

[56] Y. Aharonov, E. Ben-Reuven, S. Popescu, and D. Rohrlich,
Perturbative induction of vector potentials, Phys. Rev. Lett. 65,
3065 (1990).

[57] M. V. Berry and J. M. Robbins, Chaotic classical and
half-classical adiabatic reactions: Geometric magnetism and
deterministic friction, Proc. R. Soc. London Ser. A 442, 659
(1993).

[58] R. G. Littlejohn and S. Weigert, Adiabatic motion of a neutral
spinning particle in an inhomogeneous magnetic field, Phys.
Rev. A 48, 924 (1993).

[59] A. Peres and D. R. Terno, Hybrid classical-quantum dynamics,
Phys. Rev. A 63, 022101 (2001).

[60] P. C. Hammel, Seeing single spins, Nature (London) 430, 300
(2004).

[61] M. J. W. Hall and M. Reginatto, Interacting classical and quan-
tum ensembles, Phys. Rev. A 72, 062109 (2005).

052203-8

https://doi.org/10.1103/PhysRevLett.98.256804
https://doi.org/10.1103/PhysRevB.79.045308
https://doi.org/10.1103/PhysRevA.97.043861
https://doi.org/10.1088/0305-4470/18/1/012
https://doi.org/10.1098/rspa.1927.0039
https://doi.org/10.1103/RevModPhys.38.36
https://doi.org/10.1103/PhysRevD.31.1341
https://doi.org/10.1016/0003-4916(89)90276-5
https://doi.org/10.1103/PhysRevLett.90.170404
https://doi.org/10.1103/PhysRevLett.94.140402
https://doi.org/10.1103/PhysRevD.108.086033
https://doi.org/10.1103/PhysRevA.104.032216
https://doi.org/10.1103/PhysRevE.83.051911
https://doi.org/10.1103/PhysRevA.85.052111
https://doi.org/10.1103/PhysRevA.88.062104
https://doi.org/10.1103/PhysRevA.91.052119
https://doi.org/10.1103/PhysRevA.84.022103
https://doi.org/10.1103/PhysRevA.85.022117
https://doi.org/10.1103/PhysRevA.85.064101
https://doi.org/10.1016/j.physleta.2014.02.037
https://doi.org/10.1103/PhysRevA.91.062114
https://doi.org/10.1103/PhysRevA.102.032213
https://doi.org/10.1103/PhysRevLett.104.170406
https://doi.org/10.1103/PhysRevA.85.062111
https://doi.org/10.1103/PhysRevA.90.022104
https://doi.org/10.1103/PhysRevLett.95.010404
https://doi.org/10.1016/S0030-4018(98)00358-7
https://doi.org/10.1103/PhysRevA.61.010305
https://doi.org/10.1103/PhysRevA.67.032106
https://doi.org/10.1103/PhysRevA.69.063410
https://doi.org/10.1103/PhysRevE.87.062117
https://doi.org/10.1103/PhysRevA.96.032102
https://doi.org/10.1103/PhysRevB.100.085303
https://doi.org/10.1103/PhysRevA.93.012116
https://doi.org/10.1063/1.437734
https://doi.org/10.1143/PTP.74.439
https://doi.org/10.1103/PhysRevD.33.1191
https://doi.org/10.1103/PhysRevD.35.2398
https://doi.org/10.1103/PhysRevLett.65.3065
https://doi.org/10.1098/rspa.1993.0127
https://doi.org/10.1103/PhysRevA.48.924
https://doi.org/10.1103/PhysRevA.63.022101
https://doi.org/10.1038/430300a
https://doi.org/10.1103/PhysRevA.72.062109


NON-ABELIAN PHASE AND GEOMETRIC FORCE IN A … PHYSICAL REVIEW A 109, 052203 (2024)

[62] H. D. Liu, S. L. Wu, and X. X. Yi, Berry phase and Hannay’s
angle in a quantum-classical hybrid system, Phys. Rev. A 83,
062101 (2011).

[63] H.-T. Elze, Linear dynamics of quantum-classical hybrids,
Phys. Rev. A 85, 052109 (2012).

[64] V. Gil and L. L. Salcedo, Canonical bracket in quantum-
classical hybrid systems, Phys. Rev. A 95, 012137 (2017).

[65] M. Kantner, M. Mittnenzweig, and T. Koprucki, Hybrid
quantum-classical modeling of quantum dot devices, Phys. Rev.
B 96, 205301 (2017).

[66] C. P. Slichter, Principles of Magnetic Resonance, Springer Se-
ries in Solid-State Sciences Vol. 1 (Springer, Berlin, 1978).

[67] G. P. Berman, D. I. Kamenev, and V. I. Tsifrinovich, Sta-
tionary cantilever vibrations in oscillating-cantilever-driven adi-
abatic reversals: Magnetic-resonance-force-microscopy tech-
nique, Phys. Rev. A 66, 023405 (2002).

[68] Q. Zhang and B. Wu, General approach to quantum-classical
hybrid systems and geometric forces, Phys. Rev. Lett. 97,
190401 (2006).

[69] N. Lenzing, A. I. Lichtenstein, and M. Potthoff, Emergent non-
Abelian gauge theory in coupled spin-electron dynamics, Phys.
Rev. B 106, 094433 (2022).

[70] H. J. Mamin, R. Budakian, B. W. Chui, and D. Rugar, Detec-
tion and manipulation of statistical polarization in small spin
ensembles, Phys. Rev. Lett. 91, 207604 (2003).

[71] D. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, Single
spin detection by magnetic resonance force microscopy, Nature
(London) 430, 329 (2004).

[72] S. Weinberg, Precision tests of quantum mechanics, Phys. Rev.
Lett. 62, 485 (1989).

[73] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,
Classification of topological insulators and superconductors in
three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[74] S. N. Biswas, A realization of Berry’s non-Abelian gauge field,
Phys. Lett. B 228, 440 (1989).

[75] M. Elbracht, S. Michel, and M. Potthoff, Topological spin
torque emerging in classical spin systems with different
timescales, Phys. Rev. Lett. 124, 197202 (2020).

052203-9

https://doi.org/10.1103/PhysRevA.83.062101
https://doi.org/10.1103/PhysRevA.85.052109
https://doi.org/10.1103/PhysRevA.95.012137
https://doi.org/10.1103/PhysRevB.96.205301
https://doi.org/10.1103/PhysRevA.66.023405
https://doi.org/10.1103/PhysRevLett.97.190401
https://doi.org/10.1103/PhysRevB.106.094433
https://doi.org/10.1103/PhysRevLett.91.207604
https://doi.org/10.1038/nature02658
https://doi.org/10.1103/PhysRevLett.62.485
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1016/0370-2693(89)91574-8
https://doi.org/10.1103/PhysRevLett.124.197202

