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Multiple scattering of coherent light in a random medium containing optical
turbulence and randomly distributed particles
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We study multiple scattering of light in a random medium containing both optical turbulence and randomly
distributed particles. Based on the form of dielectric correlation function attained, the Dyson equation and Bethe-
Salpeter equation for scalar waves are derived. The Bethe-Salpeter equation is then expanded according to the
number of scattering times and then simplified to a practical expression for calculations after manipulations. The
numerical scheme allows to calculate the field-field correlation function of scalar wave multiple scattering by
particles larger than wavelength, and that of propagation in a medium containing both optical turbulence and
particles. Theoretical analysis and numerical calculations may have applications in light detection and ranging
(LIDAR) and underwater optical systems.
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I. INTRODUCTION

Light in random media has become a widespread research
area in the past decades [1–7]. A medium is called random
if it varies with time and space, such as optical turbulence, a
group of particles, and rough surfaces. When light is incident
into these kinds of media, it goes along a totally random path,
resulting in a random distribution of light field. Each kind
of random media has been studied extensively, but it is also
worthwhile to look into various combinations of them. Recent
observations have shown that light scattering simultaneously
by both rough surface and volumetric disorder leads to brand
new effects, and the dependence of diffused light on statistical
information of disorder is given [8]. Several papers reported
the experimental results of light behaviors in a particles group,
in underwater optical turbulence, and in the mixture of them
[9–11].

Light fields in either optical turbulence or the particles
group are governed by the Lippmann-Schwinger equation, in
which the dielectric permittivity is a random variable [12].
In optical turbulence, the velocity field disturbs the stable
temperature stratification (as well as the stable salinity strat-
ification in ocean water), and leads to fluctuations of the
spatial and temporal distribution of temperature (and salinity)
and then fluctuations of the dielectric value [13,14]. These
fluctuations are smooth and gently distort the incident light,
leading to phenomena including scintillation, beam wander,
and beam spread [3]. In a group of particles, however, there
are abrupt changes of dielectric values at a boundary of each
particle, which severely scatter the incident light [5,15,16].
A light beam will soon lose its incident direction, which is
called diffusion [6,7], leading to intensity attenuation, speckle
patterns, and weak localization [6,17,18].
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Although these differences of light behavior in optical
turbulence and particles bring different assumptions and treat-
ments, the phenomena caused by them can both be interpreted
with the statistical method, mainly involving statistical mo-
ments of field [3,6]. This makes it possible to theoretically
describe light scattering in the presence of both optical
turbulence and particles. For example, the first-order Born
approximation and Rytov perturbation method were used in
Ref. [19] to derive the second-order fluctuations of light in
that case, and they gave the field correlation function in
the case of spherical particles and von Kármán turbulence
power spectrum. The intensity fluctuation of the reflected field
from a layer of the particles group and turbulent atmosphere
was investigated using the Rytov method [20]. Regarding
the simulation approach, the authors of Ref. [21] studied the
intensity distribution of the light beam and probability density
distribution of intensity by Monte Carlo simulation, where
the light beam passed alternately through the random phase
screens and particles groups. In addition, temporal statisti-
cal properties of light scattered by particles suspended in a
turbulent fluid were investigated, to be used as a tool for
gaining information on the velocity field of turbulence [22].
The backscattering of acoustic waves by particles laden in a
turbulent jet, as well as the situation where light scattering by
an object submerged in inhomogeneous media have also been
studied [23,24].

However, in the medium that optical turbulence and par-
ticles are totally mixed, a light field may be scattered by
either the turbulent potential or particles potential, with ran-
dom scattering times and at random positions. In addition, the
probability of taking the potential of either type is supposed
to be included in every scattering event. To analyze multiple
scattering, a diagrammatic representation has been used to
solve moments of fields in the particles group [6,7,25], while
in optical turbulence, the Born approximation was used to
discuss light propagation [3,14,26]. Accordingly, we adopt
multiple scattering theory and the method of the Born series in
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this paper to investigate light behavior in the presence of both
optical turbulence and particles. We also provide a numerical
scheme and discuss on the average field and second-order
field correlation function. The issue studied in this paper will
benefit research on light scattering and transport in complex
environments where optical turbulence and particles coexist.

This paper is organized as follows. In Sec. II we discuss
the scattering process in the mixture of optical turbulence
and particles and derive the expressions of dielectric corre-
lation functions. In Sec. III we give the general expression of
Bethe-Salpeter (BS) equation in the mixed medium. To enter
numerical calculations, the BS equation is then expanded and
transformed to Fourier space to obtain a practical expression.
We also compare the theoretical framework proposed here
with approaches in previous publications. Numerical calcu-
lations are performed in Sec. IV to plot second-order field
correlation functions, and these functions are compared be-
tween the mixed medium and the pure medium. Finally, in
Sec. V we conclude with the main results and some prospec-
tive applications.

II. AVERAGE FIELD OF LIGHT AND DIELECTRIC
STATISTICS IN A RANDOM MEDIUM CONTAINING

OPTICAL TURBULENCE AND PARTICLES

A. Dyson equation

A light field scattering in random media obeys the integral
equation [12]

E (r) = E0(r) + k2
0

∫
dr′G0(r, r′)δε(r′)E (r′), (1)

which is the solution of scalar Helmholtz equation.
Equation (1) is derived from the vector integral equation, and
it holds when the depolarization effect is neglected [3]. E (r)
and E0(r) represent the total field and incident field at loca-
tion r, respectively. k0 = 2π/λ is the wave number in a host
medium with λ the illuminating wavelength. δε(r′) = ε(r′) −
〈ε(r′)〉 means the fluctuation of the dielectric value at r′ from
the mean value, with 〈·〉 the ensemble average. G0(r, r′) is
the free-space Green’s function, and we have dr′ = d3r′ in the
three-dimensional (3D) problem. The iterative form of Eq. (1)
implies multiple scattering, so we expand it and perform
ensemble averaging. After some manipulation we obtain the
average field [6,7,27]

〈E (r)〉 =
∫

dr′〈G(r, r0)〉E0(r0), (2)

where 〈·〉 means the ensemble average, and 〈G〉 is the average
Green’s function, obeying

〈G(r, r0)〉 = G0(r, r0) +
∫

dr′dr′′

× G0(r, r′′)�(r′′, r′)〈G(r′, r0)〉, (3)

which is called the Dyson equation. In this equation, �(r′′, r′)
represents self-energy, consisting of all irreducible diagrams
in diagrammatic representation [6]. In the weak-scattering
regime, namely, k0� � 1 where � is the scattering mean free
path, higher orders can be neglected and only the second term

remains, yielding [2,25,28]

�(r′′, r′) ≈ k4
0G0(r′′, r′)B(r′′, r′), (4)

where B(r′′, r′) is the second-order dielectric correlation func-
tion. In addition, the first term in the self-energy is zero
because 〈δε(r)〉 = 0. To calculate the average Green’s func-
tion from the expression of self-energy, we require the Fourier
transform of Eq. (3), which is given by [6,7]

〈G(k)〉 = 1

k2 − k2
0 − �(k)

, (5)

where k is the coordinate in Fourier space. �(k) satisfies
�(k) � k2

0 in the weak-scattering regime, which means that
the average Green’s function in Eq. (5) is peaked around k0.
In a statistically translationally invariant and isotropic random
medium, � is independent of the direction of k [6,29]. In this
case we can keep |k| = k0 in the calculation of �(k). Then the
definition of the effective wave number keff is given by [6,7]

k2
eff = k2

0 + �(k0). (6)

By noticing |�(k0)| � k2
0 we get [6,7]

keff � k0 + i

2�
, (7)

where i = √−1. The presence of � results from the attenua-
tion of a light field because of scattering, and this is always
neglected in clear water or air optical turbulence (clear turbu-
lence means that there are no other scattering media causing
optical inhomogeneity except for turbulence).

B. Dielectric correlation functions

When introducing the average field, we are aware of the
importance of dielectric correlation functions, which will be
derived in this subsection. Optical turbulence and a group
of particles both result in dielectric fluctuations. Since light
travels much more quickly than the temporal variation of a
scattering medium, the medium can be considered as a single
realization for a single moment. Also, the dielectric value
ε(r) in a specific position r in the presence of turbulence and
particles can be regarded as a random variable. Considering
the possibility of either turbulence and particle, ε(r) can be
expressed by

ε(r) = 〈ε(r)〉 +
{
δεt (r), for turbulence,
δεp(r), for particles,

(8)

where we introduced δεt (r) and δεp(r) to represent the di-
electric fluctuations originating from the turbulence potential
and particle potential, respectively, for they cannot occupy one
same location at the same time. 〈ε(r)〉 means the ensemble
average of ε(r) over the entire medium, with δε(r) = ε(r) −
〈ε(r)〉. Then the dielectric correlation function of the nth order
is given by

B(r1, r2, . . . , rn) = 〈δε(r1)δε(r2) . . . δε(rn)〉
=

∑
j1, j2,..., jn

〈δε j1 (r1)δε j2 (r2) . . . δε jn (rn)〉,

(9)
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where j1, j2, . . . , jn ∈ [t, p], with t and p corresponding to
the turbulence and particles, respectively. Since we pay atten-
tion to how light behaves when the two media are combined,
the dynamical interactions of turbulence with particles are
neglected. Then Eq. (9) becomes

〈[δεt (r1) . . . δεt (rm)][δεp(r1) . . . δεp(rn)]〉
= 〈[δεt (r1) . . . δεt (rm)]〉〈[δεp(r1) . . . δεp(rn)]〉. (10)

Particularly, the second-order correlation function of Eq. (10)
is given by

B(r1, r2) = Bt (r1, r2) + Bp(r1, r2) (11)

in which we use Bt and Bp to refer to the correlation function
of the turbulence and particles, respectively, and also used
that 〈δεt (r1)〉〈δεp(r2)〉 is approximately equal to zero. The
calculations of Bt and Bp are different, which are given in
Appendix A, in the case of spherical particles, and a given
power spectrum of optical turbulence.

The dielectric correlation functions given in this subsection
eliminates the need to distinguish whether each scattering
event is due to the turbulence or particles. Now we only need
to substitute Eq. (11) into Eq. (4) to get the expression of
self-energy

�(r′′, r′) ≈ k4
0G0(r′′, r′)[Bp(r′′, r′) + Bt (r′′, r′)]. (12)

III. FIELD-FIELD CORRELATIONS IN A RANDOM
MEDIUM CONTAINING OPTICAL TURBULENCE

AND PARTICLES

A. Bethe-Salpeter equation

A complete description of light transport requires not only
average field but also field correlations. The spatial correlation
function of electric field in random media obeys the Bethe-
Salpeter equation [4,6,7]

〈E (r)E∗(r′)〉 = 〈E (r)〉〈E∗(r′)〉

+
∫

dr2dr′
2dr1dr′

1〈G(r, r2)〉〈G∗(r′, r′
2)〉

× �(r2, r1; r′
2, r′

1)〈E (r1)E∗(r′
1)〉, (13)

where 〈G〉 represents the average Green’s function, and ∗
denotes complex conjugation. � is the irreducible vertex, de-
scribing all possible scattering sequences between four points.
The first term on the right-hand side of Eq. (13) represents the
ballistic intensity, namely, the uncorrelated part. The second
term is the correlated part, originating from multiple scatter-
ing process. � has infinite terms, but in the weak-scattering
regime, namely, k0� � 1, it reduces to

�(r2, r1; r′
2, r′

1) ≈ k4
0B(r1, r′

1)δ(r1 − r2)δ(r′
1 − r′

2), (14)

which is called the ladder approximation. In the presence
of both turbulence and particles, we substitute Eq. (11) and

FIG. 1. Bethe-Salpeter equation in diagrammatic representation.
A solid line represents a field. A circle represents a scattering po-
tential. A dashed line means there are correlations between two
potentials.

Eq. (14) into Eq. (13) to get the Bethe-Salpeter equation

〈E (r)E∗(r′)〉 = 〈E (r)〉〈E∗(r′)〉

+ k4
0

∫
dr1dr′

1〈G(r, r1)〉〈G∗(r′, r′
1)〉

× [Bp(r1, r′
1) + Bt (r1, r′

1)]〈E (r1)E∗(r′
1)〉,
(15)

whose diagrammatic representation is shown by Fig. 1. Each
circle possibly takes either the turbulence potential or the
particles potential in the medium containing both optical
turbulence and a group of particles. A dashed line implies
correlations between two potentials and corresponds to the
dielectric correlation function in the BS equation.

In Eq. (15), the first term on the right-hand side is the ballis-
tic intensity, decaying exponentially with scattering mean-free
path along the propagation direction. The second part governs
the correlations of two fields after multiple scattering, and
it represents the phase correlations between two light fields
propagating in close paths, if there are dielectric correlations
in the scattering medium.

However, the BS equation cannot be solved exactly, unless
B(r1, r′

1) could be regarded as a delta function, corresponding
to Gaussian white-noise model [6,7]. To calculate field-field
correlations, we expand Eq. (15) into orders

〈E (r)E∗(r′)〉 = 〈E (r)〉〈E∗(r′)〉

+
∞∑

m=1

〈δE (r)δE∗(r′)〉(m), (16)

where

〈δE (r)δE∗(r′)〉(m) = k4
0

∫
dr1dr′

1〈δE (r1)δE∗(r′
1)〉(m−1)

× 〈G(r, r1)〉〈G∗(r′, r′
1)〉[Bp(r1, r′

1)

+ Bt (r1, r′
1)] (17)

represents the component that two fields experience m times
correlated scattering events, also equivalent to the mth order
of the Born series. Specifically, 〈δEδE∗〉(m−1) when m = 1
is actually the ballistic intensity 〈E〉〈E∗〉. If a plane wave
E0exp(ik0z) is incident, the average field at position z along
its propagation distance is expressed by

〈E (r)〉 = E0exp(ik0z)exp

(
− z

2�

)
, (18)
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using Eqs. (2) and (5). Then the ballistic intensity is given by

〈E (r)〉〈E∗(r′)〉 = I0exp[ik0(z − z′)]exp

[
− (z + z′)

2�

]
, (19)

with I0 = E2
0 .

B. Numerical scheme

Equation (17) has illustrated that we can calculate
〈δEδE∗〉(m) by 〈δEδE∗〉(m−1), and thus calculate the total
field-field correlation function approximately.

The form of Eq. (17) is not suitable for numerical calcu-
lations since it involves integrations over r1 and r′

1, both of
which are 3D coordinates. It is better to perform the calcula-
tion in Fourier space. When a plane wave is incident, the result
could be expressed by (please refer to Appendix B for more
details)

〈δEδE∗(k(m)⊥, η(m), 0)〉(m)

=
∫

dk(m−1)⊥
(2π )2

k4
0B(k(m)⊥ − k(m−1)⊥, K(m) − K(m−1))

4
(
K2

(m) + K ′2
(m)

)

×
∫ η(m)

0
〈δEδE∗(k(m−1)⊥, η(m−1), 0)〉(m−1)

× e2K ′
(m)[η(m−1)−η(m)]dη(m−1), (20)

where k(m)⊥ and η(m) represent the coordinates of 〈δEδE∗〉(m),
with k(m)⊥ the transverse coordinates in Fourier space, and
η(m) the propagation distance in real space. B = Bt + Bp. And
K(m), K ′

(m) are given by (K ′
(m) > 0)√

k2
0 + ik0

�
− k2

(m)⊥ = K(m) + iK ′
(m), (21)

√
k2

0 − ik0

�
− k2

(m)⊥ = K(m) − iK ′
(m). (22)

The function

〈δEδE∗(k(m)⊥, η(m), 0)〉(m) =
∫

〈δEδE∗(
r(m)⊥, η(m), 0)〉(m)

× e−ik(m)⊥·
r(m)⊥d
r(m)⊥ (23)

is a two-dimensional (2D) Fourier transform, with 
r(m)⊥ =
r(m)⊥ − r′

(m)⊥ the transverse separation distance of two obser-
vation points, where

〈δEδE∗(r(m)⊥, η(m),
z(m) )〉(p)
(m) = 〈δE (r)δE∗(r′)〉(p)

(m).

(24)

Moreover, the first order of 〈δEδE∗(k(m)⊥, η(m), 0)〉(m) is
given by

〈δEδE∗(k(1)⊥, η(1), 0)〉(1)

= I0
e−2K ′

(1)η(1)

4
(
K2

(1) + K ′2
(1)

)k4
0B(k(1)⊥, K(1) − k0)

∫ η(1)

0

× e− η(0)
� e2K ′

(1)η(0) dη(0). (25)

Equation (20) has given a practical numerical scheme for
〈δEδE∗〉(m), which will be added to obtain 〈δEδE∗〉.

C. Comparison with existing approaches

The main result of this paper is the Bethe-Salpeter equa-
tion in the medium containing both optical turbulence and
particles group, given by Eqs. (16) and (20). The method
adopted stems directly from multiple scattering theory, so it
immediately reduces to the expression of the BS equation if
there is no turbulence. Moreover, we can also attain the field
correlation function in clear water or air turbulence by set-
ting � in Eq. (16) to be infinity. After performing paraxial
approximation onto the free-space Green’s function, the result
is actually the Born series used in optical turbulence.

Now we compare Eq. (16) with the results in previous pub-
lications. First, in Ref. [19] the authors investigated light-field
transmission in the presence of both turbulence and particles,
using the first-order Born approximation and Rytov method.
When deriving the second-order correlation function of fields,
a convolution of the correlation function of the field scattered
by particles and the modulation of turbulence is performed. In
this case, the BS equation developed here is basically identical
to the main result in Ref. [19], by retaining 〈δE (r)δE∗(r′)〉(m)

in Eq. (16) to second order, and keeping Bp in the first scat-
tering event and Bt in the other scattering event. If optical
turbulence and particles are totally mixed, we emphasize that
their second-order dielectric correlation functions are approx-
imately superimposed rather than multiplied. Also, Eq. (16)
considers multiple scattering and light attenuation in Green’s
functions. Another difference is, the authors in Ref. [19] used
the Rytov perturbation method to describe turbulent perturba-
tions while we adopt the Born series in this paper.

In Ref. [21] the authors proposed a simulation method to
investigate light propagation through optical turbulence and
particles group. The random phase screen is used to model
turbulence perturbation and the Monte Carlo method is used to
simulate light scattering in particulate media with the Henyey-
Greenstein phase function. The light beam passes through the
phase screen and particles group alternately, but the situation
considered in this paper is that the turbulence and particles
are totally mixed. This means that the theoretical framework
in this paper is more general, but the authors of Ref. [21]
provided a practical simulation model instead of a theoretical
approach.

IV. NUMERICAL ANALYSIS

The process of numerical calculations is demonstrated in
Sec. III B. We will show the numerical results in this section.
First, we denote the normalized field-field correlation func-
tions C(m)(
r⊥) and C(
r⊥) by

C(m)(
r⊥) = 〈δE (r⊥)δE∗(r′
⊥)〉(m)∑M

m=1〈|δE |2〉(m)

, (26)

C(
r⊥) =
M∑

m=1

C(m)(
r⊥), (27)

where 
r⊥ = |r⊥ − r′
⊥| is the distance between two obser-

vation points in the transverse plane and M is the maximum
order in calculations.

The numerical calculations are first performed for the case
without turbulence. We consider a situation that particles
are spherical and identical in each group, with refractive
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FIG. 2. First six orders of C(m)(
r⊥) when particle size is set to
be 10 µm. Illuminating wavelength λ = 532 nm, refractive index of
particle is 1.5, and refractive index of host medium is 1.34. Scattering
mean free path � = 0.205 m, and propagation distance is 1 m.

index np = 1.5 and embedded in a host medium (oceanic
water) with n0 = 1.34. When calculating the ballistic intensity
〈E〉〈E∗〉, scattering mean-free paths are obtained using Mie
scattering coefficients.

Figure 2 shows the first six orders of C(m)(
r⊥) for 10 µm
particles, from which we see that higher orders are much
smaller than the lower, making their sum, namely, C(
r⊥),
soon converge. Then, Fig. 3 plots C(
r⊥) for three different

particle sizes, respectively. For the particles smaller than the
illuminating wavelength, the results attained are consistent
with those obtained through the exact theoretical analysis in
previous publications [6,32]. For particles that are larger than
wavelength but no more than 10 µm, the results illustrate that
the spatial scale of the correlation function is approximately
equal to the particle size.

The cases of particles larger than 10 µm are also calculated,
but it turns out that C(
r⊥) does not converge in this case.
Instead, the intensity of higher orders is much more than the
lower ones. On the other hand, those terms that are higher
than third order have an identical curve form, which forces
the total correlation function to have this form as well. It is
possibly because a light field encounters more scattering times
in a single particle if this particle has a larger size. This makes
higher orders of C(m)(
r⊥) more important. We also found
that the convergence is related to the difference of dielectric
permittivity between scatterer and host medium.

Next, we perform numerical calculations for the cases that
particles and optical turbulence coexist. We use three differ-
ent power spectrum models of optical turbulence, as shown
in Fig. 4. The peak width in the middle of each subfigure
is consistent with Fig. 3(b), meaning that the contribution
of particles still dominates diffuse intensity. On the other
hand, the contribution of turbulence to C(
r⊥) is smoothly
distributed over a large spatial range, but its intensity is rela-
tively much smaller. The reason is that turbulent eddies have
much larger spatial scales than small particles while they have
much weaker dielectric fluctuations. Thereby, the presence
of particles brings significant influences on optical systems
working in clear turbulence, including intensity attenuation
and additional speckle patterns.

Figure 4 shows that both of the respective characteristics
of turbulence and particles appear obviously in the correlation
function, which results from the random distribution of scat-
tering potentials of two types. In a medium that turbulence and
particles are totally mixed, there is no sequential relationship
for light scattering between two media. Instead, scattering
events of each kind may occur at any position. When it comes
to two correlated fields, they possibly encounter the same
particles sequence to lead to a small-scale correlation, and
also possibly encounter the same turbulent eddy to lead to

FIG. 3. Normalized correlation function C(
r⊥) when the scattering medium consists of a group of particles. Particle sizes and mean free
paths are set to be (a) 0.1 µm, � = 0.200 m, (b) 1 µm, � = 0.265 m, (c) 10 µm, � = 0.205 m, respectively. Illuminating wavelength λ = 532 nm,
refractive index of particle is 1.5, and refractive index of host medium is 1.34. When calculating C(m)(
r⊥), the maximum order is up to m = 6.
Propagation distance is 1 m.
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FIG. 4. Normalized correlation function C(
r⊥) in the presence of both optical turbulence and 1 µm spherical particles. Refractive
index power spectrum models used here are (a) von Kármán model [3], where the refractive index structural constant is set to be C2

n =
1 × 10−12 m−2/3, and outer scale is 1 m. (b) Nikishovs’ model [30], where the relative strength ω = −1, Prandtl number PrT = 13.349, Schmidt
number PrS = 2393.2, dissipation rate of the kinetic energy ε = 1 × 10−2 m2/s3, kinematic viscosity ν = 18.534 × 10−7 m2/s, temperature
dissipation rates χT = 1 × 10−5 K2/s, and Kolmogorov microscale η = 15.885 × 10−5 m. (c) Yao’s model [31], where the parameters are set
equally to that of Nikishovs’. Illuminating wavelength λ = 532 nm, refractive index of particle is 1.5, and refractive index of host medium
is 1.34. Scattering mean free path � = 0.265 m, and propagation distance is 1 m. When calculating C(m)(
r⊥), the maximum order is up to
m = 6.

a large-scale correlation. Both situations exist and may not
necessarily affect each other. This is the main difference from
the results in previous publications, such as Ref. [19] where
a convolution of the correlation function of field scattered by
particles and the modulation of turbulence was performed, and
Ref. [21] that handled the two kinds of media sequentially.
The method proposed in this article is capable of describing
the statistical properties of the medium that optical turbulence
and particles are totally mixed, as well as light scattering and
transport in such a medium.

V. CONCLUSION

Light exhibits different behaviors when scattered by dif-
ferent scattering media, with particles and optical turbulence
being two typical types. This paper proposes a theoreti-
cal method to describe light scattering in the situation that
particles and optical turbulence are mixed and provides a
numerical scheme. The theoretical method gives first-order
and second-order statistical moments of the optical field by
attaining the dielectric correlation function of the medium.
Then, the BS equation representing the second-order moment
of the field is given in a series expansion and enters numerical
calculation after analytical derivation. The method proposed
not only allows for the introduction of particle groups with
particle sizes larger than the wavelength, but also approxi-
mately calculates the multiple scattering results when there
are two different types of scatterers in the medium.

The actual calculation results indicate that the numerical
scheme is feasible for particle sizes smaller than 10 micron
(with a 0.45 difference in dielectric constant from the host
medium). For a group of identical particles, the correlation
scale of field correlation function is equal to the particle size.
If there is also optical turbulence in the medium, the peak
generated by particles still exists in the field correlation func-
tion, but the turbulence contribution will emerge with a larger
spatial range and weaker intensity. These results reveal the
property of light transport in a mixed medium and would be
helpful in underwater optical communication and detection.

APPENDIX A: CALCULATION OF DIELECTRIC
CORRELATION FUNCTIONS

In this Appendix, we demonstrate the calculation of the
dielectric correlation function for the particles group, and also
the process to get the dielectric correlation function from the
refractive power spectrum in optical turbulence. We first con-
sider a group of identical spherical particles, with dielectric
permittivity εp, and the host medium has a dielectric permit-
tivity ε0. Then the dielectric correlation function is defined by

Bp(r, r′) = ni

∫
δεp(r − r j )δεp(r′ − r j )dr j, (A1)

with δεp = εp − ε0 and r j is the position of the jth particle.
ni = N/V means the density of particles, namely, the number
of particles N in a volume V . A spherical particle has the
potential that

δεp(r − r j ) =
{
δεp, |r − r j | � R0,

0, |r − r j | > R0,
(A2)

where R0 is the radius of this particle. Taking the Fourier
transform of Eq. (A2) leads to

δεp(k) = 4πδεpR3
0

j1(kR0)

kR0
, (A3)

with j1(·) representing the spherical Bessel function of the
first type and order 1. Also taking the Fourier transform of
Eq. (A1) we get

Bp(k) = ni[δεp(k)]2 = (
4πδεpR3

0

)2
ni

[
j1(kR0)

kR0

]2

. (A4)

A particular case is, when R0 is smaller than the illuminating
wavelength, the Fourier transform of Bp(k) will tend to be a
delta function. The Fourier transform here is defined by

f̃ (k) =
∫

f (r)e−ik·rdr,

f (r) =
∫

f̃ (k)eik·r dk
(2π )d

, (A5)

with d the dimension of the problem.
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On the other hand, the statistics of optical turbulence is
mainly about refractive index due to conventions. The refrac-
tive index in clear water/air turbulence is divided into two
parts [3,14]

n(r) = n0 + δn(r), (A6)

where n0 = 〈n〉 is the average refractive index and δn is the
fluctuation part. (A more conventional notation is n1, but we
here use δn to ensure consistency of notations throughout
the paper.) Then the dielectric permittivity is given by (the
magnetic permeability is unity)

ε(r) = n2(r) � n2
0 + 2n0δn(r). (A7)

Now the dielectric correlation function can be linked to refrac-
tive index correlation function by

〈δε(r)δε(r′)〉 = 4n2
0〈δn(r)δn(r′)〉. (A8)

The refractive index power spectrum �n(k) is defined by

〈δn(r)δn(r′)〉 =
∫

�n(k)exp[ik · (r − r′)]dk. (A9)

Finally the dielectric correlation function can be expressed by

Bt (r, r′) = 〈δε(r)δε(r′)〉
= 4n2

0

∫
�n(k)exp[ik · (r − r′)]d3k. (A10)

In addtion, in Fourier space

Bt (k) = 4n2
0(2π )3�n(k). (A11)

APPENDIX B: ANALYTICAL CALCULATION
OF 〈δEδE∗〉(m)

The expression of the field-field correlation function needs
to be simplified before getting into numerical calculation. In
this Appendix, we demonstrate how to make it a suitable form
for numerical calculations. The Fourier transform throughout
this Appendix is given by Eq. (A5). First, the relation between
the mth order and (m − 1)th order is given by

〈δE (r)δE∗(r′)〉(m) = k4
0

∫
dr1dr′

1〈δE (r1)δE∗(r′
1)〉(m−1)

× 〈G(r, r1)〉〈G∗(r′, r′
1)〉B(r1, r′

1),
(B1)

which is the same as Eq. (17). In translationally invariant
random media, it is convenient to use cylindrical coordinates
(|r⊥|, θ, z) if illuminated by a plane wave, and the z axis is
aligned with the incident direction. Now we express every part

in Eq. (B1) by Fourier integration, which is

〈δE (r)δE∗(r′)〉(m) = k4
0

∫
dr1dr′

1
dq′

⊥
(2π )2

dk
(2π )3

dk′

(2π )3

dq
(2π )3

× eiq′
⊥·(r1⊥−r′

1⊥ )〈δEδE∗(q′
⊥, η1,
z1)〉(m−1)

× eik·(r−r1 )

k2 − k2
eff

e−ik′ ·(r′−r′
1 )

k′2 − k∗2
eff

eiq·(r1−r′
1 )B(q),

(B2)

where k, k′ and q are 3D coordinates in Fourier space, q′
⊥ is

the transverse coordinate in Fourier space, and

〈δEδE∗(q′
⊥, η1,
z1)〉(m−1)

=
∫

d (r1⊥ − r′
1⊥)e−iq′

⊥·(r1⊥−r′
1⊥ )〈δE (r1)δE∗(r′

1)〉(m−1).

(B3)

The field correlation function is circularly symmetric in trans-
verse coordinates, but it possibly varies with the propagation
distance η = (z + z′)/2 and 
z = z − z′. Then we perform
integration successively over r1⊥, r′

1⊥, k′
⊥, and q⊥, and obtain

〈δE (r)δE∗(r′)〉(m) = k4
0

∫
dz1dz′

1
dq′

⊥
(2π )2

dk
(2π )3

dk′
z

(2π )

dqz

(2π )

× eik⊥·(r⊥−r′
⊥ )〈δEδE∗(q′

⊥, η1,
z1)〉(m−1)

× eikz (z−z1 )

k2
z + k2

⊥ − k2
eff

e−ik′
z (z′−z′

1 )

k′2
z + k2

⊥ − k∗2
eff

× eiqz (z1−z′
1 )B(k⊥ − q′

⊥, qz ). (B4)

Next we integrate over kz and k′
z to simplify the Green’s func-

tion. These two integrations can be performed in the complex
plane, by using contour integration and residue theorem [33].
The integration over kz needs a contour in upper half plane
while the integration over k′

z in lower half plane. The result is∫
dkz

(2π )

eikz (z−z1 )

k2
z + k2

⊥ − k2
eff

= iei(K+iK ′ )(z−z1 )

2(K + iK ′)
, (B5)

∫
dk′

z

(2π )

e−ik′
z (z′−z′

1 )

k′2
z + k2

⊥ − k∗2
eff

= − ie−i(K−iK ′ )(z′−z′
1 )

2(K − iK ′)
. (B6)

In these two integrations, the poles we used with the residue
theorem are √

k2
eff − k2

⊥ = K + iK ′, (B7)
√

k∗2
eff − k2

⊥ = K − iK ′, (B8)

respectively, where K ′ � 0. Now we go back to 〈δEδE∗〉(m)

with this simplification of the Green’s functions and get

〈δE (r)δE∗(r′)〉(m) = k4
0

∫
dz1dz′

1
dq′

⊥
(2π )2

dk⊥
(2π )2

dqz

(2π )

× eik⊥·(r⊥−r′
⊥ )〈δEδE∗(q′

⊥, η1,
z1)〉(m−1)

× eiK (z−z′ )e−K ′(z+z′ )e−iK (z1−z′
1 )eK ′(z1+z′

1 )

4(K2 + K ′2)

× eiqz (z1−z′
1 )B(k⊥ − q′

⊥, qz ). (B9)
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To continue, we make the change of variables η(m) = (z +
z′)/2, η(m−1) = (z1 + z′

1)/2 and 
z(m−1) = z1 − z′
1. Because

the scale of dielectric correlation function is much less than
the propagation distance (this assumption is proper in diffu-
sive regime, while it also holds in turbulence by introducing
Markov approximation), the integration over r1 and r′

1 could
be transformed to∫

dz1

∫
dz′

1 =
∫ η(m)

0
dη(m−1)

∫ ∞

−∞
d
z(m−1). (B10)

We also change the notations so that k(m−1)⊥ = q′
⊥, k(m)⊥ =

k⊥, K(m) = K , and K ′
(m) = K ′. This change is to ensure

that the subscript (m) is used to symbol coordinates be-
longing to 〈δEδE∗〉(m), and (m−1) for 〈δEδE∗〉(m−1). The
upper limit of η(m−1) is set to be η(m), which is a result
of neglecting backscatter effect. Thus we integrate over qz,
and then perform the Fourier transform of Eq. (B9), and
obtain

〈δEδE∗(k(m)⊥, η(m),
z(m) )〉(m) = eiK(m)
z(m) e−2K ′
(m)η(m)

4
(
K2

(m) + K ′2
(m)

) k4
0

∫
dk(m−1)⊥

(2π )2

∫ ∞

−∞
d
z(m−1)

∫ η(m)

0
dη(m−1)

× e−iK(m)
z(m−1) e2K ′
(m)η(m−1) B(k(m)⊥ − k(m−1)⊥,
z(m−1))〈δEδE∗(k(m−1)⊥, η(m−1),
z(m−1))〉(m−1).

(B11)

This equation cannot be further simplified unless we know the incident light. Thereby, we consider an incident plane wave
and substitute the ballistic intensity Eq. (19) into it to get the first order and mth order

〈δEδE∗(k(1)⊥, η(1),
z(1) )〉(1) = I0
eiK(1)
z(1) e−2K ′

(1)η(1)

4
(
K2

(1) + K ′2
(1)

) k4
0B(k(1)⊥, K(1) − k0)

∫ η(1)

0
e
−η(0)

� e2K ′
(1)η(0) dη(0), (B12)

· · · , (B13)

〈δEδE∗(k(m)⊥, η(m),
z(m) )〉(m) = I0eiK(m)
z(m) e−2K ′
(m)η(m)

∫
dk(m−1)⊥

(2π )2

k4
0B(k(m)⊥ − k(m−1)⊥, K(m) − K(m−1))

4
(
K2

(m) + K ′2
(m)

) · · ·
∫

dk(1)⊥
(2π )2

k4
0B(k(2)⊥ − k(1)⊥, K(2) − K(1) )

4
(
K2

(2) + K ′2
(2)

)
∫

dk(0)⊥
(2π )2

(2π )2δ(k(0)⊥)

× k4
0B(k(1)⊥ − k(0)⊥, K(1) − K(0) )

4
(
K2

(1) + K ′2
(1)

)

×
∫ η(m)

0
· · ·

{∫ η(2)

0

{∫ η(1)

0
e− η(0)

� e2K ′
(1)η(0) dη(0)

}
e−2K ′

(1)η(1) e2K ′
(2)η(1) dη(1)

}
· · ·

e−2K ′
(m−1)η(m−1) e2K ′

(m)η(m−1) dη(m−1), (B14)

where K(0) = k0, and
√

k2
eff − k2

(m)⊥ = K(m) + iK ′
(m), K ′

(m) > 0. In attaining this equation, we perform the integrations over 
z(0),

z(1),..., 
z(m−1). By writing down the form of each order, we are able to find the general form of 〈δEδE∗〉(m). Then setting

z(m) = 0, and comparing the expression of the (m − 1)th order to the mth order, we get the following relation:

〈δEδE∗(k(m)⊥, η(m), 0)〉(m) =
∫

dk(m−1)⊥
(2π )2

k4
0B(k(m)⊥ − k(m−1)⊥, K(m) − K(m−1))

4
(
K2

(m) + K ′2
(m)

)

×
∫ η(m)

0
〈δEδE∗(k(m−1)⊥, η(m−1), 0)〉(m−1)e

2K ′
(m)[η(m−1)−η(m)]dη(m−1). (B15)

Thus, Eq. (B15) is the final expression we will use in the numerical scheme to calculate 〈δEδE∗〉(m). Moreover, if necessary, we
can also calculate

〈δEδE∗(k(m)⊥, η(m),
z(m) )〉(m) = eiK(m)
z(m)

∫
dk(m−1)⊥

(2π )2

k4
0B(k(m)⊥ − k(m−1)⊥, K(m) − K(m−1))

4
(
K2

(m) + K ′2
(m)

)

×
∫ η(m)

0
〈δEδE∗(k(m−1)⊥, η(m−1), 0)〉(m−1)e

2K ′
(m)[η(m−1)−η(m)]dη(m−1). (B16)
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