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The certification of quantum nonlocality, which has immense significance in designing device-independent
technologies, confronts severe experimental challenges. Detection loopholes, originating from the unavailability
of perfect detectors, are one of the major issues among them. In the present study we focus on the minimum
detection efficiency (MDE) required to detect various forms of genuine nonlocality, originating from the type
of causal constraints imposed on the involved parties. In this context, we demonstrate that the MDE needed
to manifest the recently suggested T2-type nonlocality deviates significantly from perfection. Additionally, we
have computed the MDE necessary to manifest Svetlichny’s nonlocality, with the state-independent approach
markedly reducing the previously established bound. Finally, considering the inevitable existence of noise we
demonstrate the robustness of the imperfect detectors to certify T2-type nonlocality.
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I. INTRODUCTION

Over the past 30 years, a distinctive category of
information theory has emerged popularly known as device-
independent (DI) technology, which surpasses several limita-
tions of classical physics [1–13]. Admittedly, the foundational
constituent behind such an ever expanding architecture was
implanted in the seminal results of J. S. Bell [14,15], which
derives a testable criterion for certifying the nonlocal aspect
of any operational theory. In a nutshell, the nonlocality is a
signature of multipartite correlations, incompatible with the
classical outlook of the causal constraints imposed on the
involved parties. For example, the pioneering nonlocality test
as proposed by Clauser-Horne-Shimony-Holt (CHSH) con-
siders a bipartite scenario, where spatially separated agents,
supplemented with some nonsignalling correlation, are asked
to produce a dichotomic random variable depending upon
their individual classical inputs [16]. Finally, an inequality,
in the form of their input-output statistics, is established. The
violation of this inequality apparently leads to a contradiction
with the causal constraint imposed on their individual
input-output generation. However, relaxing the local-realistic
description of their shared correlation, it is possible to explain
the violation even under the same causal structures. This
in turn certifies the nonlocal signature of that correlation.
In the multipartite scenario, the event of local input-output
generation for each of the parties can share various forms of
causal constraints. (For the rest of the paper, whenever we say
that the causal constraints imposed on some of the parties, it
means that the same is imposed on the events of their local
input-output generations.) Operationally, some of the parties
may be allowed to communicate with each other but not with
the rest. With an increasing number of parties, evidently, the
possibility of such constraints and the associated complexities

highly increases. In the most basic multipartite scenario, three
spatially separated parties are asked to generate local random
variables depending upon the input given to them locally. On
the other hand, when there is no causal constraint imposed
on two of the parties (personified as Bob and Charlie), then
their local input-output statistics should be factorized between
Alice vs Bob-Charlie when their measurements are spacelike
separated from that of Alice. While any of their obtained
statistics compatible with such a scenario is termed as bilocal
(BL) correlations, an apparent contradiction of the same can
be characterized by an inequality proposed by Svetlichny [17]
and coined as genuinely nonlocal. In a more complicated
scenario, one may further consider a temporal ordering in
the input-output generation of the parties Bob and Charlie.
Intuitively, this allows Charlie to make a redundant signaling
to Bob when he is in the causal future of Bob and vice versa. It
is instructive that such a causal constraint is stronger than that
of the earlier one. Accordingly, the set of correlations compat-
ible with these constraints, namely, the time-ordered bilocal
(TOBL) correlations are strictly included in the set of BL cor-
relations [18]. In isolation, the characterization of BL correla-
tions has emerged over the past decade when an operational
inconsistency of the Svetlichny’s definition of bilocality is
reported, and it has further fueled the development of various
refined causal structures on genuine nonlocality [18,19,20].

Interestingly, quantum theory exhibits the signature of non-
locality in its simplest possible bipartite scenario. However,
in the recent era of many-body physics, the importance of
multipartite quantum correlations such as entanglement and
nonlocality cannot be overemphasized. Notably, the genuine
nonlocality has garnered significant attention, primarily ow-
ing to its implications in device-independent random number
generation (DIRNG), device-independent quantum key dis-
tribution (DIQKD), and device-independent certification of
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genuine entanglement [21–27]. However, the experimental
certification of the potential nonlocal signature of quantum
correlations encounters serious challenges due to the possible
loopholes in Bell test. One such major operational loophole
is the detection loophole, which emerges due to an inefficient
photon detector, used to record the local input-output statistics
obtained by each of the spatially separated agents. In particu-
lar, there are possible instances where the imperfect detector
may yield no click, i.e., an inclusive outcome. While one
might consider overcoming this issue by simply discarding
the no-click outcomes, such postselection requires an addi-
tional assumption, specifically the fair-sampling assumption.
Without this assumption, even a local hidden variable model
can violate Bell inequalities [28]. A more comprehensive and
appropriate approach to addressing this challenge is to regard
the no-click event as a potential valid outcome achievable
during the Bell test. The second approach needs a cutoff on the
detection efficiency to observe nonlocality. However, given
an entangled state, accompanied by a set of observables may
require further bound on the minimum detection efficiency.
For instance, the Bell test involving two qubit maximally
entangled state demands 83% detection efficiency, while a
nonmaximally entangled state needs 67% [29–31]. Moreover,
motivated by the experimental setup, a minimum detector
efficiency for the asymmetric bipartite Bell test has also
been reported [32,33]. The study of such bipartite nonlocality
tests under inefficient detectors has gained further importance
by developing a series of sophisticated experimental setups
[34–38]. In spite of having several foundational and practical
importance, in the multipartite scenario the nonlocality test
with inefficient detectors is mostly restricted to its simplest
form [39,40], with a recent addition for the Svetlichny-type
genuine nonlocality test [41,42].

On the other hand, the resource theoretic construction of
quantum nonlocality contradicts the existence of a unique
nonlocal measure, even in its simplest scenario [43]. This fur-
ther motivates us to investigate possible detection efficiencies
for other possible tests of genuine nonlocality by imposing
different causal constraints on the involved parties [18,19,20].
In this work, we consider various possibilities of nonlocality
tests and derive the minimal possible sophistication one may
require for the detectors to certify genuine nonlocality in the
proposed scenario. With a brief discussion about the related
genuine nonlocalities in Sec. II, we have formally introduced
the relevant quantities in detection loophole-free nonlocality
tests in Sec. III. Thereafter, we have established the nec-
essary and sufficient conditions on detectors to demonstrate
genuine nonlocality of the T2 kind in Sec. IV. Notably, the
results derived in this section encapsulate an experimentally
motivated scenario for hybrid entanglement, where different
quantum particles are allowed to be entangled via interpar-
ticle interactions [44–47]. Following this, a brief analysis
of noise robustness has been presented for inefficient de-
tectors. This analysis hints at a complementary relationship
between detection efficiency and the potential range of one-
parameter quantum settings (i.e., the state alongside triplets of
measurement pairs) required to exhibit genuine nonlocality,
particularly in the presence of unavoidable noise. Subse-
quently, through a state-independent generalized study, we
have significantly reduced the previously established bound

on detection efficiency for the Svetlichny-type nonlocality test
in Sec. V. Finally, in Sec. VI we have concluded and discussed
the further directions stemming from our work.

II. GENUINE NONLOCALITY UNDER VARIOUS
CAUSAL CONSTRAINTS

Consider the simplest multipartite scenario, where three
spatially separated agents perform local operations on their
individual subsystems. Further, their space-time relation is re-
stricted in such a way that no more than two of them can reside
in the same light cone. As a consequence, any local-realistic
hidden variable description simulating their local input-output
statistics must be factorized in some convex combination of all
three bipartitions. This in essence reads

P(abc|xyz) =
∑

λ

qλ Pλ(ab|xy) Pλ(c|z)

+
∑

μ

qμ Pμ(ac|xz) Pμ(b|y)

+
∑

ν

qν Pν (bc|yz) Pν (a|x), (1)

where {x, y, z} and {a, b, c} are the inputs and the outputs
for the three parties: Alice, Bob, and Charlie, respectively.
On a side note, throughout the paper, we have often used
the symbols {A, B,C} to denote the inputs. Also, 0 �
qλ, qμ, qν � 1 are the respective probabilities compatible with
the causal constraint and

∑
λ qλ + ∑

μ qμ + ∑
ν qν = 1. In

1987, Svetlichny pointed out that all possible correlations
that can be decomposed in the form of Eq. (1) respect the
following inequality over their operational statistics [17]:

− 〈A0B0C0〉 − 〈A1B0C0〉+ 〈A0B1C0〉 − 〈A1B1C0〉 − 〈A0B0C1〉
+ 〈A1B0C1〉 − 〈A0B1C1〉 − 〈A1B1C1〉 � 4, (2)

where Ai, Bj,Ck with {i, j, k} ∈ {0, 1} denote the measure-
ments performed by Alice, Bob, and Charlie respectively. We
also use the notation 〈AiBjCk〉 to denote the expectation value
of the two-outcome {±1} measurements performed by the
respective parties on their local constituents. In contrast, any
correlation violating the above inequality (2) can be charac-
terized as Svetlichny-type genuine nonlocal.

It is instructive that for the above scenario the parties, shar-
ing a common light cone (say, Bob and Charlie), are free to
communicate with each other. However, such a relaxed causal
constraint allows them to establish a bipartite nonlocality with
Alice. With this operational inconsistency, one may further
impose a definite causal order between input-output genera-
tion of Bob and Charlie, which, in effect, allows only a single
direction of relevant communication between them [18,19].
Any correlation compatible with such a constraint is referred
to be T2 local and admits the following decomposition:

P(abc|xyz) =
∑

λ

qλPTAB
λ (ab|xy)Pλ(c|z)

+
∑

μ

qμPTAC
μ (ac|xz)Pμ(b|y)

+
∑

ν

qνPTBC
ν (bc|yz)Pν (a|x), (3)
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where {x, y, z} and {a, b, c} are the same as Eq. (1). The joint
term pTAB

λ (ab|xy) = pA<B
λ (ab|xy) if the local statistics obtained

by Alice is in the causal past of Bob and pTAB
λ (ab|xy) =

pB<A
λ (ab|xy) when the order is reversed. All the other bi-

partite marginals can also be explained in a similar fashion.
Notably, in both cases, there is (at most) one-way signal-
ing. This refinement seems to offer a potential solution
to sidestep the earlier mentioned issues that might arise
within the Svetlichny scenario. Now if a probability dis-
tribution p(abc|xyz) can be written in the form (3), then
it is said to be T2 local, otherwise it is called genuinely
three-way nonlocal. In [19] the authors proposed an ex-
perimentally testable criteria to verify the compatibility of
a tripartite correlation with such a time-ordered space-time
structure:

BT2 := − 2{P(00|A1B1) + P(00|B1C1) + P(00|A1C1)}
− P(000|A0B0C1) − P(000|A0B1C0)

− P(000|A1B0C0) + 2P(000|A1B1C0)

+ 2P(000|A1B0C1) + 2P(000|A0B1C1)

+ 2P(000|A1B1C1) � 0, (4)

where Ax, By,Cz are the dichotomic local observables with
possible outcomes {0, 1}. A violation of the inequality
(4) certifies the genuine nonlocality possessed by the
correlation.

III. MINIMUM DETECTION EFFICIENCY

The requirement of a loophole-free experimental test for
nonlocality can be classified into two different aspects: First,
from the information theoretic perspective, it is required to
obtain a nonlocal statistics out of a black box promising to
generate a particular form of correlation or state. On the
other hand, with a goal of distributing secret keys or, of
generating random numbers, one may be eager to certify
the nonlocal signature of an operational theory in a device-
independent manner. Notably, while the first one conceives a
state-dependent outlook, the latter one asks about the nature of
the theory regardless of any possible preparations. These two
different perspectives demand different forms of experimental
sophistication, one of which is the efficiency of the detectors.
However, in the following we will see that the latter one
emerges as the optimized value of the earlier one, over all
possible quantum states and measurements.

Let us consider one such Bell-inequality B for a nonlo-
cality test, which is supposed to be verified on an N-partite
entangled state ρ with ith party performing mi numbers of
incompatible measurements Mi := {M1, . . . , Mmi}. Then the
detection efficiency required for such a test is said to be the
cutoff detection efficiency (CDE) and is denoted as

ηB := ηB(
ρ, {Mk}N

k=1

)
. (5)

However, the minimum detection efficiency (MDE) for the
same Bell test B can be identified as

ηB
min = inf

ρ,{Mk}N
k=1

ηB(
ρ, {Mk}N

k=1

)
, (6)

where the infimum is over the set of all possible N-partite
entangled density matrices acting on the joint Hilbert space
H and {Mk}N

k=1 are the set of all possible mk incompatible
measurements for the kth cite. Notably, CDE is a quantity
of interest for the self-testing scenario, while MDE can be
assigned with the device-independent certification of nonlo-
cality in quantum theory.

Generally, the CDE is a very complicated nonlinear func-
tion of both states and measurements. Hence, the optimization
involved in (6) is highly nontrivial, and the characterization
of MDE for an arbitrary Bell-test becomes very challenging
in general. However, motivated by the device-independent
architectures and their implications, in the present work we
derive the MDE for the detection of various tripartite genuine
nonlocality. In particular, for the T2-type nonlocality test we
estimate ηmin bypassing the optimization complexities related
to CDE, while for the Svetlichny-type test, we adopt a rigor-
ous numerical optimization.

Furthermore, in a real-life experimental setup, things be-
come more intricate due to the inevitable existence of noise.
If by {p} one denotes the set of parameters defining the noise,
Eq. (6) is modified as

ηB
min({p}) = inf

ρ,{Mk}N
k=1

ηB(
ρ, {Mk}N

k=1, {p}). (7)

Clearly, in the laboratory the efficiencies of the detectors must
follow the relation η > ηB

min({p}).

IV. MDE FOR GENUINE NONLOCALITY

Let us begin with a stronger causal constraint where the
parties residing in the same light cone are bounded with a
definite causal order to generate their local input-output statis-
tics. As mentioned earlier, the incompatibility of a correlation
in such a scenario can be certified by the violation of the
inequality (4). To establish such a genuine three-way nonlo-
cal signature of shared quantum correlation, we consider a
situation where the associated parties will perform the local
measurements with inefficient detectors with corresponding
efficiencies ηA, ηB, and ηC . The following lemma derives the
minimum requirement for detection efficiencies to violate (4).

Lemma 1. The spatially separated parties would be able to
certify genuine three-way nonlocality in terms of the inequal-
ity BT2 , when the following condition holds:

(4ηAηBηC − ηAηB − ηAηC − ηBηC ) > 0. (8)

Proof. From now onward, we will use P′(O|X ) and
P(O|X ) for theoretical and observed probability, respectively,
where input variable X produces output variable O. Assuming
the independence of each of the individual local detectors the
observed probability for each individual can depend only upon
the corresponding theoretical probability and the detection
efficiency of the local detector. Now, if all the parties agree
to assume O ≡ 1 for the no-click instances, then P(O|X ) =
ηP′(O|X ), only when O ≡ 0. This readily implies

P(000|A1B1C1) = ηAηBηCP′(000|A1B1C1)

� ηAηBηC min
X

P′(00|X ),

where X ∈ {A1B1, B1C1, A1C1}.
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Again,

P(000|A1B1C0) − P(00|A1B1)

= ηAηBηCP′(000|A1B1C0) − ηAηBP′(00|A1B1)

� ηAηBηCmin
X

P′(00|X ) − ηAηBmin
X

P′(00|X ),

where the last inequality holds since P(000|A1B1C0) −
P(00|A1B1) � 0 and ηC, ηA, ηB � 1. Deriving the similar
inequalities for the other pair of terms P(000|A1B0C1) −
P(00|A1C1) and P(000|A0B1C1) − P(00|B1C1), we can
rewrite the violation of BT2 (4) as

(4ηAηBηC − ηAηB − ηAηC − ηBηC ) min
X

P′(00|X ) > 0

⇒ (4ηAηBηC − ηAηB − ηAηC − ηBηC ) > 0. (9)

Hence, the above condition among the detector effi-
ciencies becomes necessary to exhibit genuine three-way
nonlocality. �

Note that the derivation of the condition (9) is com-
pletely algebraic, without invoking any explicit structure of
quantum theory. At this point, a pertinent question natu-
rally arises regarding the sufficiency of the inequality (9)
within the quantum theory—in other words, whether every
triplet of {ηA, ηB, ηC}, satisfying 4ηAηBηC − ηAηB − ηAηC −
ηBηC > 0, corresponds to CDE for BT2 . In the following, we
will answer this question affirmatively.

Lemma 2. For every possible triplet of detection efficien-
cies {ηA, ηB, ηC} with (4ηAηBηC − ηAηB − ηAηC − ηBηC ) >

0, there exists a single-parameter (θ ) quantum setting which
violates the BT2 inequality.

By the single-parameter (θ ) quantum setting we mean a
class of genuinely entangled states along with two incompat-
ible dichotomic measurements for each individual party, both
parameterized by a single parameter θ .

Proof. Consider the three-qubit state

|�ABC (θ )〉 =kθ

[
(|011〉 + |101〉 + |110〉)

+ (1 − 3 cos θ )

sin θ
|111〉

]
, (10)

where kθ is a function of θ , denoting the normalization of
the state. Each party performs an identical set of incompatible
measurements in the following bases:

X0 ≡ {|0〉, |1〉},
X1 ≡ {cos θ |0〉 + sin θ |1〉, sin θ |0〉 − cos θ |1〉},

where X ∈ {A, B,C}. Such a measurement setting readily
implies

P(000|AiBjCk ) = 0,

where at least two of {i, j, k} equals 0. On the other hand when
two of {i, j, k} equals 1, probabilities reduce to

P(000|AiBjCk ) = ηAηBηCk2
θ sin4 θ,

and the following marginals become

P(00|X1Y1) = ηX ηY k2
θ sin4 θ

(
1 + tan2 θ

2

)
,

where X �= Y ∈ {A, B,C}.

Replacing the above expressions for the imperfect detec-
tors, the l.h.s. of the inequality (4) reduces to the following:

k2
θ sin4 θ

[
4ηAηBηC − ηAηB − ηBηC − ηAηC

− tan2 θ

2
(ηAηB + ηBηC + ηAηC )

]
.

Therefore, to violate the inequality(4), we must have

tan2 θ

2
<

4ηAηBηC − ηAηB − ηBηC − ηAηC

ηAηB + ηBηC + ηAηC
.

Therefore, for every possible value of {ηA, ηB, ηC}, satisfy-
ing the condition 4ηAηBηC − ηAηB − ηBηC − ηAηC > 0 it is
possible to find a range of θ for which a three-way genuine
nonlocality can be certified experimentally. Notably, the in-
equality on the detection efficiencies is strict, otherwise one
may consider θ = nπ, n ∈ Z and the measurements X0 and
X1 will become compatible. �

Now, we are at the position to estimate the MDE to exper-
imentally certify the BT2 nonlocality.

Theorem 1. The MDE’s for BT2 for each of the party satisfy
the following relation:

4
(
η
BT2
min

)
A

(
η
BT2
min

)
B

(
η
BT2
min

)
C

−
(
η
BT2
min

)
A

(
η
BT2
min

)
B

−
(
η
BT2
min

)
A

(
η
BT2
min

)
C

−
(
η
BT2
min

)
B

(
η
BT2
min

)
C

= 0.

Proof. The proof simply follows from Lemma 1 and 2.
Note that Lemma 1 gives a necessary condition that must
be satisfied by the three detectors whenever they are used
to detect BT2 nonlocality. On the other hand, it is shown in
Lemma 2 that for any triplet of detectors with their efficiencies
satisfying the condition (9), there exists a genuinely entan-
gled quantum state along with a pair of measurements for
each cite, whose BT2 nonlocality violation can be certified
experimentally. In other words, every possible triplet of de-
tection efficiencies, satisfying condition (9), can be regarded
as a CDE for BT2 nonlocal inequality. Finally, following the
definition of MDE in Eq. (6), we can conclude the proof. �

Following the general MDE equation derived in Theorem
1, two different instances can be concluded. For the case of
symmetric detection efficiencies, i.e., ηA = ηB = ηC = η, the

inequality (4) can be violated if and only if η > η
BT2
min = 75%.

On the other hand, when a hybrid entanglement between
different quantum particles is observed, then the MDE for
each of the particles may demand different experimental so-
phistication. In such a scenario, if two of the detectors work
perfectly, say, ηA = ηB = 100%, then the inequality (4) can

be violated if and only if ηC > (η
BT2
min )C = 50%. Therefore,

having perfect detectors for all three parties is not imperative.
Indeed, with two of them being perfect, the genuine nonlo-
cality can be established even if the imperfect one correctly
detects the particle only half of the times. On the other hand,
if none of the detectors is found to be perfect, then to detect
such a nonlocal correlation each of the detectors must detect
the particles with atleast 75% efficiency.
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(a) (b)

FIG. 1. Noise robust MDE for BT2 nonlocality. (a) η vs θ plot for different p. The solid black curve represents MDE, i.e., η
BT2
min . The

detector should have detection efficiency within the shaded (color online) region to exhibit T2 nonlocality. (b) Three-parameter plot of p vs θ

vs η
BT2
min . It shows that BT2 is fairly noise-tolerant (up to roughly 1.6%). Both figures have been drawn considering the symmetric case, i.e., for

ηA = ηB = ηC = η.

Background noise

While the above analysis is restricted to pure entangled
states, in the practical experimental setup the existence of
background noise becomes unavoidable. The presence of
noise in a preparation device is generally regarded as a junk
state, prepared with a significantly low frequency. Without
having any prior knowledge about the noise, a randomization
over all possible junk states can be assumed as noise. In
presence of such a white noise the tripartite state takes the
form

ρABC = (1 − p)|�(θ )〉〈�(θ )|ABC + p

8
I,

where the state |ψ (θ )〉 is same as in Eq. (10). Naturally, the
MDE η

BT 2
min (θ, p) [as introduced in Eq. (7)] becomes highly

nonlinear function. However, we show that with a reasonable
amount of detection efficiency 0.92 � ηBT 2 � 0.96, one can
expect tolerance even up to 1.6% background noise (see Fig. 1
for details).

V. MDE FOR SVETLICHNY’s NONLOCALITY

We will now consider a genuine nonlocality experiment
with relaxed causal constraints on involved parties, i.e., by
invoking no-time orderings among their local input-output
generation. The violation of Svetlichny’s inequality (2) serves
as a prominent benchmark for illustrating any incompati-
bility with such a causal structure and is identified as a
Svetlichny-type genuinely nonlocal correlation. However, the
experimental sophistication required to certify such a viola-
tion is pretty high: almost 97% of CDE for a three-particle
GHZ state [41]. In the following, we will first derive an
expression for CDE, depending on the statistics obtained by
the individual parties. Thereafter, we numerically estimate the
MDE considering any possible tripartite entangled prepara-
tion, which is significantly lower than the bound obtained
in [41].

Let us first express the inequality (2) in terms of the prob-
abilities of the outcomes. Relabeling the outcomes of each

measurement {±1} 	→ {0, 1}, we can rewrite the inequality as

4 + 8[m010 + m101 − (m000 + m001 + m011 + m100 + m110

+ m111)] + 8[q00 + q11 + r01 + r10 + s00 + s11]

− 4[a0 + a1 + b0 + b1 + c0 + c1] � 4, (11)

where

mi jk = P(000|AiBjCk ), qi j = P(00|AiBj ),

r jk = P(00|BjCk ), sik = P(00|AiCk ), ai = P(0|Ai ),

b j = P(0|Bj ), ck = P(0|Ck ),∀i, j, k ∈ {0, 1}.
Theorem 2. For the Svetlichny-type nonlocality

test, with symmetric detectors, the CDE becomes

ηS =
√

β2+4|α|γ−sgn(α)×β

2|α| , where

β := 2
∑
i, j,k

[(i ⊕ j)qi j + ( j ⊕ k)ri j + (i ⊕ k)sik],

α := 2
∑
i, j,k

(−1)(ī. j̄+ j.k+i.k̄)mi jk, γ :=
∑
i, j,k

(ai + b j + ck ),

sgn(α) = 1, for α � 0 and sgn(α) = −1, otherwise.

Proof. The Svetlichny’s inequality, in the form (11), can be
violated with a properly chosen quantum setting, whenever

8[m010 + m101 − (m000 + m001 + m011 + m100 + m110

+ m111)] + 8[q00 + q11 + r01 + r10 + s00 + s11]

− 4[a0 + a1 + b0 + b1 + c0 + c1] > 0.

Now, consider the situation where all three imperfect detectors
are of the same detection efficiency η. Then replacing all the
theoretical probabilities with the observed probabilities, we
can rewrite the above inequality as

∑
i, j,k∈{0,1}

[
(−1)(ī. j̄+ j.k+i.k̄)2η3mi jk + 2η2

{
(i ⊕ j)qi j

+ ( j ⊕ k)r jk + (i ⊕ k)sik
} − η(ai + b j + ck )

]
> 0.
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The detection efficiency being always positive, the above in-
equality simplifies to

αη2 + βη − γ > 0,

where α, β, and γ are same as defined earlier.
Note that any quantum settings that exhibit Svetlichny-type

nonlocality must satisfy the above inequality at least for η =
1, i.e., for the perfect detector. Hence α + β + γ > 0. This,
together with the fact that β � 0 and γ � 0, provides η =√

β2+4|α|γ−sgn(α)×β

2|α| for satisfying the equation αη2 + βη −
γ = 0. Note that the sgn(α) function incorporates that α

can be either positive or negative. Finally, noting that all
the parameters α, β, γ are the parameters generated from the
quantum settings, i.e., state and measurements, we can iden-
tify η as ηS—the CDE for Svetlichny-type nonlocality test. �

Notably, unlike Theorem 1, the bound derived in Theorem
2 involves only the symmetric scenario, i.e., where all three
detectors are of the same detection efficiency. Optimizing over
all possible quantum settings numerically, it can be shown that
the ηS

min � 88.1% is sufficient for demonstrating Svetlichny-
type nonlocality [48]. Additionally, when two of the detectors
are perfect, then the numerical optimization reveals that the
MDE corresponds to the third detector is (ηS

min)C � 51% [48].

VI. DISCUSSION

In summary, we have estimated the minimum detection
efficiency required for loophole-free tests of various forms of
genuine nonlocality exhibited by multipartite quantum sys-
tems. In particular, taking the operational framework into
account we have investigated both the time-ordered (T2) gen-
uine nonlocality, as well as the traditional Svetlichny-type
genuine nonlocality tests. To this goal, we have primarily
introduced the notion of cutoff detection efficiency which
explicitly depends upon the quantum settings used to demon-
strate a particular Bell nonlocality. Then systematically we
have reached the minimum detection efficiency for the con-
cerned nonlocality experiment, optimizing over all possible
quantum states and measurement settings. Within this frame-
work, our study reveals that, to demonstrate loophole-free T2

nonlocality in symmetric cases, a detection efficiency of 75%
at each site is both necessary and sufficient. This requirement
can be relaxed to 50% when any two out of the three parties
possess perfect detection efficiency. Interestingly, our results
suggest that achieving the MDE for violating T2 inequality is
more feasible in the scenarios where the correlations nearly
breach the inequality, instead of demonstrating the maximal
violations. Further, we have shown that in the presence of a
significantly low white noise, the range of quantum settings
showing T2 nonlocality sharply decreases. Nevertheless, for
the given inefficient detectors and a permissible noise limit,
our analysis characterizes the range of quantum settings viable
to exhibit genuine nonlocality in experiments. On the other
hand, we have also established that a detection efficiency
of 88.1% is deemed sufficient for demonstrating Svetlichny
nonlocality, which is well below the previously estimated one.

Though Svetlichny’s inequality and T2 inequality both are
distinct facets of the set of the T2 correlations, the set of all T2

local correlations is a strict subset of that of the Svetlichny-
local correlations. This in turn admits that the correlations
violating Svetlichny’s inequality are stronger than those vio-
lating the T2 inequality and hence demand more sophistication
in the involved experimental setup. Thus, as a consequence of
our results, the investigation and comparison of MDE across
distinct nonlocal classes can emerge as a compelling avenue
for future research.
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