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Quantum interface for telecom frequency conversion based on diamond-type atomic ensembles
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In a fiber-based quantum network, the utilization of the telecom band is crucial for long-distance quantum
information (QI) transmission between quantum nodes. However, the near-infrared wavelength is identified as
optimal for storing and processing QI through alkaline atoms. Recognizing the challenge of efficiently bridging
the frequency gap between atomic quantum devices and telecom fibers while maintaining the QI carried by
photons, quantum frequency conversion (QFC) serves as a pivotal quantum interface. In this study, we explore an
efficient telecom-band QFC mechanism based on diamond-type four-wave mixing (FWM) with rubidium energy
levels. The mechanism enables the conversion of photons between the near-infrared wavelength of 795 nm
and the telecom band of 1367 or 1529 nm. Using the Heisenberg-Langevin approach, we optimize conversion
efficiency (CE) across varying optical depths while considering quantum noises and present corresponding
experimental parameters. Unlike previous works neglecting the applied field absorption loss, our results are
more relevant to practical scenarios. Moreover, by employing the reduced-density-operator theory to construct
a theoretical framework, we demonstrate that this diamond-type FWM scheme can maintain the quantum
characteristics of input photons with high fidelity, such as quadrature variances and photon statistics. Importantly,
these properties remain unaffected by vacuum field noise, enabling the system to achieve high-purity QFC.
Another significant contribution lies in examining how this scheme impacts QI encoded in photon-number,
path, and polarization degrees of freedom. These encoded qubits exhibit remarkable entanglement retention
under sufficiently high CE. In the case of perfect CE, the scheme can achieve unity fidelity. This comprehensive
exploration establishes a theoretical foundation for the application of the diamond-type QFC scheme based on
atomic ensembles in quantum networks, laying essential groundwork for advancing the scheme in distributed
quantum computing and long-distance quantum communication.
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I. INTRODUCTION

Quantum networks play a crucial role in enabling dis-
tributed quantum computing and quantum communication
[1–5]. In a quantum network, quantum information (QI)
undergoes processing [6–12] and storage [13–19] within in-
dividual quantum nodes. These nodes interconnect through
quantum channels, ensuring the transport of quantum states
with high fidelity and facilitating entanglement distribution
across the network [20–23]. However, quantum devices may
operate at distinct optical frequencies, which might not align
with the frequency range of fiber-optic communications [24],
causing significant QI loss over long-distance transmission.
Quantum frequency conversion (QFC) serves as a solution to
manipulate the optical frequency of photons while preserving
QI with high fidelity [25]. Implementing a telecom-band QFC
scheme becomes crucial to enable devices operating at non-
communication frequencies to exchange QI through optical
fibers with minimal loss and maximum fidelity [26–32].

QFC undergoes validation across various platforms and
is typically implemented through one of three approaches:
utilizing a χ (2) nonlinear crystal, a χ (3) nonlinear crystal, or
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a χ (3) atomic ensemble. In the first approach, a χ (2) nonlinear
crystal is employed, with the system typically operating far
from resonance, resulting in negligible spontaneous emission
loss. However, this method necessitates a strong pumping
laser to ensure sufficient atom-field interactions, leading to
the occurrence of noise pollution [33,34], thereby diminish-
ing the fidelity of the converted field. While weak pumping
power requirements can be met using a cavity [35–39] or
a waveguide [40–44], effectively suppressing noise pollu-
tion remains a challenging task. In the second method of
employing a χ (3) nonlinear crystal, the system remains far
from resonance. However, to suppress the influence of the
undesired symmetric-conversion channel [45], the symmetry
between the channels must be broken. Feasible solutions, such
as crystal fibers [46–48] or microresonators [49–51], intro-
duce additional insertion photon loss, consequently reducing
the overall efficiency of the conversion system. The third
approach of utilizing a χ (3) atomic ensemble involves lower
pumping power requirements compared to other platforms, as
the system operates under a near-resonant condition. This con-
dition ensures negligible pump-induced noise pollution [52].
Although the atom-field interactions within the undesired con-
version channel are negligibly weak, allowing for its exclusion
from consideration, the near-resonant condition also results in
spontaneous emission loss, consequently reducing the conver-
sion efficiency (CE). The introduction of electromagnetically
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induced transparency (EIT) [53–57] efficiently suppresses
disturbances from the vacuum field reservoir, leading to a
reduction in spontaneous emission loss [58–61]. Furthermore,
EIT significantly enhances the nonlinear interaction between
atoms and photons, enabling the system to achieve efficient
QFC [62,63].

In this paper, we explore a near-resonant QFC scheme
utilizing diamond-type four-wave mixing (FWM) in rubidium
atomic ensembles [64–66]. The suppression of spontaneous
emission loss is achieved through the cascade-type EIT struc-
ture [67] within the diamond-type system, resulting in a highly
efficient conversion process. The conversion wavelengths of
photons are determined by the FWM process. Specifically,
we choose transition schemes that convert the wavelength of
photons between near-infrared 795 nm and the telecom band
of 1367 nm (telecom E-band) or 1529 nm (telecom C-band).
The former is ideal for quantum computation [68–72] and QI
storage [73–77] through rubidium atoms, while the latter is
well suited for a fiber-based QI network. Notably, this QFC
scheme can be integrated with the Duan-Lukin-Cirac-Zoller
(DLCZ) quantum repeater protocol [78–80]. Although a theo-
retical model for this QFC scheme was previously established
for semiclassical quantities, such as transmittance and CE
[81,82], the applied field absorption loss was neglected in that
model. Our study reveals the limitation of this simplification
in the high CE regime. Importantly, the previous model lacked
a theoretical framework to characterize the quantum proper-
ties of this system.

We utilize the Heisenberg-Langevin approach [83] and the
reduced-density-operator method [84] to construct a quan-
tum model that provides a quantum-mechanical description
of the conversion process. The general form of the ladder
operators for the quantized fields is derived with consideration
of both the Langevin noise and the applied field absorption
loss. This derivation offers a more comprehensive descrip-
tion of the diamond-type QFC scheme. The transmittance
and CE are derived for frequency down- and up-conversion,
and we identify the parameters that maximize the CE at
different optical depths (ODs). The transition schemes for
optimizing the CE are selected to ensure that the transition
of the D2 line is a cycling transition, and the optimized CE
is the maximum among all possible energy-level configu-
rations. We also argue for the necessity of considering the
applied field absorption loss by analyzing the optimization
curves.

Quantum properties of the converted field, including
quadrature variances, photon statistics, and fidelity, are thor-
oughly discussed, and their exact forms are derived for any
arbitrary input field. In the context of QFC, which serves as
a quantum interface bridging diverse photonic wavelengths,
it is crucial to highly preserve the encoded QI in qubits
during the conversion process. We are the first to theoreti-
cally demonstrate that, in a diamond-type QFC system, the
conversion scheme effectively retains the QI encoded in the
photon-number, path, and polarization degrees of freedom
(DOFs). These encoded qubits demonstrate notable entangle-
ment retention under sufficiently high CE. In the scenario of
perfect CE, the scheme achieves unity fidelity. Moreover, both
the CE and fidelity remain resilient against noise introduced
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FIG. 1. Diamond-type atomic ensemble QFC system.
(a) Energy-level diagram illustrating the QFC scheme and the
corresponding transitions for the four participating fields. Note
that no degenerate states of the energy levels are considered here.
However, in Sec. III B, we delve into the actual energy-level
configurations. (b) Schematic diagram illustrating the propagation
directions of the participating fields. All light fields propagate in
the same direction, nullifying the phase mismatch in the system.
The presented scenario involves frequency down-conversion, where
the probe field is transformed into the signal field. Conversely,
up-conversion proceeds in the opposite manner, converting the
signal field back to the probe field.

by vacuum fluctuations, allowing the system to implement
high-purity QFC.

The paper is structured as follows. In Sec. II, we use the
Heisenberg-Langevin approach to obtain the general form of
the field operators for the transmitted and converted optical
fields. In Sec. III, we derive the CE and transmittance of the
frequency down- and up-conversion, optimizing the parame-
ters to achieve the maximum CE at different ODs. In Sec. IV,
we discuss the quadrature variance of the output fields for any
arbitrary input state. The quadrature variance is calculated for
the n-photon Fock state, coherent state, and squeezed coherent
state. In Sec. V, we use the reduced-density-operator method
to obtain the quantum state of the converted field for any
arbitrary input state. The density operator and the conversion
fidelity are then further analyzed for the Fock and coherent
input states. In Sec. VI, we discuss the retention of the QI car-
ried by the single-rail, path, and polarization photonic qubits
after the diamond-type QFC process. In Sec. VII, we present
the retention of entangled qubits by extending the system to
implement an N-qubit QFC. Finally, Sec. VIII summarizes
our findings and outlines prospects for future work. The tech-
nical details and supplementary information are provided in
the Appendices.

II. QUANTUM MODEL

A. Heisenberg-Langevin approach

We consider a cold atomic ensemble comprising diamond-
type four-level atoms with a metastable ground state and three
excited states, as depicted in Fig. 1(a). The strong driving
and coupling fields are treated classically, and the field-dipole
coupling strength is described by the Rabi frequency �d (c) =
2d42(31)Ed (c)/h̄, where di j represents the electric dipole matrix
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element. The weak probe and signal fields are quantized and
can be described by ladder operators âp(s). The four partic-
ipating light fields can be multimode fields, and they are
assumed to propagate in the same direction, as depicted in
Fig. 1(b). All detunings between the fields and the atomic
resonance, denoted as �p, �c, and δ, are taken into account in
the theoretical model. By using the collective atomic operator
approach [85], the system can be described collectively. Un-
der the rotating-wave approximation and the slowly varying
amplitude (SVA) [86], the Hamiltonian of the entire system is
expressed as follows:

ĤS = −Nh̄

2L

∫ L

0
[2gpâp(z, t )σ̂21(z, t ) + �pσ̂22(z, t )

+ 2gsâs(z, t )e−i�kzσ̂43(z, t ) + δσ̂44(z, t ) + �cσ̂33(z, t )

+ �c(z, t )σ̂31(z, t ) + �d (z, t )σ̂42(z, t ) + H.c.]dz. (1)

Here, the cold atomic ensemble system we study exhibits
characteristics of a low-density dilute gas, leading us to dis-
regard the interactions between atoms. N represents the total
number of atoms, and L denotes the length of the atomic
ensemble. The phase-mismatch parameter is defined as �k =
kp + kd − ks − kc, and it is eliminated for the copropagation
case. The coupling constants between the quantized fields
and electric dipoles are denoted by gp(s) = d21(43)εp(s)/h̄,

where εp(s) =
√

h̄ωp(s)

2ε0V represents the amplitude of the quan-
tized fields. σ̂i j (z, t ) denotes the collective atomic operator
after the SVA and can be obtained by solving the following
Heisenberg-Langevin equations (HLEs) [87]:

∂σ̂i j

∂t
= i

h̄
[ĤS, σ̂i j] + R̂i j + F̂i j, (2)

where R̂i j represents the relaxation term, and F̂i j denotes the
Langevin noise operator. Additional information on the HLEs,
relaxation terms, and Langevin noise operators can be found
in Appendixes A and B. Due to the selection rules [88], the
transitions between energy levels |2〉 and |3〉 and between
energy levels |1〉 and |4〉 do not need to be considered in the
diamond-type configuration.

For the diamond-type system, the weak probe and signal
fields can both be treated as perturbation fields. We solve
the zeroth-order HLEs under the steady-state assumption
for zeroth-order populations. This assumption is reasonable
because the diamond-type QFC system has an intrinsic broad-
band nature, typically several hundred MHz, allowing for a
rapid completion of the frequency conversion process. Even
for laser-cooled cold atom systems, where atom loss typically
impacts system performance, this effect may not be significant
in diamond-type QFC because the conversion can be com-
pleted before atoms leave the region of interest. Employing
the steady-state assumption, the HLEs for σ̂11, σ̂13, σ̂22, σ̂24,
σ̂31, σ̂33, σ̂42, and σ̂44 are decoupled from the others, and
the zeroth-order solutions to these decoupled HLEs take the
following form:

σ̂
(0)
i j (z) = 〈

σ̂
(0)
i j (z)

〉 + ∑
kl

εkl (z)F̂kl (z). (3)

The expectation values of the above zeroth-order collective
atomic operators are listed as follows:〈

σ̂
(0)
11 (z)

〉 = 
31
(
γ 2

31 + 4�2
c

) + γ31|�c|2

31

(
γ 2

31 + 4�2
c

) + 2γ31|�c|2
, (4)〈

σ̂
(0)
13 (z)

〉 = i
31(γ31 + 2i�c)�c


31
(
γ 2

31 + 4�2
c

) + 2γ31|�c|2
, (5)

〈σ̂ (0)
33 (z)〉 = 1 − 〈σ̂ (0)

11 (z)〉, and 〈σ̂ (0)
31 (z)〉 = 〈σ̂ (0)

13 (z)〉∗. The ex-
pectation values of the remaining zeroth-order atomic opera-
tors are all zero. To solve for the first-order atomic operators,
we substitute the zeroth-order results into the relevant first-
order HLEs as follows:

∂

∂t
σ̂

(1)
12 = i

[
âpgp

〈
σ̂

(0)
11

〉 + 1

2
σ̂

(1)
14 �∗

d − 1

2
σ̂

(1)
32 �c

+ �pσ̂
(1)
12

]
− 1

2
γ21σ̂

(1)
12 + F̂12, (6)

∂

∂t
σ̂

(1)
14 = i

[
âsgs

〈
σ̂

(0)
13

〉
e−i�kz + 1

2
σ̂

(1)
12 �d − 1

2
σ̂

(1)
34 �c

+ δσ̂
(1)
14

]
− 1

2
γ41σ̂

(1)
14 + F̂14, (7)

∂

∂t
σ̂

(1)
32 = i

[
âpgp 〈σ̂ (0)

31 〉 + 1

2
σ̂

(1)
34 �∗

d − 1

2
σ̂

(1)
12 �∗

c

+ (�p − �c)σ̂ (1)
32

]
− 1

2
γ32σ̂

(1)
32 + F̂32, (8)

∂

∂t
σ̂

(1)
34 = i

[
âsgs

〈
σ̂

(0)
33

〉
e−i�kz + 1

2
σ̂

(1)
32 �d − 1

2
σ̂

(1)
14 �∗

c

+ (δ − �c)σ̂ (1)
34

]
− 1

2
γ43σ̂

(1)
34 + F̂34. (9)

Under the assumption of weak probe and signal fields, it is
important to note that the terms âp(s)F̂i j are relatively small
and have been neglected. We solve the four coupled first-order
HLEs [Eqs. (6)–(9)] by Fourier transforming them into the
frequency domain, thereby obtaining the frequency-domain
first-order atomic operators.

B. Field operators

To investigate the behavior of the probe and signal fields
propagating in the diamond-type QFC atomic medium, we
solve the following Maxwell-Schrödinger equations (MSEs):(

1

c

∂

∂t
+ ∂

∂z

)
âp(z, t ) = i

N

c
g∗

pσ̂
(1)
12 (z, t ), (10)(

1

c

∂

∂t
+ ∂

∂z

)
âs(z, t ) = i

N

c
g∗

s σ̂
(1)
34 (z, t )ei�kz, (11)(

1

c

∂

∂t
+ ∂

∂z

)
�c(z, t ) = iαc
31

2L
〈σ̂ (0)

13 (z)〉 , (12)

where �k = 0 under the condition of copropagation consid-
ered here. In the coupling field MSE [Eq. (12)], αc represents
the OD of the coupling field, defined as αc = nσcL, where n is
the atomic density, and σc is the scattering cross section of the
coupling field. The absorption loss of the driving field is ne-
glected because, under the condition of a weak probe field, the
atomic operator involved in the driving field MSE, σ̂24(z, t ),
is negligible. The steady-state solution to the coupling field
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MSE can be found in Appendix C; for simplicity, we denote
it as �c(z) and treat it as a function of z in the subsequent
derivation for the probe and signal fields. Next, by applying
the Fourier transform âp(s)(z, t ) = ∫∞

−∞ dω ãp(s)(z, ω)e−iωt to
the coupled MSEs [Eqs. (10) and (11)] and substituting the
first-order atomic operators derived from the HLEs, the MSEs
for the probe and signal fields in the frequency domain can be
rearranged into the following form:

∂

∂z
ãp(z, ω) = p(z, ω )̃ap(z, ω) + κp(z, ω )̃as(z, ω)

+
∑
αi

ξ p
αi

(z, ω) f̃αi (z, ω), (13)

∂

∂z
ãs(z, ω) = s(z, ω )̃as(z, ω) + κs(z, ω )̃ap(z, ω)

+
∑
αi

ξ s
αi

(z, ω) f̃αi (z, ω), (14)

where p(s)(z, ω) denotes the self-coupling coefficient and
κp(s)(z, ω) denotes the cross-coupling coefficient. In addition,

f̃αi (z, ω) =
√

N
c F̃αi (z, ω) is the normalized Langevin noise

operator, which obeys the delta correlation described in Ap-
pendix B, and αi denotes the {12, 14, 32, 34} subspace of the
atomic operators [83]; ξ

p(s)
αi (z, ω) denotes the coefficient of

noise disturbance for the system. The explicit form of the
coefficients for the two coupled equations (13) and (14) can
be found in Appendix D. We reformulate the coupled equa-
tions in matrix form and solve the first-order linear ordinary
differential equation (ODE) for the two-dimensional linear
operator with the initial condition at z = 0. The solution to
the ODE cannot be obtained directly with the integrating
factor because of the z dependence of the coefficient matrix
M(z, ω), which arises from the loss in the coupling field
�c(z). The expression for the matrix M(z, ω) can be found
in Appendix E. Instead, we used the approach introduced by
Magnus for solving the ODE [89,90]. The general solution for
the ladder operators can be obtained as follows:[̃

ap(L, ω)
ãs(L, ω)

]
= e�(L,ω)

[̃
ap(0, ω)
ãs(0, ω)

]
+ e�(L,ω)

∑
αi

∫ L

0

e−�(z,ω)

[
ξ

p
αi (z, ω)

ξ s
αi

(z, ω)

]
f̃αi (z, ω)dz, (15)

where the parametric evolution of the diamond-type system
is characterized by the term e�(L,ω). Its matrix form can be
written as

e�(L,ω) = exp

[ ∞∑
n=1

�n(L, ω)

]
≡
[

A(ω) B(ω)
C(ω) D(ω)

]
, (16)

where �n(L, ω) is the nth-order term of Magnus expansion for
the two-dimensional linear ODE. The specifics of this method
are provided in Appendix E. The simplified form for the field
operators is as follows:[̃

ap(L, ω)
ãs(L, ω)

]
=
[

A(ω) B(ω)
C(ω) D(ω)

][̃
ap(0, ω)
ãs(0, ω)

]
+
∑
αi

∫ L

0

[
Pαi (z, ω)
Qαi (z, ω)

]
f̃αi (z, ω)dz, (17)

where P(Q)αi (z, ω) characterizes the influence of noise on the
evolution of the system. Having derived the ladder operators
for the probe and signal fields, we can proceed to discuss
the CE and transmittance for both frequency down- and
up-conversion cases. The quantum properties of the diamond-
type QFC system, including quadrature variances, converted
photon statistics, and squeezed states, will be analyzed in the
subsequent sections.

III. CONVERSION EFFICIENCY

A. Steady-state condition

For simplicity, we assume that the input field has reached
a steady state; therefore, here we focus solely on the single-
frequency-mode behavior of the QFC system. The ladder
operators still follow the relation as in Eq. (17), whereas
the operators are replaced by ãp(s),ω(z) and f̃αi,ω(z). These
discretized operators are equipped with both the commutation
relation and the delta correlation [87] as follows:

[̃ap(s),ω(z), ã†
p(s),ω′ (z)] = δωω′ , (18)〈

f̃αi,ω(z) f̃α j ,ω′ (z′)
〉 = δωω′Dαi,α j δ(z − z′). (19)

First, our attention is focused on the frequency down-
conversion from the probe field to the signal field. The signal
field is initially in the vacuum state |0〉, and then at z = L, the
photon number of the signal field becomes

ns,ω(L) = 〈̃a†
s,ω(L )̃as,ω(L)〉 . (20)

By substituting the single-mode version of Eq. (17) into
Eq. (20) and applying the delta correlation of the Langevin
noise operators [Eq. (19)], the expression for the signal photon
number can be derived as follows:

ns,ω(L) = |C(ω)|2 〈̃a†
p,ω(0)̃ap,ω(0)〉

+
∑
αi,α j

∫ L

0
dz Q∗

αi
(z, ω)Qα j (z, ω)Dα

†
i ,α j

. (21)

Here, α
†
i denotes the {21, 41, 23, 43} subspace of the adjoint

atomic operators and f̃ †
αi,ω

(z) = f̃α†
i ,ω(z). In a similar manner,

the probe photon number at z = L can be obtained as follows:

np,ω(L) = |A(ω)|2 〈̃a†
p,ω(0)̃ap,ω(0)〉

+
∑
αi,α j

∫ L

0
dz P∗

αi
(z, ω)Pα j (z, ω)Dα

†
i ,α j

. (22)

The normal-order diffusion coefficients Dα
†
i ,α j

can be de-
rived using the Einstein relation [87] in conjunction with the
zeroth- and first-order atomic operators. By dropping all of
the higher-order (�2) perturbation terms, all diffusion coeffi-
cients are calculated to be zero. Further details regarding the
Einstein relations and the diffusion coefficients are provided
in Appendix B. In the steady-state condition, we can set the
frequency ω to zero, as the part where ω equals zero covers
all the results from the discretized frequency distribution.
Finally, the transmittance of the probe field and the CE of the
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FIG. 2. Optimized CE is presented as a function of OD in the
blue solid curve for both (a) telecom E-band QFC scheme and
(b) telecom C-band QFC scheme. Here, OD is defined as αp =
nσpL × 1

2 , taking into account the transition coefficient of the se-
lected transition scheme. The red solid circles represent the CE
calculated using the Magnus expansion up to the second order. The
black dotted curves show the CE curves for the model without con-
sidering the coupling field absorption loss. For the optimized five
parameters and spontaneous emission rates of the two QFC schemes,
please refer to Table I.

signal field for frequency down-conversion can be obtained as
follows:

Td = np,0(L)

np,0(0)
= |A(0)|2, (23)

ηd = ns,0(L)

np,0(0)
= |C(0)|2. (24)

For the up-conversion case, where the signal field is converted
to the probe field and the probe field is initially in the vacuum
state |0〉, a similar derivation yields the following transmit-
tance for the signal field and CE for the probe field:

Tu = ns,0(L)

ns,0(0)
= |D(0)|2, (25)

ηu = np,0(L)

ns,0(0)
= |B(0)|2. (26)

B. Conversion efficiency maximization

We plot the optimized CE curve for frequency down-
conversion using a 87Rb atomic ensemble, as shown in Fig. 2.
The CE optimization for each OD is achieved by adjusting five
parameters: �p, �c, δ, �c, and �d . This adjustment is carried
out in a way that maximizes the CE while ensuring a continu-
ous variation of the optimized parameters as the OD increases.
We can always find a higher CE for any OD by continuously
increasing the detunings and Rabi frequencies while adjusting
them appropriately; however, the resulting increase in CE is
minuscule. On the other hand, by constraining the parameter
ranges, we can also identify other suitable combinations of
parameters that achieve only a slightly lower CE. Note that
the black dotted curves plotted here do not account for the
absorption loss of the coupling field. Although the lossless
model can achieve similar CE under the same OD, its optimal
parameters differ from those obtained from the loss model that
describes the actual system. In other words, using parameters
corresponding to the lossless model to evaluate the experi-
mental system would lead to misleading results. Therefore,

the parameters used to plot the theoretical curves in Fig. 2 are
all obtained from the optimal parameters of the loss model.
Since these parameters are not the optimal parameters of the
lossless model, the CE of the theoretical curves of the lossless
model tends to be lower.

The energy-level configurations and transition schemes
of the telecom E-band and C-band QFC are carefully se-
lected to ensure that the transition between |1〉 and |3〉
(D2 line, 780 nm) constitutes a cycling transition and
that the CE is maximized among all possible energy-level
choices. A cycling transition is crucial to prevent the pop-
ulation of the excited sub-Zeeman state from decaying
to the sub-Zeeman states outside its corresponding tran-
sition, commonly referred to as the dark states. For the
telecom E-band QFC scheme [91,92], operating at wave-
lengths between 795 and 1367 nm, we have selected
the following energy levels: |1〉 = |5S1/2, F = 2, mF = 2〉,
|2〉 = |5P1/2, F = 1, mF = 1〉, |3〉 = |5P3/2, F = 3, mF = 3〉,
and |4〉 = |6S1/2, F = 2, mF = 2〉. Similarly, for the tele-
com C-band QFC scheme [91–94], operating between
795 and 1529 nm, the selected energy levels are |1〉 =
|5S1/2, F = 2, mF = 2〉, |2〉 = |5P1/2, F = 1, mF = 1〉, |3〉 =
|5P3/2, F = 3, mF = 3〉, and |4〉 = |4D3/2, F = 2, mF = 2〉.
It is important to note that the transition schemes and opti-
mization results using a 85Rb atomic ensemble are similar to
those obtained using 87Rb.

Since there exists only one possible transition scheme
for sub-Zeeman level transition, we can use the results in
Sec. III A to maximize the CE. The spontaneous decay rate
of the fine-structure transition 
λJ′ ,J (λJ ′,J is the transition
wavelength) is related to the transition rate between hyperfine
sub-Zeeman states 
i j by square of the transition coefficient
(similar to the Clebsch-Gordan coefficient from the spin-
orbital coupling), denoted as aJ ′,F ′,m′

F →J,F,mF [95,96]. The
transition coefficient follows the relation 〈F ′, m′

F |e	r|F, mF 〉 =
aJ ′,F ′,m′

F →J,F,mF 〈J ′||e	r||J〉 êm′
F −mF [91,97–99], where the re-

duced matrix element 〈J ′||e	r||J〉 [97,100] obeys the asym-
metric convention. The OD in this section is defined as αp =
nσpL|a1/2,1,1→1/2,2,2|2, where σp is the scattering cross sec-

tion of the probe field; note that the OD satisfies αp = 4LN |gp|2
c
780

,
where 
780 = 2π × 6.063 MHz. This OD can be determined
through experiments.

The optimized CE curve for the telecom E-band QFC
scheme is depicted in Fig. 2(a). When αp = 240, the CE
reaches 90% and asymptotically approaches 100% with in-
creasing OD. In Fig. 2(b), we present the optimized CE
curve for the telecom C-band QFC scheme, reaching 80%
at αp = 700. It is noteworthy that, under the same OD, the
E-band scheme exhibits a higher optimized CE compared to
the C-band scheme. This is primarily due to the differences in
the spontaneous emission rate 
43 = |aJ ′,F ′,m′

F →J,F,mF |2
λJ′ ,J ,
determined by the fine-structure transition rates and the transi-
tion coefficients between |3〉 and |4〉 for these two schemes. A
higher spontaneous emission rate generally indicates stronger
dipole-field interactions, thereby leading to a greater CE.

Table I displays the optimized parameter sets that maxi-
mize CEs for various ODs. Although the requirements for
detunings and Rabi frequencies may appear stringent, con-
straining the parameter scanning ranges allows us to identify
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TABLE I. The optimized parameter sets for maximizing conversion efficiencies (CEs) at different optical depths (ODs). The five parameters
are expressed in units of 
 = 2π × 6.063 MHz, and the CE values are given as percentages. For each OD, two sets of optimized parameters
are provided. On the left are those obtained from continuous parameter variation without an upper limit, while on the right are those obtained
from a restricted parameter scan where the magnitudes of all parameters are kept under 50
. The fine-structure decay rates (and squares of the
transition coefficients) are as follows for the telecom E-band QFC scheme [63,101]: 
780 = 2π × 6.063 MHz (1), 
795 = 2π × 5.745 MHz
( 1

2 ), 
1324 = 2π × 1.008 MHz ( 1
2 ), and 
1367 = 2π × 2.087 MHz ( 1

2 ). For the telecom C-band QFC scheme [101,102], the values are 
780 =
2π × 6.063 MHz (1), 
795 = 2π × 5.745 MHz ( 1

2 ), 
1476 = 2π × 1.703 MHz ( 1
2 ), and 
1529 = 2π × 0.315 MHz ( 1

5 ).

Telecom band quantum frequency conversion scheme

Telecom E-band (1367 nm) Telecom C-band (1529 nm)

OD 50 100 150 200 250 200 400 600 800 1000

�p 13 5 25 6 35 8 47 6 59 7 26 13 49 24 73 33 93 35 116 44
�c −31 −12 −54 −21 −80 −31 −99 −32 −123 −24 −31 −10 −64 −15 −91 −7 −119 −5 −154 −2
δ 14 6 26 10 37 14 50 16 62 20 25 11 48 21 74 26 94 29 116 31
�c 50 20 90 33 130 46 170 49 210 50 74 28 145 50 219 50 280 50 350 50
�d 7 7 13 12 19 17 25 21 31 26 9 11 16 19 22 29 29 37 36 47
CE 64.7 63.9 79.0 77.9 85.1 83.9 88.4 86.9 90.5 89.1 53.1 51.6 69.5 67.3 77.4 74.0 82.1 78.7 85.1 82.4

alternative parameter sets with slightly lower CE but more
easily achievable conditions. Achieving a large OD is crucial
for highly efficient QFC, and the OD conditions specified in
Table I are experimentally attainable [103–105].

The blue and dotted curves in Fig. 2 indicate the necessity
of considering coupling field absorption loss in the diamond-
type QFC system. While this effect has minimal impact on
the model in the low CE (or OD) regime [81], its significance
becomes pronounced in the high CE regime. For instance, at
αp = 700 for the telecom C-band QFC scheme, the difference
amounts to 3.5%, emphasizing its critical role in practical
applications. Utilizing a nonabsorbing model for calculat-
ing optimized parameters would yield misleading results, not
aligning with the optimal CE in real-world systems. Our find-
ings underscore the superior accuracy of our model compared
to other nonabsorbing models in predicting CE in the high
CE regime. The heightened precision in predictions holds
considerable implications for practical applications, such as
reducing entanglement distribution time in certain quantum
repeater protocols [106].

Here, we provide a physical picture for the optimized re-
sults, which shares similarities with some earlier proposed
models [64,81]. To maximize CE, establishing a strong corre-
lation between |3〉 and |4〉 is crucial. For this purpose, we must
ensure that both the cascade-type EIT (composed of |1〉, |2〉,
and |4〉) and the correlation between |1〉 and |3〉 (established
by the coupling field) are sufficiently robust. Achieving a
powerful cascade-type EIT can significantly reduce the spon-
taneous emission loss of the probe field, but it requires a
nearly resonant driving field (�d = δ − �p ≈ 0) with a large
�d . Additionally, to establish a strong correlation between |1〉
and |3〉 while simultaneously suppressing spontaneous decay,
the coupling field needs to have large values of �c and �c.
However, this induces an AC Stark shift on |1〉 and |3〉, neces-
sitating the introduction of a corresponding probe detuning
(�p) to maintain the two-photon resonance in cascade-type
EIT, protecting the probe field and maximizing CE. For larger
OD conditions, larger �d is necessary to reduce the sponta-

neous emission loss of the probe field, resulting in increased
optimal values for the five parameters as OD increases.

The aforementioned physical picture aligns with the opti-
mized parameters identified in our simulation (Table I). This
alignment is confirmed by examining the AC Stark shift of
the corresponding energy levels. Notably, each optimized CE
curve has two sets of optimized parameters, determined by
the direction of the AC Stark shift. While the magnitudes
of the five parameters remain the same, the detunings have
opposite signs. Interestingly, for frequency up-conversion, the
optimized five parameters and the corresponding CEs mirror
those of the down-conversion case. This observation implies
that the same set of parameters can maximize the CE for both
frequency down- and up-conversion in the diamond-type QFC
system.

IV. QUADRATURE VARIANCE

A. General formula

In this section, we derive the general formulas for the
quadrature variances of the transmitted and converted fields in
both the down- and up-conversion cases. The two quadrature
operators are defined as follows:

X̃p(s)(z) = 1

2
[̃ap(s)(z) + ã†

p(s)(z)], (27)

Ỹp(s)(z) = 1

2i
[̃ap(s)(z) − ã†

p(s)(z)], (28)

where we omit the symbol ω because, in the steady-state
condition, all ω can be replaced by 0. First, we consider the
down-conversion case. Following the method introduced in
Appendix B, we deduce that all diffusion coefficients, Dαi,α j ,
Dα

†
i ,α

†
j
, and Dα

†
i ,α j

, are zero. By using a similar approach as

in Sec. III, we obtain all expectation values of one ladder
operator and the multiplications of ladder operators at position
z = L for the probe and signal fields. The quadrature vari-
ances, following the definition in [107], can be derived using
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the previously obtained expectation values of ladder operators
and can be simplified into the following forms:

var[Xp(L)] = 1
4 {〈[A(0)̃ap(0) + A∗(0)̃a†

p(0)]2〉
− [〈A(0)̃ap(0) + A∗(0)̃a†

p(0)〉]2}
+ 1

4 [1 − |A(0)|2], (29)

var[Yp(L)] = − 1
4 {〈[A(0)̃ap(0) − A∗(0)̃a†

p(0)]2〉
− [〈A(0)̃ap(0) − A∗(0)̃a†

p(0)〉]2}
+ 1

4 [1 − |A(0)|2], (30)

var[Xs(L)] = 1
4 {〈[C(0)̃ap(0) + C∗(0)̃a†

p(0)]2〉
− [〈C(0)̃ap(0) + C∗(0)̃a†

p(0)〉]2}
+ 1

4 [1 − |C(0)|2], (31)

var[Ys(L)] = − 1
4 {〈[C(0)̃ap(0) − C∗(0)̃a†

p(0)]2〉
− [〈C(0)̃ap(0) − C∗(0)̃a†

p(0)〉]2}
+ 1

4 [1 − |C(0)|2]. (32)

Subsequently, we introduce the definitions ãp,1(0) =
A(0)̃ap(0) and ãp,2(0) = C(0)̃ap(0). The expressions can
then be further streamlined as follows:

var[Xp(L)] = var[Xp,1(0)] + 1
4 [1 − |A(0)|2], (33)

var[Yp(L)] = var[Yp,1(0)] + 1
4 [1 − |A(0)|2], (34)

var[Xs(L)] = var[Xp,2(0)] + 1
4 [1 − |C(0)|2], (35)

var[Ys(L)] = var[Yp,2(0)] + 1
4 [1 − |C(0)|2]. (36)

Here, the quadrature variances on the right-hand side repre-
sent the variances of the newly defined fields. If we introduce
a phase shifter P̃(φp), the ladder operators after applying
the phase shifter can be obtained by simply adding another
phase to the original output ladder operators, i.e., ã′

p(s)(L) =
ãp(s)(L)e−iφp [108]. By introducing a phase shifter with φp =
θ , where θ is the phase of the mode-converted coefficient
C(0) = |C(0)|eiθ , the quadrature variances of the output sig-
nal field can be expressed as follows:

var[X ′
s (L)] = ηd var[Xp(0)] + 1

4 (1 − ηd ), (37)

var[Y ′
s (L)] = ηd var[Yp(0)] + 1

4 (1 − ηd ). (38)

The derivation for the up-conversion case is analogous; the
result can be obtained by interchanging the ladder operators
of the probe and signal in Eqs. (29)–(36) and replacing A(0)
and C(0) with B(0) and D(0), respectively. If a phase shifter
is applied to eliminate the phase of B(0), the result can be
obtained by interchanging the symbols p and s and replacing
ηd with ηu in Eqs. (37) and (38).

B. Fock, coherent, and squeezed states

Having derived the general formula for quadrature vari-
ances, let us delve into specific cases. In this context, we
consider scenarios where the input probe field is in a Fock

FIG. 3. Quadrature variances are analyzed as a function of CE
for the input probe field in both (a) the single-photon Fock state
and (b) the 6-dB squeezed coherent state. The red and blue curves
represent the quadrature variances X and Y of the output signal
field, respectively. In scenario (b), the phase of the signal field is
nullified by a phase shifter, and the input field is squeezed with
φ = 0. Notably, the relative squeezing strength is defined as P =
−10 log10

√
var(Xi )
1/2 , where P measured in dB, and var(Xi ) = 1

4 e−2r .

state, coherent state, or squeezed coherent state. Assuming the
input probe field is in an n-photon Fock state, ρp(0) = |n〉 〈n|,
the quadrature variances can be obtained from Eqs. (29)–
(32) using the raising and lowering properties of the ladder
operators:

var[Xp(L)] = var[Yp(L)] = 1
4 [1 − Td + (1 + 2n)Td ], (39)

var[Xs(L)] = var[Ys(L)] = 1
4 [1 − ηd + (1 + 2n)ηd ], (40)

which are the sums of the quadrature variances of the vacuum
and the n-photon Fock states; the proportion between them
depends on the transmittance [Eq. (39)] or CE [Eq. (40)]. For
an input probe field in a single-photon Fock state |1〉, the
quadrature variances of the converted signal field vary with
the CE, as shown in Fig. 3(a). If the input probe field is in
a coherent state, i.e., ρp(0) = |β〉 〈β|, then by utilizing the
relation ãp(0) |β〉 = β |β〉, the following quadrature variances
can be obtained:

var[Xp(L)] = var[Yp(L)] = 1
4 , (41)

var[Xs(L)] = var[Ys(L)] = 1
4 , (42)

which are equivalent to the vacuum variance. In the following
section, we will derive the quantum state of the converted field
for a coherent input; the resulting state remains a coherent
state.

If the input probe field is in a squeezed coherent state,
denoted as ρp(0) = |α, ξ 〉 with ξ = reiφ , then, by leveraging
the operational properties of the interaction between ladder
operators and the squeezed coherent states [107], we can
obtain the quadrature variances as follows:

var[Xp(L)] = 1
4

{
1 + |A(0)|2[cosh(2r) − 1]

− 1
2 [[A(0)]2eiφ + [A∗(0)]2e−iφ] sinh(2r)

}
,

(43)
var[Yp(L)] = 1

4

{
1 + |A(0)|2[cosh(2r) − 1]

+ 1
2 [[A(0)]2eiφ + [A∗(0)]2e−iφ] sinh(2r)

}
,

(44)
var[Xs(L)] = 1

4

{
1 + |C(0)|2[cosh(2r) − 1]

− 1
2 [[C(0)]2eiφ + [C∗(0)]2e−iφ] sinh(2r)

}
,

(45)
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var[Ys(L)] = 1
4

{
1 + |C(0)|2[cosh(2r) − 1]

+ 1
2 [[C(0)]2eiφ + [C∗(0)]2e−iφ] sinh(2r)

}
.

(46)

If we introduce a phase shifter to nullify the phase of the
mode-converted coefficient C(0), and the input probe field
is squeezed with φ = 0, then the quadrature variances of the
converted signal field, post the phase shifter application, can
be obtained as follows:

var[X ′
s (L)] = 1

4 (1 − ηd + ηd e−2r ), (47)

var[Y ′
s (L)] = 1

4 (1 − ηd + ηd e2r ). (48)

Here, the quadrature variances transition from those of the
vacuum to the input squeezed coherent state as the CE changes
from zero to one. The quadrature variances of the converted
signal field for an input probe with 6-dB squeezing are il-
lustrated in Fig. 3(b). The derivation for the up-conversion
case follows a similar process. The results can be obtained
by replacing A(0) with B(0), C(0) with D(0), Td with ηu, and
ηd with Tu in Eqs. (39)–(46). If a phase shifter is applied to
eliminate the phase of B(0), the results can be obtained by
replacing the symbol s with p and ηd with ηu in Eqs. (47) and
(48). The quadrature variances of the up-converted probe field
for the input signal field in a single-photon Fock state or a
6-dB squeezed coherent state are equivalent to those depicted
in Fig. 3 for the down-conversion case.

V. CONVERTED QUANTUM STATE

A. Reduced density operator

We employ the reduced-density-operator approach to de-
rive the quantum state of the converted field for both the down-
and up-conversion processes [84]. In the Schrödinger picture,
the output state of the combined system, which includes the
QFC system and the reservoir, can be expressed as

ρ f = UρiU
†, (49)

where ρi = ρs(0) ⊗ ρp(0) ⊗ ρR is the initial density operator.
U represents the evolution operator of the combined system.
The evolutions of ladder operators in the Heisenberg picture
are also described by the operator U as follows:

ãp(L) = trstrR{U †[Is ⊗ ãp(0) ⊗ IR]U }, (50)

ãs(L) = trptrR{U †[̃as(0) ⊗ Ip ⊗ IR]U }. (51)

The Schrödinger picture density operator for the output field
can be expanded with respect to the number basis. For fre-
quency down-conversion, the density matrix element of the
converted signal field can be obtained as follows:

ρs,mn(L) = s〈m|ρs(L) |n〉s

= s〈m|trptrR(UρiU
†) |n〉s

= trs{|n〉s s〈m|trptrR(UρiU
†)}

= trs{trptrR[(|n〉s s〈m| ⊗ Ip ⊗ IR)UρiU
†]}

= tr{U †(|n〉s s〈m| ⊗ Ip ⊗ IR)Uρi}, (52)

where we can define ρ̂s,mn(L) = U †(|n〉s s〈m| ⊗ Ip ⊗ IR)U ,
which represents the Heisenberg picture operator of the den-
sity matrix element. By utilizing the following property of
ladder operators [109]

∞∑
l=0

(−1)l

l!
(̃a†)l (̃a)l = |0〉 〈0| , (53)

we can express the outer product |n〉s s〈m| as the sum of
multiplication of the initial ladder operators. Thus, ρ̂s,mn(L)
can be expressed as follows:

ρ̂s,mn(L) = U †

{ ∞∑
l=0

χmnl [̃a
†
s (0)]l+n [̃as(0)]l+m ⊗ Ip ⊗ IR

}
U

=
∞∑

l=0

χmnl [̃a
†
s (L)]l+n [̃as(L)]l+m, (54)

where we make use of the unitary property of the evolution
operator and introduce χmnl ≡ (−1)l

l!
1√

n!m!
. Through further

derivation, we obtain the density matrix element of the con-
verted signal field as follows:

ρs,mn(L) =
∞∑

l=0

χmnl 〈[̃a†
s (L)]l+n [̃as(L)]l+m〉

=
∞∑

l=0

χmnl trp{[C∗(0)̃a†
p(0)]l+n

× [C(0)̃ap(0)]l+mρp(0)}. (55)

The detailed derivations of Eqs. (53) and (55) can be found in
Appendix F. The derivation for the frequency up-conversion is
similar; the result can be obtained by interchanging all of the s
and p symbols and replacing C(0) with B(0) in Eqs. (52)–(55).

B. Fock state and coherent state

By utilizing Eq. (55), we can derive the exact form of the
converted signal state for any arbitrary input probe field. In
this context, we examine the input probe field in either a Fock
state or a coherent state, determining the density operator of
the converted signal field. If the input probe field is in a Fock
state, with ρp(0) = |q〉 〈q|, the density matrix element for the
converted signal field can be obtained as follows:

ρs,mn(L) =
∞∑

l=0

χmnl 〈q| [C∗(0)̃a†
p(0)]l+n[C(0)̃ap(0)]l+m |q〉

= δmnC
q
n ηn

d (1 − ηd )q−n(1 − δηd ,1) + δmnδqnδηd ,1.

(56)

The above expression is valid for n, m � q; otherwise,
ρs,mn(L) = 0. Here, Cq

n = q!
n!(q−n)! represents the binomial co-

efficient. The fidelity, as defined in [2], between the converted
signal and the input probe can be expressed as follows:

F [ρs(L), ρp(0)] =
√

〈q|ρs(L)|q〉 = √
ηd

q
. (57)

If we input a single-photon Fock state, the converted density
operator can be expressed as

ρs(L) = (1 − ηd ) |0〉 〈0| + ηd |1〉 〈1| , (58)
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FIG. 4. Fidelity between the input field and the converted field
as a function of CE. The blue, red, and green lines correspond to the
theoretical curves for the single-photon Fock, single-photon coher-
ent, and 10-photon coherent input states, respectively. The phase of
the converted field is eliminated by a phase shifter for both coherent
input cases.

which is a mixed state comprised of the vacuum state |0〉
and the single-photon Fock state |1〉, with the probability
determined by the CE of the down-conversion process. The
conversion fidelity for a single-photon Fock input state is
depicted in Fig. 4.

If the input probe field is in a coherent state, ρp(0) =
|β〉 〈β|, then the density matrix element for the converted
signal field can be obtained as follows:

ρs,mn(L) =
∞∑

l=0

χmnl 〈β| [C∗(0)̃a†
p(0)]l+n[C(0)̃ap(0)]l+m |β〉

=
∞∑

l=0

χmnl [C
∗(0)β∗]l+n[C(0)β]l+m

= e−|C(0)β|2 [C(0)β]m[C∗(0)β∗]n

√
m!n!

, (59)

and the density operator can be expressed as

ρs(L) =
∑
m,n

|m〉 〈n| e−|C(0)β|2 [C(0)β]m[C∗(0)β∗]n

√
m!n!

= |C(0)β〉 〈C(0)β| , (60)

which remains a coherent state |C(0)β〉. If we introduce a
phase shifter to eliminate the phase of the mode-converted
coefficient C(0), the fidelity between the converted signal and
the input probe is

F [ρs(L), ρp(0)] = | 〈β|√ηdβ〉 | = e− 1
2 |β|2(1−√

ηd )2
. (61)

The conversion fidelities for coherent input states with 1 and
10 photons are depicted in Fig. 4. A coherent input state
with β = 1 exhibits higher fidelity compared to β = 10 for
the same CE; this result is reasonable since, in phase space,
the coherent state with fewer photons is closer to the origin.
The distance between the converted and input states in phase
space for β = 1 is shorter than that for β = 10. The derivation
for the frequency up-conversion is similar; the result can be

obtained by interchanging the s and p symbols and replacing
C(0) with B(0) and ηd with ηu in Eqs. (56)–(61). The con-
version fidelities for the up-conversion cases are the same as
those depicted in Fig. 4 for the down-conversion cases.

VI. QUBIT RETENTION

A. Single-rail-encoded qubit

Consider a qubit that is physically implemented by a spatial
mode of the electromagnetic field (serving as the QI car-
rier), where the two-dimensional Hilbert space is spanned by
the vacuum and one-photon Fock state [110,111]. Quantum
entanglement is shared between different modes of the elec-
tromagnetic field. The logical bases |0〉 and |1〉 are defined as
the vacuum state and the one-photon Fock state, respectively;
such a qubit is called the single-rail qubit [112,113], a partic-
ular case of photon-number encoding. In many promising QI
processing systems, such as quantum dots, superconducting
circuits, and single atoms, the qubits are naturally converted
into the single-rail qubits when the systems are coupled to
light [114,115]. Through the diamond-type QFC scheme, we
can convert the carrier’s frequency while preserving the en-
coded QI. Consider a frequency down-conversion from the
probe to the signal, where we input the probe field with an
arbitrary one-qubit state using the single-rail encoding. The
density operator of the input probe field using the logical basis
representation is as follows:

ρp(0) =
[
ρ00 ρ01

ρ10 ρ11

]
. (62)

The parameter ρi j represents the density matrix element cor-
responding to |i〉 〈 j| basis. By utilizing Eq. (55), we can obtain
the density matrix element of the converted signal state, and
its exact form is as follows:

ρs,mn(L)

=
∞∑

l=0

χmnl

1∑
i, j=0

〈i| [C∗(0)̃a†
p(0)]l+n[C(0)̃ap(0)]l+mρ ji | j〉

= δm0δn0[ρ00 + (1 − |C(0)|2)ρ11] + δm0δn1C
∗(0)ρ01

+ δm1δn0C(0)ρ10 + δm1δn1|C(0)|2ρ11. (63)

If we introduce a phase shifter to eliminate the phase of C(0),
the converted signal state is as follows:

ρs(L) =
[
ρ00 + (1 − ηd )ρ11

√
ηdρ01√

ηdρ10 ηdρ11

]
. (64)

The qubit encoded in the photon-number DOF of the probe
field is perfectly preserved in the converted signal field when
the CE reaches 100%. For the frequency up-conversion, the
result can be obtained by interchanging the p and s symbols
and replacing C(0) with B(0) and ηd with ηu. The preservation
of entanglement between the single-rail qubits after applying
the QFC scheme is demonstrated in Sec. VII for the most
general N-qubit case. The results indicate that the QI can be
fully preserved using the N-qubit QFC scheme if we eliminate
the phases of the output fields and achieve unity CE for each
conversion channel.
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FIG. 5. QFC scheme for path-encoded qubits integrated with
the DLCZ protocol. (a) Schematic diagram depicting the frequency
down-conversion of a path-encoded qubit. The conversion scheme
comprises two spatially separated atomic ensembles. (b) Schematic
diagram demonstrating the integration of the telecom-band QFC with
the DLCZ protocol. The left and right rubidium atomic ensembles
are illuminated by the writing beams (green arrows). The generated
Stokes fields (blue wavy lines) are down-converted into the telecom
band through the diamond-type QFC scheme after the writing beams
are filtered. The converted fields (red wavy lines) are coupled to
the telecom fibers for long-distance transmission. The transmitted
fields interfere at a 50/50 beam splitter (BS) and are detected by
two single-photon detectors, D1 and D2, respectively. The left and
right ensembles are entangled if only one of the detectors is clicked.

B. Path-encoded qubit

The path DOF can be harnessed to prepare high-
dimensional photonic quantum states [116,117], and it
exhibits excellent compatibility with photonic integrated
quantum circuits [118,119]. We first consider a diamond-type
QFC scheme that involves two separate atomic ensembles:
the up ensemble and the down ensemble, as depicted in
Fig. 5(a). The logical basis for path encoding is defined as
|0〉 = |1〉D |0〉U and |1〉 = |0〉D |1〉U , where |i〉U and |i〉D in-
dicate the number states of the up and down spatial modes,
respectively. Thus, the qubit is also referred to as the dual-rail
qubit [113,115]. The two QFC processes must be considered
as a whole since entanglement can be shared between the
two spatial modes of the electromagnetic field. We employ
a similar approach to that in Sec. V, but with higher dimen-
sions comprising up and down paths, where ρ f = UρiU † and
ρi = ρs(0) ⊗ ρp(0) ⊗ ρR. Here, U represents the evolution
operator of the entire system, and ρs(p)(0) comprises up and
down paths.

Consider a frequency down-conversion from the probe to
the signal, as depicted in Fig. 5(a), the input signal field is
assumed to be in the vacuum state. Note that in this and
the next sections, the subscripts D and U stand for down
and up ensembles, respectively. Expanding the converted sig-
nal density operator with respect to the combined number
basis |iD jU 〉 ≡ |i〉D | j〉U , the density matrix element is as
follows:

ρs
mDmU nDnU

(L) = 〈mDmU | ρs(L) |nDnU 〉
= tr{U †(|nDnU 〉 〈mDmU | ⊗ Ip ⊗ IR)Uρi}.

(65)

We can once again represent |nDnU 〉 〈mDmU | as the sum of
multiplication of the initial ladder operators. Following a sim-
ilar approach to that in Sec. V, the density matrix element of

the converted signal field can be obtained as follows:

ρs
mDmU nDnU

(L)

=
∞∑

lD,lU =0

χmDmU nDnU lDlU trp{[C∗
D(0)̃a†

p,D(0)]lD+nD

× [C∗
U (0)̃a†

p,U (0)]lU +nU

× [CD(0)̃ap,D(0)]lD+mD [CU (0)̃ap,U (0)]lU +mU ρp(0)}

≡
∞∑

lD,lU =0

χmDmU nDnU lDlU trp{Ôρp(0)}, (66)

where χmDmU nDnU lDlU ≡ (−1)lD (−1)lU

lD!lU !
1√

mD!mU !
1√

nD!nU !
. By utiliz-

ing the above expression, we can obtain the converted signal
state for any input probe state while considering the entire
system. Now, let us consider the case of the input probe field
with an arbitrary one-qubit state using path encoding, and the
density operator of the input probe state is given by

ρp(0) = ρ00 |1D0U 〉 〈1D0U | + ρ01 |1D0U 〉 〈0D1U |
+ ρ10 |0D1U 〉 〈1D0U | + ρ11 |0D1U 〉 〈0D1U | . (67)

Here, as defined earlier, |1D0U 〉 = |0〉 and |0D1U 〉 = |1〉. The
converted signal state can be obtained using Eq. (66), and the
density matrix element is as follows:

ρs
mDmU nDnU

(L) =
∞∑

lD,lU =0

χmDmU nDnU lDlU [ρ00 〈1D0U | Ô |1D0U 〉

+ρ01 〈0D1U | Ô |1D0U 〉 +ρ10 〈1D0U | Ô |0D1U 〉
+ ρ11 〈0D1U | Ô |0D1U 〉], (68)

where each expectation value term can be calculated by
separating the down and up Hilbert space components. The
converted density operator is then obtained as follows:

ρs(L)

= ρ00|CD|2 |1D0U 〉 〈1D0U | + ρ01CDC∗
U |1D0U 〉 〈0D1U |

+ ρ10C
∗
DCU |0D1U 〉 〈1D0U | + ρ11|CU |2 |0D1U 〉 〈0D1U |

+ [ρ00(1 − |CD|2) + ρ11(1 − |CU |2)] |0D0U 〉 〈0D0U | .
(69)

If we introduce phase shifters at the output of the up and down
ensembles to eliminate the phase of CU (0) and CD(0), and
omit the vacuum term, the converted density operator using
the logical basis representation is as follows:

ρs(L) =
[

ηDρ00
√

ηDηU ρ01√
ηU ηDρ10 ηU ρ11

]
, (70)

where the qubit encoded in the path DOF is perfectly pre-
served when both conversion processes achieve 100% CE.

Suppose we input a path-encoded qubit in a superposition
state 1√

2
(|1D0U 〉 + |0D1U 〉). The dual-rail encoding state can

also be identified as a maximally entangled state (Bell state)
|�+〉 if we consider the up and down paths as the QI carriers
of two single-rail qubits (i.e., qubit D and U ). We can then
calculate the converted two-qubit state from Eq. (70), which
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FIG. 6. QFC scheme for a polarization-encoded qubit. Here, ρin

and ρout denote the input and converted polarization-encoded pho-
tons, respectively. The input photon initially passes through a PBS,
separating the |H〉 and |V 〉 components into distinct paths. Two
QWPs in separate paths convert both fields to circular polarizations,
aligning with the selected QFC schemes. Following the QFCs, an-
other two QWPs, one in each path, revert the fields to horizontal
(down) and vertical (up) polarization. Two phase shifters (PSs) are
employed to eliminate the phases of CU (0) and CD(0), as well as
the phase changes induced by the two PBSs. In the final step, the
PBS recombines the distinct polarization components back into a
single-polarization qubit.

yields the following result:

ρs(L) = ηD

2
|1〉D |0〉U 〈1|D 〈0|U +

√
ηDηU

2
|1〉D |0〉U 〈0|D 〈1|U

+
√

ηU ηD

2
|0〉D |1〉U 〈1|D 〈0|U

+ ηU

2
|0〉D |1〉U 〈0|D 〈1|U , (71)

where if both CEs reach 100%, the converted state is exactly
|�+〉. Entanglement between the two single-rail qubits D
and U has been perfectly retained. The telecom-band QFC
on such a single-rail entangled state can be applied in the
DLCZ protocol [78,80] as depicted in Fig. 5(b), enhancing
the efficiency of quantum communication. For the frequency
up-conversion, the result can be obtained by interchanging
the p and s symbols and replacing CU (D)(0) with BU (D)(0).
The preservation of entanglement between the path-encoded
qubits after applying the QFC scheme is demonstrated in
Sec. VII for the most general N-qubit case. The QI can also
be completely preserved using the N-qubit QFC scheme if we
eliminate the phases of the output fields and reach unity CE
for each conversion channel.

C. Polarization-encoded qubit

The polarization DOF has been widely adopted for qubit
encoding. This is attributed to several factors, including the
ease of obtaining polarization-entangled photon pair sources
[120–122] and the straightforward manipulation and projec-
tion measurements of qubits using basic optical elements
[6,123,124]. Here, we theoretically demonstrate that the
diamond-type QFC successfully performs frequency conver-
sion for polarization-encoded qubits. We define the logical
basis as |0〉 = |1H 0V 〉 and |1〉 = |0H 1V 〉, where H and V
represent horizontal and vertical polarization, respectively.
Considering the configuration presented in Fig. 6, we input
a polarization-encoded single photon with an arbitrary one-

qubit state as follows:

ρin = ρ00 |0〉 〈0| + ρ01 |0〉 〈1| + ρ10 |1〉 〈0| + ρ11 |1〉 〈1| .
(72)

The polarization beam splitter (PBS) separates different po-
larization components along distinct paths [125], thereby
converting qubit information from polarization to the path
DOF, resulting in a path-encoded qubit along the up and down
paths. To achieve polarization-stable QFC and ensure simulta-
neous optimization of QFCs on both polarization components,
we propose the use of two QFC systems instead of one. In this
scenario, we specifically focus on frequency down-conversion
from the probe to the signal. The probe density operator after
passing through the PBS is as follows:

ρp(0) = ρ00 |1D0U 〉 〈1D0U | + iρ01 |1D0U 〉 〈0D1U |
− iρ10 |0D1U 〉 〈1D0U | + ρ11 |0D1U 〉 〈0D1U | , (73)

where the field along the lower path is horizontally polarized,
while the field along the upper path is vertically polarized.
Quarter-wave plates (QWPs) are used on each side to convert
the fields passing through the up and down paths into circu-
lar polarization before entering the respective diamond-type
atomic ensembles. In this context, we specifically chose circu-
lar polarization to align with the requirements of the optimized
QFC scheme discussed in Sec. III B. Note that both atomic
systems must be appropriately configured for their respective
QFC schemes.

After the first set of QWPs, the QFC process mirrors that of
the path-encoded qubit discussed in Sec. VI B. Subsequently,
the second set of QWPs transforms the circularly polarized
up and down output fields back to their original vertical and
horizontal polarizations, respectively. Once the phase shifters
neutralize the phases of CU (0) and CD(0), as well as the phase
changes from the previous and subsequent PBSs, the resulting
converted signal state is as follows:

ρs(L)

= ηDρ00 |1D0U 〉 〈1D0U | − i
√

ηDηU ρ01 |1D0U 〉 〈0D1U |
+ i

√
ηU ηDρ10 |0D1U 〉 〈1D0U | + ηU ρ11 |0D1U 〉 〈0D1U | ,

(74)

where the vacuum term |0D0U 〉 〈0D0U | is omitted. The second
PBS combines the up and down fields with distinct spatial
modes into a single path (another output port is in the vacuum
state). The density operator of the output signal field after the
PBS using the logical basis representation is as follows:

ρout =
[

ηDρ00
√

ηDηU ρ01√
ηU ηDρ10 ηU ρ11

]
, (75)

where the qubit encoded in the polarization DOF of the
input field ρin has been perfectly preserved, reaching unity
fidelity when both QFC processes achieve 100% CE. The
result for frequency up-conversion can be obtained by in-
terchanging the p and s symbols and replacing CU (D)(0)
with BU (D)(0). The preservation of entanglement between the
polarization-encoded qubits after applying the QFC scheme
is demonstrated in Sec. VII for the most general N-qubit
case, and it is consistent with the preservation observed in
the path-encoded case. Perfect preservation is achievable by
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eliminating the phases of the output fields and achieving unity
CE for each conversion channel.

VII. ENTANGLEMENT RETENTION

A. Multiple qubits

In this section, we extend the system to implement QFC
involving an arbitrary number of qubits, denoted as an N-qubit
system. These qubits may be encoded in photon-number, path,
or polarization DOFs, and quantum entanglement can exist
among them. We first explore a diamond-type QFC system
that includes N separated atomic ensembles, denoted as Ai,
with i ∈ {1, 2, . . . , N}. Each atomic ensemble Ai has probe
and signal input fields, denoted as pi(0) and si(0), respec-
tively. For the down-conversion case, all signal fields initially
exist in the vacuum states, and the combined state is denoted
as ρs(0) = |0102 . . . 0N 〉 〈0102 . . . 0N |. Since the input probe
fields of the combined system must be treated as a whole,
we consider the combined density operator ρp(0) of all probe
fields as the input state. Using the reduced-density-operator
approach, we derive the combined density operator of all
output signal fields ρs(L). Here, we expand the output signal
state as follows:

ρs(L) =
∞∑

m1=0

. . .

∞∑
mN =0

∞∑
n1=0

. . .

∞∑
nN =0

ρs
m1...mN ,n1...nN

(L)

|m1 . . . mN 〉 〈n1 . . . nN | . (76)

Following a similar derivation as that in Sec. V, the density
matrix element of the converted signal field can be expressed
as follows:

ρs
m1...mN ,n1...nN

(L)

= tr{U †
(|n1 . . . nN 〉 〈m1 . . . mN | ⊗ Ip ⊗ IR

)
Uρi}

=
∞∑

l1=0

. . .

∞∑
lN =0

χm1...mN n1...nN l1...lN

× tr

{
N∏

j=1

[̃a†
s, j (L)]n j+l j

N∏
k=1

[̃as,k (L)]mk+lk ρi

}
, (77)

where the term χm1...mN n1...nN l1...lN is defined as
(−1)l1+...+lN

l1!...lN !
1√

m1!...mN !n1!...nN !
. As the output ladder operator

of the QFC for each atomic ensemble follows the same form
as in the single-mode version of Eq. (17), the trace term
in Eq. (77) can be simplified using a similar approach as
outlined in Appendix F. Consequently, the density matrix
element for the converted signal field can be derived, and its
explicit form is provided below:

ρs
m1...mN ,n1...nN

(L)

=
∞∑

l1=0

. . .

∞∑
lN =0

χm1...mN n1...nN l1...lN trp

{
N∏

j=1

[C∗
j ã†

p, j (0)]n j+l j

N∏
k=1

[Ckãp,k (0)]mk+lk ρp(0)

}
. (78)

Consider an N-qubit input state ρp(0) which is physically
implemented by N spatial modes of the electromagnetic field,
with each qubit encoded in the photon-number DOF of its
corresponding spatial mode. The ith qubit (or ith field mode)
is sent into the Ai atomic ensemble, undergoing frequency
conversion through the diamond-type QFC process. The den-
sity operator of the input probe field can be expressed as
follows:

ρp(0) =
1∑

m1=0

. . .

1∑
mN =0

1∑
n1=0

. . .

1∑
nN =0

ρ p
m1...mN ,n1...nN

(0)

|m1 . . . mN 〉 〈n1 . . . nN | . (79)

By utilizing the separability between operators associated
with distinct atomic ensembles, we have derived the density
matrix element for the converted signal field. The overall
expression for the density matrix element of the converted
signal field is as follows:

ρs
m1...mN ,n1...nN

(L)

=
1∑

q1=0

. . .

1∑
qN =0

1∑
r1=0

. . .

1∑
rN =0

ρ p
q1...qN ,r1...rN

(0)

×
N∏

j=1

{δmj n j ,00[δq j r j ,00 + δq j r j ,11(1 − η j )]

+ δmj n j ,01δq j r j ,01C
∗
j + δmj n j ,10δq j r j ,10Cj

+ δmj n j ,11δq j r j ,11η j}, (80)

where we define δab,cd = δacδbd , and η j represents the CE of
the diamond-type QFC through atomic ensemble Aj . If the
CE for each QFC reaches 100%, and the phase of each Cj has
been eliminated by the phase shifter, we can deduce that

ρs
m1...mN ,n1...nN

(L) = ρ p
m1...mN ,n1...nN

(0), (81)

which leads to ρs(L) = ρp(0) and thereby confirms that the
diamond-type QFC scheme has perfectly converted the single-
rail encoded N-qubit state from the input probe field to the
output signal field.

The discussion for the path-encoded N-qubit QFC scheme
parallels the single-rail case. Initially, all atomic ensembles
are grouped into pairs, where the ith pair consists of the
Ai and Bi ensembles. Each pair is dedicated to convert-
ing a path-encoded qubit, denoted as Qi. The basis for the
path-encoded single qubit is given by |0Qj 〉 = |0Aj 1Bj 〉 and
|1Qj 〉 = |1Aj 0Bj 〉, while the N-qubit basis can be represented
as |sQ1 . . . sQN 〉 = |(sQ1 )A1 (1 − sQ1 )B1 . . . (sQN )AN (1 − sQN )BN 〉,
where sQ1 , . . . , sQN ∈ {0, 1}. Expressing the density operator
of the N-qubit input probe field is as follows:

ρp(0) =
1∑

sQ1 =0

. . .

1∑
sQN =0

1∑
tQ1 =0

. . .

1∑
tQN =0

ρ
p
sQ1 ...sQN ,tQ1 ...tQN

(0)

∣∣sQ1 . . . sQN

〉 〈
tQ1 . . . tQN

∣∣ . (82)

If we express the dual-rail basis |sQj 〉 (and 〈tQj |) using the
single-rail logical basis |sQj 〉 = |(sQj )Aj (1 − sQj )Bj 〉, the in-
put state in Eq. (82) can be regarded as a special case
of Eq. (79). The conversion process can then be described
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FIG. 7. (a) QFC scheme for a pair of polarization-entangled qubits Q1 and Q2. Following the similar setups as in Fig. 6 for both qubits, the
qubits are converted into another wavelength with the fidelity determined by the four separate QFC setups. In the Bell test, the converted qubits
Q′

1 and Q′
2 are sent to Alice and Bob, respectively. The selected local observables Â0, Â1, B̂0, and B̂1 are depicted in Eqs. (92)–(95). (b) The

postselected fidelity between the input |�+〉 state and the converted state as a function of η̄A and η̄B. The black plane represents the criteria of
fidelity (F = 2−1/4 ≈ 84.1%) for the CHSH inequality violation; nonlocality exists for the region with fidelity higher than the criteria. (c) The
second converted density operator in Eq. (97) [the right-hand side intersecting line in panel (b)] with F = 2−1/4. The nonzero matrix elements
are −0.455, 0.707, 0.293, and −0.455 using the Bell basis representation.

based on the previous single-rail discussion. The converted
signal density matrix element would take the form as in
Eq. (80). The path-encoded N-qubit state is perfectly pre-
served if the CEs for all conversion processes reach 100%,
and if all the phases have been eliminated. For the QFC
scheme of the polarization-encoded N-qubit state, we can
use the method introduced in Fig. 6 to map the polarization-
encoded state into the path-encoded state, and then map back
into the polarization-encoded state after all the conversion
processes are finished. Hence, the polarization-encoded N-
qubit state can also reach unity fidelity if each QFC has
perfect CE and the phase has been eliminated. These results
suggest that the N-qubit QFC scheme with diamond-type
four-wave mixing can actually function as an N-qubit quan-
tum interface for single-rail-, path-, and polarization-encoded
qubits.

B. Polarization-entangled EPR pairs

Here, we provide a detailed analysis on the retention
of EPR pairs after the diamond-type QFC. Consider a pair
of polarization-entangled photons in the Bell state |�+〉 =

1√
2
(|0102〉 + |1112〉) with a near-infrared wavelength; the log-

ical basis is defined the same as in Sec. VI C. As depicted in
Fig. 7(a), the horizontal and vertical components of polariza-

tion qubit Qi are separated and sent into atomic ensembles Bi

and Ai, respectively. The combined state of the input probe
fields can be expressed as follows:

|ψp(0)〉 = 1√
2

( ∣∣0A1 1B1 0A2 1B2

〉 + ∣∣1A1 0B1 1A2 0B2

〉 )
, (83)

where the phase shifters are employed to eliminate the phases
of the output signal fields. On each side, the different polariza-
tion components of the converted photon are combined using
a PBS. The converted qubits are well suited for long-distance
transmission through optical fibers. In practical quantum com-
munication, where coincidence detections are required, the
original converted state ρs(L) can be postprojected onto the
basis with one photon on each side (i.e., |0A1 1B1 0A2 1B2〉,
|0A1 1B1 1A2 0B2〉, |1A1 0B1 0A2 1B2〉, and |1A1 0B1 1A2 0B2〉). By using
Eq. (80), we can calculate the converted density matrix ele-
ments corresponding to the postprojection basis. The nonzero
terms are as follows:

ρs
0101,0101(L) = 1

2ηB1ηB2 , (84)

ρs
1010,1010(L) = 1

2ηA1ηA2 , (85)

ρs
0101,1010(L) = ρs

1010,0101(L) = 1
2

√
ηA1ηA2ηB1ηB2 . (86)
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The converted density operator under postselection can then
be expressed as follows:

ρs,post(L)

= η̄2
B

η̄2
A + η̄2

B

|0102〉 〈0102| + η̄Aη̄B

η̄2
A + η̄2

B

|0102〉 〈1112|

+ η̄Aη̄B

η̄2
A + η̄2

B

|1112〉 〈0102| + η̄2
A

η̄2
A + η̄2

B

|1112〉 〈1112| ,
(87)

where we define η̄A = √
ηA1ηA2 and η̄B = √

ηB1ηB2 . The coin-
cidence detection probability can be obtained as follows:

Pc =
∑

i

〈i| ρs(L) |i〉 = 1

2

(
η̄2

A + η̄2
B

)
, (88)

where |i〉 represents the postprojection basis. Pc is also the
success rate of photon pair transmission, which is directly
associated with the efficiency of QI transmission. The fidelity
between the postselected output signal field and the input
probe field can be obtained as follows:

F = η̄A + η̄B√
2
(
η̄2

A + η̄2
B

) . (89)

The postselected fidelity is illustrated in Fig. 7(b). The fidelity
increases as η̄A approaches η̄B, and reaches unity when η̄A =
η̄B. While the postselected converted state closely resembles
|�+〉 for low CEs, the transmission rate (Pc) of photon pairs
diminishes in such cases, resulting in reduced QI transmission
efficiency.

In order to assess the retention of quantum entangle-
ment, we employ Bell’s inequality [126,127]. Specifically,
we utilize the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [126,128], which is a specific type of Bell’s inequality.
Consider a Bell test between Alice and Bob, as depicted in
Fig. 7(a). The converted polarization qubits, denoted as Q′

1
and Q′

2, are sent to Alice and Bob, respectively. The CHSH
inequality is expressed as

|S| � 2, (90)

where the Bell operator S is defined as

S = 〈Â0B̂0〉 + 〈Â0B̂1〉 + 〈Â1B̂0〉 − 〈Â1B̂1〉 . (91)

In order to give the maximum violation of CHSH inequality,
we consider the following local observables:

Â0 = σ̂z, (92)

Â1 = σ̂x, (93)

B̂0 = 1√
2

(σ̂z + σ̂x ), (94)

B̂1 = 1√
2

(σ̂z − σ̂x ). (95)

Here, Alice opts to perform measurements with test angles
of 0◦ or 45◦, while Bob selects test angles of 22.5◦ or 67.5◦.
The measurement at 0◦ corresponds to the projection onto the
orthogonal qubit basis |01〉 and |11〉. Coincidences between
Alice and Bob are recorded in the Bell test. The Bell operator

for the converted state and the local observables (92)–(95) can
be determined as follows:

S = (η̄A + η̄B)2

η̄2
A + η̄2

B

√
2 = 2

√
2F 2. (96)

To violate the CHSH inequality, the postselected fidelity needs
to be greater than 2−1/4, which is F > 2−1/4 ≈ 84.1%. As
depicted in Fig. 7(b), conversion processes with a combination
of CEs in the range of F > 2−1/4 exhibit quantum nonlocality
between the converted photons, defying interpretation through
local hidden-variable theories [129–131]. The nonlocality be-
tween the original qubits Q1 and Q2 has been partially retained
after the QFC. For conversion processes with the same fidelity,
their postselected density operators present the following two
possibilities:

ρs,post(L) = F 2 |�+〉 〈�+| + (1 − F 2) |�−〉 〈�−|
± F

√
1 − F 2(|�+〉 〈�−| + |�−〉 〈�+|). (97)

In Fig. 7(b), the fidelity surface and the fidelity plane intersect
at two lines. The conversion processes associated with these
two lines correspond to the two different density operators
as in Eq. (97). The second density operator in Eq. (97) with
F = 2−1/4 is illustrated in Fig. 7(c), where the probability of
the postselected output state remaining in the Bell state |�+〉
is 2−1/2 ≈ 70.7%. Similar results can be obtained for other
Bell states. These findings suggest that the QFC scheme can
effectively retain the entanglement between the polarization-
entangled photons with high fidelity if the four QFC systems
are appropriately adjusted, ensuring that all CEs are suffi-
ciently close.

VIII. CONCLUSION

This study provides a theoretical analysis of the quantum
frequency conversion (QFC) scheme employing a diamond-
type energy-level configuration within a rubidium atomic
ensemble. Using the Heisenberg-Langevin approach, we de-
rive the general forms of the field operators for the probe
and signal fields. The model, addressing the absorption of the
coupling field, precisely solves the coupling field Maxwell-
Schrödinger equation and introduces Magnus expansion into
the coupled equations. Importantly, physical parameters such
as conversion efficiency (CE) and transmittance remain unaf-
fected by vacuum field noise, enabling the system to achieve
high-purity QFC.

We optimize transition schemes for real-world applica-
tions systematically. Through an extensive parameter scan,
we identify optimal parameters that maximize CE at different
optical depths (ODs). The CE increases with higher ODs and
can physically approach 100%, surpassing 90% at an OD of
approximately 240 for the telecom E-band, and reaching 80%
at an OD of 700 for the C-band. Emphasizing the impor-
tance of considering coupling field absorption in the high CE
regime, we demonstrate its significance through comparison
with a nonabsorbing model, highlighting the crucial impact
on practical applications.

Various quantum properties within the diamond-type QFC
system are explored. The derivations of the quadrature vari-
ances for the converted field reveal that, upon eliminating the
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phase of the output field, the quadrature variances mirror those
of the input field when the CE reaches 100%. Additionally,
a detailed analysis of the converted quadrature variances for
specific input states, including the n-photon Fock state, coher-
ent state, and squeezed coherent state, is conducted.

We derive the exact form of the density operator for the
converted field using the reduced-density-operator approach.
For the case of an input field in the single-photon Fock state
|1〉, the probability of the output field retaining the Fock state
|1〉 corresponds to the CE. Similarly, for a coherent input
state |β〉, the resulting converted state remains a coherent state
|C(0)β〉. In the case where we eliminate the phase of the
output field, the fidelity between input and converted states
approaching perfection as CE approaches 100%.

The diamond-type QFC scheme exhibits exceptional ca-
pability in preserving quantum information (QI) encoded in
photon-number, path, and polarization degrees of freedom.
Highly preservation of quantum states for single-rail, path,
and polarization-encoded qubits is demonstrated for suffi-
ciently high CE, achieving unity fidelity at 100% CE. The
extension of the QFC system enables implementation on an
arbitrary number of entangled qubits, maintaining the density
operator of the converted N-qubit entangled state for perfect
CE. Theoretical indications suggest the diamond-type QFC
scheme can indeed serve as a robust quantum interface, facili-
tating frequency conversion while preserving quantum states.

In conclusion, a customizable diamond-type QFC scheme
in a rubidium atomic ensemble proves highly efficient, bridg-
ing the gap between near-infrared and telecom E-band or
C-band. The QFC scheme highly preserved the QI carried
by the photons. The CE and fidelity of the quantum state are
unaffected by vacuum field noise, and positions the QFC sys-
tem to deliver high-purity converted photons. This quantum
interface holds immense potential for connecting quantum
memory and processing systems emitting in the near-infrared
range to the telecom wavelength, laying the foundation for a
robust quantum communication network in the future.

ACKNOWLEDGMENTS

This work was supported by the National Science and
Technology Council of Taiwan under Grants No. 111-2112-
M-006-027, No. 112-2112-M-006-034, and No. 112-2119-M-

007-007. We also acknowledge support from the Center for
Quantum Science and Technology (CQST) within the frame-
work of the Higher Education Sprout Project by the Ministry
of Education (MOE) in Taiwan.

APPENDIX A: HEISENBERG-LANGEVIN EQUATIONS
AND RELAXATION TERMS

A dissipative system, affected by the influence of a back-
ground reservoir over time, can be described by the HLE. The
derivation of the HLE initiates from the Heisenberg equation,
which can be expressed under the SVA basis as follows:

∂σ̂i j

∂t
= i

h̄
[Ĥtot, σ̂i j], (A1)

Ĥtot = ĤS + ĤR + ĤSR, (A2)

ĤS =
∫ L

0

N

L

∑
i j

Ĥi j (z, t )σ̂i j (z, t )dz, (A3)

where Ĥi j (z, t ) represents the matrix element of the averaged
single-atom Hamiltonian at position z under the atomic basis
representation; ĤS , ĤR, and ĤSR are the Hamiltonians for the
system, reservoir, and system-reservoir interaction, respec-
tively. Further derivation enables the terms associated with the
reservoir in Eq. (A1) to be decomposed into relaxation and
fluctuation components as follows:

∂σ̂i j

∂t
= i

h̄
[ĤS, σ̂i j] + R̂i j + F̂i j, (A4)

where R̂i j describes the dissipation process and F̂i j is the
Langevin noise operator from the background reservoir. This
equation is known as the HLE. By substituting in the Hamilto-
nian of the whole system ĤS , the HLE can be rearranged into
the form

∂

∂t
σ̂i j = i

h̄

∑
m

(Ĥ∗
imσ̂m j − σ̂imĤ∗

m j ) + R̂i j + F̂i j . (A5)

This expression represents a slice of the HLE at the position z.
By utilizing the Hermitian property of the single-atom Hamil-
tonian, we can collect all of the HLEs into a matrix form as
follows:

∂

∂t
σ̂ (z, t ) = i

h̄
[ĤT (z, t ), σ̂ (z, t )] + R̂(z, t ) + F̂ (z, t ). (A6)

In this matrix equation, ĤT (z, t ) must be transformed into a matrix form based on the averaged single-atom basis at position z.
The equation derived from the i j matrix element of Eq. (A6) corresponds to the HLE associated with σ̂i j . The system-reservoir
interaction of the diamond-type QFC system can be approximated as a Markovian process; thus, the relaxation terms that adhere
to the selection rules of orbital angular momentum �l = ±1 are as follows:⎡⎢⎢⎢⎢⎢⎣


21σ̂22 + 
31σ̂33 − 1
2γ21σ̂12 − 1

2γ31σ̂13 − 1
2γ41σ̂14

− 1
2γ21σ̂21 
42σ̂44 − 
21σ̂22 − 1

2γ32σ̂23 − 1
2γ42σ̂24

− 1
2γ31σ̂31 − 1

2γ32σ̂32 
43σ̂44 − 
31σ̂33 − 1
2γ43σ̂34

− 1
2γ41σ̂41 − 1

2γ42σ̂42 − 1
2γ43σ̂43 −(
42 + 
43)σ̂44

⎤⎥⎥⎥⎥⎥⎦, (A7)
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where the i j matrix element represents R̂i j . 
i j is the
spontaneous decay rate from |i〉 to | j〉, and γi j represents
the decoherence rate between states |i〉 and | j〉. The spe-
cific form of the Langevin noise operator is not significant
if the system-reservoir interaction can be considered as a
Markovian process. The relation between the atomic sys-
tem and the Langevin noise operator can be obtained from
the Einstein relation, which will be further discussed in
Appendix B.

APPENDIX B: EINSTEIN RELATIONS AND DIFFUSION
COEFFICIENTS

Consider the system-reservoir interaction as a Markovian
process, then the collective Langevin noise operators satisfy
the following delta correlation [87]:

〈F̃i j (z, ω)F̃mn(z′, ω′)〉 = L

2πN
Di j,mn(z)δ(z − z′)δ(ω + ω′),

(B1)

where Di j,mn(z) represents the diffusion coefficient, which is
connected to the atomic system through the following Einstein
relation [87]:

Di j,mn = δ jm 〈R̂in〉 − Nz 〈R̂i j σ̂mn〉 − Nz 〈σ̂i j R̂mn〉 . (B2)

Here, Nz = N
L �z denotes the number of atoms within �z

around position z; the relaxation term can be expanded as

R̂i j =
∑
mn


i j,mnσ̂mn, (B3)

where 
i j,mn characterizes the spontaneous decay rate and
decoherence rate of the relaxation process. By using the
property σ̂i j σ̂kl = 1

Nz
δ jk σ̂il , the diffusion coefficients can be

obtained without deriving the explicit form of the Langevin
noise operators. Since Markovian approximation is reasonable
for the diamond-type QFC system, the normal-order diffusion
coefficients Dα

†
i ,α j

considered in the main text are as follows:

Dα
†
i ,α j

=

⎡⎢⎢⎣
D21,12 D21,14 D21,32 D21,34

D41,12 D41,14 D41,32 D41,34

D23,12 D23,14 D23,32 D23,34

D43,12 D43,14 D43,32 D43,34

⎤⎥⎥⎦

=

⎡⎢⎢⎣
D21,12 D21,14 0 0
D41,12 D41,14 0 0

0 0 D23,32 D23,34

0 0 D43,32 D43,34

⎤⎥⎥⎦. (B4)

The remaining terms consist of linear combinations involv-
ing 〈σ̂22〉, 〈σ̂24〉, 〈σ̂42〉, and 〈σ̂44〉. In the main text, the delta
correlation should take the form specified in Eq. (19) under
steady-state conditions. Additionally, we assume that σ̂i j ≈
σ̂

(0)
i j + σ̂

(1)
i j during the calculation of the diffusion coefficients.

The relevant atomic operators are as follows:

σ̂22(24,42,44) ≈ σ̂
(0)
22(24,42,44) + σ̂

(1)
22(24,42,44) =

∑
i j

K22(24,42,44)
i j F̃i j,

(B5)

where we employ the result 〈σ̂ (0)
22(24,42,44)〉 = 0. By using the

property 〈F̃i j〉 = 0 for the vacuum reservoir, we find that all
remaining diffusion coefficients are zero. For the subspace
discussed in the main text, this implies Dα

†
i ,α j

= 0.

APPENDIX C: COUPLING MSE SOLUTION

Consider the steady-state solution for the coupling field
MSE, in which the coupling field has reached a stable state,
and the Rabi frequency remains constant over time. The cou-
pling field MSE can then be simplified into the form

∂

∂z
�c(z) = iαc
31

2L

〈
σ̂

(0)
13 (z)

〉 = C0�c

A0 + B0�c�∗
c

, (C1)

where we define A0 = 2L
31(γ 2
31 + 4�2

c ), B0 = 4Lγ31, and
C0 = −αc


2
31(γ31 + 2i�c). If we let u = �c�

∗
c , solving the

corresponding differential equation for u(z) yields the exact
solution as follows:

u(z) = A0

B0
W0

[
B0

A0
u(0)e

D0
A0

z+ B0
A0

u(0)
]
. (C2)

Here, we define D0 = C0 + C∗
0 , and W0(x) represents the

principal branch of the Lambert W function [132]. Upon
substituting this solution back into the coupling field MSE,
the resulting differential equation is

∂

∂z
�c(z) − G0(z)�c(z) = 0, (C3)

where G0 = C0
A0+B0u(z) , and the differential equation can be

solved directly by utilizing the integrating factor:

�c(z) = �c(0)e
∫ z

0 G0(z)dz. (C4)

This represents the exact solution to the coupling field MSE,
elucidating the attenuation of the coupling field as it propa-
gates through the atomic medium.

APPENDIX D: COEFFICIENTS OF COUPLED EQUATIONS

The self-coupling and cross-coupling coefficients, derived from the coupled equations (13) and (14), manifest as follows:

p(z, ω) = 2iN |gp|2
cT0

[ 〈
σ̂

(0)
31

〉
γ ′

41γ
′
43�c

(
1 + |�c|2 − |�d |2

γ ′
41γ

′
43

)
+ 〈

σ̂
(0)
11

〉
iγ ′

32γ
′
41γ

′
43

(
1 + |�c|2

γ ′
41γ

′
43

+ |�d |2
γ ′

32γ
′
43

)]
+ iω

c
, (D1)

κp(z, ω) = 2iNg∗
pgs

cT0
e−i�kz

[ 〈
σ̂

(0)
13

〉
γ ′

32γ
′
43�

∗
d

( |�c|2 − |�d |2 − 1

γ ′
32γ

′
43

)
+ 〈

σ̂
(0)
33

〉
i(γ ′

32 + γ ′
41)�c�

∗
d

]
, (D2)
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s(z, ω) = 2iN |gs|2
cT0

e−i�kz

[ 〈
σ̂

(0)
13

〉
γ ′

21γ
′
32�

∗
c

(
1 + |�c|2 − |�d |2

γ ′
21γ

′
32

)
+ 〈

σ̂
(0)
33

〉
iγ ′

21γ
′
32γ

′
41

(
1 + |�c|2

γ ′
21γ

′
32

+ |�d |2
γ ′

21γ
′
41

)]
+ iω

c
, (D3)

κs(z, ω) = 2iNg∗
sgp

cT0

[ 〈
σ̂

(0)
31

〉
γ ′

21γ
′
41�d

( |�c|2 − |�d |2 − 1

γ ′
21γ

′
41

)
+ 〈

σ̂
(0)
11

〉
i(γ ′

32 + γ ′
41)�∗

c�d

]
, (D4)

where γ ′
21 = γ21 − 2i(�p + ω), γ ′

32 = γ32 − 2i(�p − �c + ω), γ ′
41 = γ41 − 2i(δ + ω), γ ′

43 = γ43 − 2i(δ − �c + ω), and T0 is
defined as follows:

T0 = |�c|2(γ ′
21γ

′
32 + γ ′

41γ
′
43)

+ |�d |2(γ ′
21γ

′
41 + γ ′

32γ
′
43)

+ (|�c|2 − |�d |2)2. (D5)

The coefficients of noise disturbance are not listed here because, throughout all the discussions in this paper, it has been
demonstrated that all terms associated with these coefficients are zero. This is due to the determination of the related diffusion
coefficients being zero, as calculated from the corresponding Einstein relations.

APPENDIX E: MAGNUS EXPANSION

We begin by considering a first-order linear ODE for the
two-dimensional linear operator, with the initial condition at
z = 0. The ODE can be expressed as follows:

∂

∂z
X (z, ω) = M(z, ω)X (z, ω), (E1)

where X (z, ω) and M(z, ω) are defined as follows:

X (z, ω) =
[̃

ap(z, ω)
ãs(z, ω)

]
, (E2)

M(z, ω) =
[
p(z, ω) κp(z, ω)
κs(z, ω) s(z, ω)

]
. (E3)

The general solution to the first-order homogeneous linear
ODE was proposed by Magnus [89], where he presents an
exponential solution for the linear operator. Thus, the solution
to Eq. (E1) can be expressed as

X (z, ω) = e�(z,ω)X (0, ω), (E4)

where �(z, ω) is constructed as the following series expan-
sion:

�(z, ω) =
∞∑

n=1

�n(z, ω), (E5)

�1(z, ω) =
∫ z

0
M(s, ω)ds. (E6)

This formulation is known as the Magnus expansion [90]. The
higher-order terms of the Magnus series can be recursively
obtained using the following relation [133]:

�n(z, ω) =
n−1∑
k=1

Bk

k!

∫ z

0
ds S(k)

n (s, ω), (E7)

S1
n = [�n−1, M], (E8)

S(k)
n =

n−k∑
m=1

[
�m, S(k−1)

n−m

]
, (E9)

where Bk represents the kth Bernoulli number. It is noteworthy
that if M does not depend on z, the only remaining term in the
Magnus series is �1(z, ω). In this scenario, the solution for
X (z, ω) is equivalent to the one obtained using the integrating
factor.

The linear ODE in the main text, encompassing Eqs. (13)
and (14), can be expressed as

∂

∂z
X (z, ω) = M(z, ω)X (z, ω) + F (z, ω), (E10)

where we define F (z, ω) as follows:

F (z, ω) =
∑
αi

[
ξ

p
αi (z, ω)

ξ s
αi

(z, ω)

]
f̃αi (z, ω). (E11)

Applying Eq. (E1) allows us to obtain the solution to
Eq. (E10) as follows:

X (z, ω) = e�(z,ω)X (0, ω) + e�(z,ω)
∫ z

0
e−�(s,ω)F (s, ω)ds.

(E12)

Through diagonalizing the 2 × 2 matrix �(z, ω) and substi-
tuting the diagonalized result into the Taylor expansion of the
exponential function e�(z,ω), the matrix form in Eq. (16) can
be explicitly derived.

APPENDIX F: KEY COMPONENTS IN QUANTUM
STATE DERIVATION

The outer product of the vacuum state |0〉 is directly linked
to the ladder operator of the optical field [109]. This relation-
ship for a single-mode field can be derived as follows:

∞∑
l=0

(−1)l

l!
(̃a†)l (̃a)l

=
∞∑

l=0

∞∑
i, j=0

(−1)l

l!
|i〉 〈 j| 〈i| (̃a†)l (̃a)l | j〉
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=
∞∑

l=0

(−1)l

l!

∞∑
i=l

|i〉 〈i| i!

(i − l )!

=
∞∑

i=0

|i〉 〈i|
i−1∑
l=0

(−1)lCi
l + (−1)i

=
∞∑

i=1

|i〉 〈i| [(−1)i + (−1)i−1Ci−1
i−1

] + |0〉 〈0|

= |0〉 〈0| , (F1)

which allows the outer product of two number states to be
expressed as the sum of multiplication of ladder operators.

To express 〈[̃a†
s (L)]l+n [̃as(L)]l+m〉 in a computationally

friendly form, we need to substitute the explicit forms of
the ladder operators, as given in the single-mode version of
Eq. (17). Afterward, we expand the multiplication of the sum
of the initial ladder operators and noise operators. Each term
in the expansion takes the following form:〈

[C∗(0)̃a†
p(0) + D∗(0)̃a†

s (0)]a

×
[∑

αi

∫ L

0
dz Q∗

αi
(z) f̃ †

αi
(z)

]b

× [C(0)̃ap(0) + D(0)̃as(0)]c

×
[∑

αi

∫ L

0
dz Qαi (z) f̃αi (z)

]d〉
, (F2)

where a, b, c, d ∈ {0 ∪ N}. These expanded terms can be clas-
sified into two categories: b + d �= 0 or b + d = 0. In the first
case, the partial trace of the reservoir applies only to the noise
operator parts, while the partial trace of the probe and signal
applies to the remaining parts. The expansion of the noise part
is as follows:〈[∑

αi

∫ L

0
dz Q∗

αi
(z) f̃ †

αi
(z)

]b[∑
αi

∫ L

0
dz Qαi (z) f̃αi (z)

]d〉
R

=
∑

r

Kr

∫ L

0
dz1Q∗

αr,1
(z1) . . .

∫ L

0
dzb+d Q∗

αr,b+d
(zb+d )

× 〈
f̃ †
αr,1

(z1) . . . f̃ †
αr,b

(zb) f̃αr,b+1 (zb+1) . . . f̃αr,b+d (zb+d )
〉
R,

(F3)

where αr, j represents an element of {12, 14, 32, 34}. To sim-
plify Eq. (F3), we apply the following generalized Wick’s
theorem [109,134]:

〈F̃1F̃2 . . . F̃2n〉R

= 〈F̃1F̃2〉R 〈F̃3F̃4 . . . F̃2n〉R + 〈F̃1F̃3〉R 〈F̃2F̃4 . . . F̃2n〉R

+ · · · + 〈F̃1F̃2n〉R 〈F̃2F̃3 . . . F̃2n−1〉R , (F4)

where F̃i denotes the Langevin noise operator. Note that if the
braket in Eq. (F4) includes an odd number of noise operators,
the expectation value is zero. For b + d ∈ even, each term
in Eq. (F3) can be expanded as the sum of multiplication of
the second-order correlation functions of the noise operators.
By using the Einstein relations, Dαi,α j , Dα

†
i ,α

†
j
, and Dα

†
i ,α j

are all zero; thus, all possible correlation functions are zero.
As Eq. (F3) evaluates to zero, the only nonzero term in the
expansion of 〈[̃a†

s (L)]l+n [̃as(L)]l+m〉 is as follows:

〈[C∗(0)̃a†
p(0) + D∗(0)̃a†

s (0)]l+n

× [C(0)̃ap(0) + D(0)̃as(0)]l+m〉. (F5)

The partial trace applied to the reservoir density operator
equals 1. Therefore, we only apply the partial trace to the
probe and signal in Eq. (F5). We can expand Eq. (F5), and
each term in the expansion takes the form

〈[C∗(0)̃a†
p(0)]a[D∗(0)̃a†

s (0)]b

× [C(0)̃ap(0)]c[D(0)̃as(0)]d〉p,s. (F6)

These terms can again be classified into two categories with
b + d �= 0 or b + d = 0. For the first case, the partial trace
on the signal ladder operator part is zero since the signal
field is initially in a vacuum state |0〉s. Therefore, the only
nonzero term in the expansion of Eq. (F5) is the b + d = 0
term, for which only the probe ladder operator part remains.
The relation that we use in Eq. (55) can be obtained as follows:

〈[̃a†
s (L)]l+n [̃as(L)]l+m〉
= trp{[C∗(0)̃a†

p(0)]l+n[C(0)̃ap(0)]l+mρp(0)}. (F7)

The explicit form of the converted density matrix element can
then be derived as shown in Eq. (55).
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