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Unconventional photon blockade with non-Markovian effects in driven dissipative coupled cavities
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The photon blockade based on destructive quantum interference is called the unconventional photon blockade
(UPB), which has been intensively studied in Markovian systems but barely explored in the non-Markovian
ones. In this paper, we construct a coupled-cavities system to achieve UPB with the non-Markovian effect,
where the dissipationless left cavity and Markovian dissipative right cavity are respectively mediated by
two-photon pump and single-photon driving field. Through the equivalence between the Markovian master
equation and Heisenberg-Langevin equation for the environment initialization in the vacuum state, we can
derive the exact non-Markovian Heisenberg-Langevin equation and reduced master equation for the left cavity,
which contains the two-photon pump and effective single-photon driving field. In the non-Markovian regime
(the dissipation falling below a threshold), the effective single-photon driving field holds nonzero, which can
lead to UPB occurring due to a closed quantum interference path forming. When the dissipation exceeds
the threshold, the system enters the Markovian regime, where UPB weakens. Especially, if the dissipation
approaches infinity, UPB for the left cavity disappears due to the effective single-photon driving field tending
to zero. We analytically derive an optimal condition for UPB, which is in good agreement with that obtained
by the numerical simulation. We also discuss the situation where both cavities have dissipations. Finally,
the above model is extended to a general system involving a dissipationless left cavity (mediated by two-
photon pump) coupling with noninteracting dissipative right cavities (driven by single-photon driving fields).
Our scheme might pave an avenue towards applications on photon statistics and quantum optics with the
non-Markovian effect.
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I. INTRODUCTION

The photon blockade [1] originates from the anharmonic
dynamics of bosonic modes and has been used for generating
optical fields with nonclassical statistics [2,3] and single-
photon sources [4,5], which is known as the conventional
photon blockade (CPB) with large nonlinearities with respect
to the decay rate of the system. The CPB was first observed
in an optical cavity coupled to a single trapped atom [6].
Subsequently, strong antibunching behaviors were obtained in
different systems by a series of research groups, including a
quantum dot in a photonic crystal system [7], circuit cavity
quantum electrodynamics systems [8–19], and circuit QED
[20,21]. The theoretical models about CPB include quantum
optomechanical systems [22–35], exciting polaritons [36],
two-level systems coupled to the cavity [37–44], dynami-
cal blockade [45], quantum dots coupled to a nanophotonic
waveguide [46], four-level quantum emitters [47], and three-
wave mixing [48]. Many schemes have been completed in
nanostructured cavities and semiconductor microcavities with
second-order [49–52] and three-order nonlinearities [53,54].
The potential applications of photon blockade include the
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realization of interferometers [55], quantum nonreciprocity
[56,57], single-photon transistors [58], non-Hermitian photon
blockade [59–68], nonreciprocal CPB [69–75], and multipho-
ton blockade [76–87].

Unconventional photon blockade (UPB) [88] with non-
linearities weaker than the decay rates of the cavity modes
has been proposed to suppress the multiphoton population
by utilizing the quantum interference between different paths
of transitions [89–94]. Such a scheme requires an additional
degree of freedom of photons, such as an ancillary pho-
tonic mode or emitter to provide an extra dimension for
the construction of different transition pathways. With the
fundamental principle, many quantum systems are predicted
to have photon blockade effect with weak nonlinearities,
such as bimodal coupled polaritonic cavities [95], optical
cavities with a quantum dot [96–103], coupled single-mode
cavities with second- or third-order nonlinearity [104–113],
three-level artificial atoms [114,115], optomechanical systems
[116–118], semiconductor cavities [119], Gaussian squeezed
states [120–122], and nonreciprocal UPB [123–131]. More-
over, UPB in the microwave domain has been observed in
coupled superconducting resonators [132] and quantum dot
cavity QED [133] in experiment.

In general, all the quantum systems in reality are open
owing to the unavoidable coupling with the environments
[134–144], which have attracted more and more attention with
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the rapid development of quantum information technology
[145,146]. The Markovian approximation for open systems
[136,144] is only valid when the coupling between the system
and environment is weak and characteristic time of the system
under study is adequately larger than that of the environment.
Otherwise we need to investigate the influences of the non-
Markovian environment on the system dynamics [147–149],
which occurs in many quantum systems including coupled
cavities [150], photonic crystals [151,152], colored noises
[153], cavities coupled to waveguides [154–157], and im-
plementations in experiment [158–174]. The non-Markovian
process proves to be useful in quantum information processing
including quantum state engineering, quantum control, and
quantum channel capacity [175,176]. With the different mea-
sures of non-Markovianities [177–184], the non-Markovian
effects of the environments backacting on the system can be
characterized by the excitation backflow between the system
and its environment [185–190].

The above considerations motivate us to explore the fol-
lowing questions.

(i) How do we achieve UPB in the non-Markovian regime?
(ii) Under what condition will UPB disappear?
For this purpose, we propose a coupled-cavities scheme

to realize UPB with the non-Markovian effect, where the
two-photon pump and single-photon driving field respectively
drive the dissipationless left cavity and Markovian dissipative
right cavity. We derive the exact non-Markovian Heisenberg-
Langevin equation and reduced master equation for the left
cavity, which are mediated by two-photon pump and effective
single-photon driving field. We analytically derive the opti-
mal condition for UPB in the non-Markovian regime when
the dissipation falls below a threshold, which coincides well
with the numerical simulation by solving the master equation.
The dissipation greater than the threshold corresponds to the
Markovian regime, which can weaken UPB. Especially, UPB
disappears for the left cavity due to the closed quantum in-
terference paths being broken when the dissipation reaches
infinity. The situation of both cavities having dissipations is
also discussed. Finally, we extend the model to the general
system involving a two-photon pumped left cavity coupling
with noninteracting single-photon driven dissipative right
cavities.

The remainder of the paper is organized as follows.
In Sec. II, we introduce a model to describe the sys-
tem under study consisting of the dissipationless left cavity
and Markovian dissipative right cavity respectively medi-
ated by two-photon pump and single-photon driving field.
The optimal condition for UPB is derived. In Sec. III, we
give the exact reduced non-Markovian Heisenberg-Langevin
equation for the left cavity. In Sec. IV, the exact non-
Markovian master equation for the left cavity is derived.
In Sec. IV, we discuss UPB with the non-Markovian ef-
fect under the optimal condition. In Sec. V, we analytically
derive the second-order correlation function and compare it
with that derived by the numerical simulation. In Sec. VI,
we discuss the situation where both cavities have dissi-
pations. In Sec. VII, a two-photon pumped left cavity
coupling with noninteracting single-photon driven dissipa-
tive right cavities is presented. Section VIII is devoted to
conclusions.

FIG. 1. Setup for UPB with the non-Markovian effect. The left
cavity (eigenfrequency ωa) and right cavity (eigenfrequency ωb)
with the coupling strength g are mediated by the two-photon pump
(strength G and frequency ωp) [13,90,120–122,191–198] and single-
photon driving field (strength F and frequency ωl ), respectively. The
left cavity is assumed to have no photon leakage (also see discussions
for the dissipation to the left cavity in Sec. VI), while the right cavity
has the dissipation γ with the Markovian approximation.

II. MODEL AND UPB

A. Markovian master equation for the system

To present the model to realize UPB with the non-
Markovian effect, we consider that the system under study is
composed of two coupled cavities outlined in Fig. 1, where
the left cavity (cavity a) is mediated by two-photon pump
[199,200], while the right cavity (cavity b) is driven by single-
photon driving field. The Hamiltonian reads (h̄ ≡ 1)

Ĥ0 = ωaâ†â + ωbb̂†b̂ + G(â†2e−iωpt−2iθ + â2eiωpt+2iθ )

+ g(âb̂† + â†b̂) + F ∗b̂eiωl t + Fb̂†e−iωl t , (1)

where the first and second terms on the right-hand side de-
scribe the free Hamiltonian of the left cavity at eigenfrequency
ωa and right cavity at eigenfrequency ωb with annihilation
(creation) operators â (â†) and b̂ (b̂†) satisfying the Bosonic
commutation relations [â, â†] = 1 and [b̂, b̂†] = 1, respec-
tively. The third term denotes the two-photon pump to the left
cavity with frequency ωp and conversion rate G, whose possi-
ble realization can be found in Appendix A. The fourth term
corresponds to the tunneling coupling between two cavities
with the coupling strength g. The last two terms denote the
single-photon driving field to the right cavity with amplitude
F = f e−iφ (strength f and phase φ) and frequency ωl . In a
rotating frame defined by U (t ) = exp[−iωl t (â†â + b̂†b̂)] with
ωp = 2ωl , the Hamiltonian (1) becomes

ĤS = �aâ†â + �bb̂†b̂ + g(âb̂† + â†b̂) + G(â†2 + â2)

+ F ∗b̂ + Fb̂†, (2)

where �a = ωa − ωl and �b = ωb − ωl denote the detunings
of the left and right cavities from the driving field, respec-
tively. Below, we assume �a = �b ≡ �. Here we note that
the phase θ in G(e−i2θ â†2 + e2iθ â2) of Eq. (1) can be absorbed
into the relative phase ϕ − θ in f ei(φ−θ )b̂ + f e−i(φ−θ )b̂† found
by the transformation â → âe−iθ and b → b̂e−iθ . Therefore,
we do not consider the phase θ in the paper. In addition to the
unitary evolution governed by the Hamiltonian ĤS in Eq. (2),
there is a loss due to photons leaking out of the right cavity,
which is governed by the Markovian master equation

ρ̇S = −i[ĤS, ρS] + γ
(
b̂ρSb̂† − 1

2 b̂†b̂ρS − 1
2ρSb̂†b̂

)
, (3)
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where γ denotes the dissipation for the right cavity. Moreover,
the discussion of imposing the dissipation to the left cavity can
be found in Sec. VI.

The photon statistical properties of the left cavity can be
characterized by the steady second-order correlation function

g(2)(0) = 〈â†â†ââ〉
〈â†â〉2

= TrS (â†â†ââρ̄S )

[TrS (â†âρ̄S )]2 , (4)

where ρ̄S denotes the steady density matrix satisfying ˙̄ρS =
0 in Eq. (3). The conditions g(2)(0) < 1 and g(2)(0) > 1
correspond to the photon antibunching and bunching ef-
fects, respectively. The limit g(2)(0) → 0 indicates the photon
blockade of the left cavity, where only one photon can be
excited in the left cavity.

B. Optimal condition for UPB

In order to give the optimal condition for the photon
antibunching and understand the origin of UPB with the
non-Markovian effect, we consider only the zero-, one-, and
two-photon states under the weak driving condition. Assum-
ing that the system is initially prepared in the vacuum state
|0, 0〉, the steady state of the system can be written as [27,89]

|ψ̄〉 = Ē00|0, 0〉 + Ē01|0, 1〉 + Ē10|1, 0〉
+ Ē11|1, 1〉 + Ē02|0, 2〉 + Ē20|2, 0〉, (5)

where Ēmn denotes the steady probability amplitude on
|m, n〉 = |m〉a ⊗ |n〉b with the left and right cavities respec-
tively having m and n photons.

Under the weak driving condition, we have |Ē00| �
|Ē10|, |Ē01| � |Ē11|, |Ē02|, |Ē20|. With Eqs. (4) and (5),
the steady second-order correlation function g(2)(0) 	
〈ψ̄ |â†â†ââ|ψ̄〉/〈ψ̄ |â†â|ψ̄〉2 	 2|Ē20|2/|Ē10|4 = 0 by setting
Ē20 = 0 in Eq. (B1) leads to the optimal condition

�opt = ±√
Y,

sin 2φopt = Gγ
[
2(10g2 − γ 2)�2

opt − 32�4
opt + g2l0.5

]
2 f 2g2

(
γ 2 + 16�2

opt

) ,

cos 2φopt = G
[
(32g4 − l1γ 2)�opt − 12l1�3

opt + 64�5
opt

]
4 f 2g2

(
γ 2 + 16�2

opt

) ,

(6)

with lx = γ 2 + 8xg2 and Y being determined by the quintic
equation

m̄Y5 + n̄Y4 + ōY3 + p̄Y2 + q̄Y + r̄ = 0, (7)

where the expressions for these coefficients m̄, n̄, ō, p̄, q̄, r̄
and derivation of Eq. (6) can be found in Appendix B. We
point out that the vanishing population on the two-photon
state |2, 0〉 occurs and then the strong photon antibunching
can be obtained [i.e., g(2)(0) → 0] if the detuning � and
phase φ simultaneously take their optimal values � = �opt

and φ = φopt in Eq. (6), otherwise the left cavity is not in
the strong photon antibunching regime. The optimal condition
(6) for strong photon antibunching photons of the left cavity
depends on the controllable parameters of the system such as
the frequency detuning �, the loss γ , and the phase φ with the
other parameters g, G, and f fixed.
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FIG. 2. The influences of the dissipation γ on UPB with
the second-order correlation function [g(2)(0) in log scale] as a
function of the phase φ (in units of rad) by numerically solv-
ing master equation (3). � takes its negative optimal value, i.e.,
�opt = (−1.597 82ωa, −1.591 49ωa, −1.580 92ωa, −1.566 97ωa)
respectively corresponding to γ = (0.2ωa, 0.4ωa, 0.6ωa, 0.79ωa).
The other parameters chosen are g = 0.2ωa, G = 0.0001ωa,
and f = 0.1ωa.

We use the optimal condition in Eq. (6) and second-order
correlation function g(2)(0) by numerically solving master
equation (3) as a function of the phase φ with different dissi-
pation γ to understand the extreme points in Figs. 2–5. Here
we show that the optimal parameters (�opt, φopt) have four
real solutions within a period for the optimal phase (−π �
φopt � π ), e.g., (�opt, φopt)=(−1.597 82ωa,−1.507 42 rad),
(−1.597 82ωa, 1.634 16 rad), (1.597 82ωa,−0.063 36 rad),
and (1.597 82ωa, 3.078 22 rad) for the dissipation γ = 0.2ωa

with the other parameters fixed in Figs. 2 and 3. Similar
situations exist in other figures. In Figs. 2 and 3, we find that
the phase φ corresponding to the second-order correlation
function arriving at its minimum is shifted with the change
of the dissipation γ . To be specific, the position of φ moves
right with the increase of dissipation γ under �opt � 0 in
Fig. 2, while the position of φ deviates left with the increase
of dissipation γ under �opt � 0 in Fig. 3. Moreover, the
second-order correlation function g(2)(0) clearly shows that
the antibunching effect occurs when the dissipation γ is not
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FIG. 3. The figure [g(2)(0) in log scale] shows the case of tak-
ing the positive optimal detuning �opt = (1.597 82ωa, 1.591 49ωa,
1.580 92ωa, 1.566 97ωa) vs γ = (0.2ωa, 0.4ωa, 0.6ωa, 0.79ωa ). The
phase φ is in units of rad. The other parameters chosen are the same
as those in Fig. 2.

043714-3



H. Z. SHEN, J. F. YANG, AND X. X. YI PHYSICAL REVIEW A 109, 043714 (2024)
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FIG. 4. The influences of the large dissipation γ =
(0.81ωa, 1ωa, 10ωa, 50ωa, 130ωa, 199ωa ) on UPB [g(2)(0) in log
scale], where the negative optimal detuning �opt = (−1.565 28ωa,
−1.547 12ωa, −0.159 64ωa, −0.006 20ωa, −0.000 72ωa,
−0.000 04ωa). The phase φ is in units of rad. The other parameters
chosen are the same as those in Fig. 2.

too large, e.g., γ < 0.8ωa and g(2)(0) arrives at 10−4, where
the photon antibunching effect of the system becomes very
obvious with small dissipation γ . This indicates that the
photon blockade effect in our system can be used to convert
the coherent driving pump laser into a single-photon stream.

In Figs. 4 and 5, there is also a phenomenon of the phase
φ shifted by adjusting the detuning �opt � 0 or not. However,
an important difference compared with Figs. 2 and 3 is that the
minimum value of g(2)(0) becomes higher with the increase of
dissipation γ , where the minimum value of g(2)(0) arrives at
g(2)(0) � 1 when the dissipation γ is large enough. We find
that the antibunching effect not only can be obtained, but also
the strong bunching effect can be observed in optimal regimes,
which leads to controllability of UPB by adjusting the value
of the dissipation γ .

-4 -3 -2 -1 0 1 2 3 4
10-4

10-2

100

FIG. 5. The figure [g(2)(0) in log scale] shows the
case of the positive optimal detuning �opt = (1.565 28ωa,
1.547 12ωa, 0.159 64ωa, 0.006 20ωa, 0.000 72ωa, 0.000 04ωa) vs
γ = (0.81ωa, 1ωa, 10ωa, 50ωa, 130ωa, 199ωa). The phase φ is in
units of rad. The other parameters chosen are the same as Fig. 4.
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FIG. 6. Energy-level diagram with the zero-, one-, and two-
photon states and transition paths leading to the quantum interference
responsible for the strong photon antibunching. For the left cavity,
the destructive quantum interference processes occur in the following
two paths: (i) the direct excitation via two-photon pump in Eq. (8)
and (ii) the indirect transitions by single-photon driving field and
tunneling coupling in Eqs. (9) and (10).

C. Physical origin of strong photon antibunching

In Fig. 6, we show the energy levels and transition paths,
which are produced by two-photon pump and single-photon
driving field, respectively. The physical origin of strong pho-
ton antibunching is the destructive interference between direct
and indirect paths of two-photon excitations, i.e.,

|0, 0〉 G−−→ |2, 0〉, (8)

|0, 0〉 F−−→ |0, 1〉 F−−→ |0, 2〉 g−−→ |1, 1〉 g−−→ |2, 0〉, (9)

|0, 0〉 F−−→ |0, 1〉 g−−→ |1, 0〉 F−−→ |1, 1〉 g−−→ |2, 0〉, (10)

which lead to a closed quantum interference path forming
and are responsible for the strong photon antibunching. In
this case, the destructive interference occurs when the con-
tributions of states |0, 0〉 and |1, 1〉 to the two-photon state
|2, 0〉 exactly cancel each other, i.e., GĒ00 + gĒ11 = 0 (or
Ē11 = −GĒ00/g), together with the fifth equation of Eq. (B1)

√
2GĒ00 +

√
2gĒ11 + 2�Ē20 = 0, (11)

inducing two-photon probability amplitude Ē20 = 0. The con-
dition for the coefficients Ē00, Ē01, Ē10, and Ē02 in Eq. (B1)
to have nontrivial solutions is that the determinant of the
coefficient matrix⎛

⎜⎜⎜⎜⎝
F � − iγ /2 g 0

0 g � 0

G(iγ /2 − 2�)/g 0 F
√

2g

−√
2G

√
2F 0 2� − iγ

⎞
⎟⎟⎟⎟⎠ (12)

equals zero, which results in the optimal condition (B2).
Moreover, if the system parameters satisfy the optimal con-
dition (6), the destructive interference occurs, which causes
the vanishing population on the two-photon state |2, 0〉.

To be specific, with γ = 0.2ωa, g = 0.2ωa, G = 0.0001ωa,
and f = 0.1ωa, we obtain the optimal parameters through
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Eq. (6) as (�opt, φopt)=(−1.597 82ωa,−1.507 42 rad),
(−1.597 82ωa, 1.634 16 rad), (1.597 82ωa,−0.063 36 rad),
and (1.597 82ωa, 3.078 22 rad) within (−π � φopt � π ).
With the fixed optimal detuning �opt = −1.597 82ωa, we
find that the second-order correlation function g(2)(0) gets
the minimum values 2.628 × 10−4 and 2.58 × 10−4 at
two optimized phases φ = −1.507 42 and 1.634 16 rad
in the red circle of Fig. 2, where both sets of parameters
�opt = −1.597 82ωa and φ = −1.507 42 rad as well
as �opt = −1.597 82ωa and φ = 1.634 16 rad meet
the optimal condition (6), i.e., sin 2φ = Gγ [2(10g2 −
γ 2)�2

opt − 32�4
opt + g2l0.5]/[2 f 2g2(γ 2 + 16�2

opt )]= − 0.126
and cos 2φ = G[(32g4 − l1γ 2)�opt − 12l1�3

opt + 64�5
opt]/

[4 f 2g2(γ 2 + 16�2
opt )]= − 0.992, which lead to the

destructive interference occurring [as a consequence,
GĒ00 + gĒ11 = 0, Ē20 = 0, and g(2)(0) = 0]. For the fixed
optimal detuning �opt = 1.597 82ωa, two optimal phases
φ = −0.063 36 and 3.078 22 rad also satisfying Eq. (6)
can be respectively observed at the minimum values of the
second-order correlation function in the red circle of Fig. 3.

At the nonoptimized phases in the red circle of Fig. 2 with
the fixed optimal detuning �opt = −1.597 82ωa, e.g., φ = 0,
the second-order correlation function g(2)(0) = 3.982 corre-
sponds to the photon bunching effect. This originates from the
fact that two paths composed of |0, 0〉 and |1, 1〉 do not induce
the destructive interference [consequently, GĒ00 + gĒ11 �= 0,
Ē20 �= 0, and g(2)(0) �= 0], where the parameters �opt =
−1.597 82ωa and φ = 0 violate the optimal condition (6),
i.e., sin 2φ = 0 does not equal Gγ [2(10g2 − γ 2)�2

opt −
32�4

opt + g2l0.5]/[2 f 2g2(γ 2 + 16�2
opt )] = −0.126, and

cos 2φ = 1 does not equal G[(32g4 − l1γ 2)�opt − 12l1�3
opt +

64�5
opt]/[4 f 2g2(γ 2 + 16�2

opt )]= − 0.992.

III. EXACT NON-MARKOVIAN HEISENBERG-LANGEVIN
EQUATION FOR THE LEFT CAVITY

Through the equivalence between the Markovian master
equation (3) and Heisenberg-Langevin equation (C1) for the
environment being initially prepared in the vacuum state (see
Appendix C for more details), we can derive the exact non-
Markovian Heisenberg-Langevin equation for the left cavity.
To be specific, the system operator Â(t ) = eiĤT t Â(0)e−iĤT t

satisfies the Heisenberg-Langevin equation (C1) with

ĤT = ĤS + ĤR + ĤI , (13)

where ĤI = i
∑

k Vk (ê†
k b̂ − b̂†êk ) (interaction Hamiltonian

between right cavity and Markovian environment with
coupling strength Vk = √

γ /2π and decay rate γ ), ĤR =∑
k (ωk − ωl )ê

†
k êk (free Hamiltonian of Markovian environ-

ment) with [êk, ê†
k′ ] = δkk′ . ĤS in Eq. (13) is determined by

Eq. (2). Equation (C1) gives

d

dt
â = −i�â − igb̂ − 2iGâ†, (14)

d

dt
b̂ = −i�b̂ − igâ − iF − γ

2
b̂ − √

γ êin(t ), (15)

where êin(t )=∑
k e−i(ωk−ωl )t êk/

√
2π meets [êin(t ), ê†

in(t ′)] =
〈êin(t )ê†

in(t ′)〉 = δ(t − t ′) with the environment initially being

prepared in the vacuum state. Solving Eq. (15) for b̂(t )
yields b̂(t ) = b̂(0)e−(i�+ γ

2 )t − ig
∫ t

0 â(τ )e−(i�+ γ

2 )(t−τ )dτ −
iF

∫ t
0 e−(i�+ γ

2 )(t−τ )dτ − √
γ

∫ t
0 êin(τ )e−(i�+ γ

2 )(t−τ )dτ .
Substituting b̂(t ) into Eq. (14), we obtain

d

dt
â = − i�â − 2iGâ† −

∫ t

0
f (t − τ )â(τ )dτ

− iFeff (t ) − iR̂(t ), (16)

where the operator for the non-Markovian composite environ-
ment (including right cavity plus its Markovian environment)
R̂(t ) = gb̂(0)e−(i�+ γ

2 )t − g
√

γ
∫ t

0 êin(τ )e−(i�+ γ

2 )(t−τ )dτ ,
memory function f (t ) = g2e−(i�+ γ

2 )t , and effective
single-photon driving field Feff (t ) = −igF

∫ t
0 e−(i�+ γ

2 )(t−τ )dτ .
Considering the linearity of Eq. (16), the cavity operator â(t )
can be expressed in terms of the initial operators as

â(t ) = u(t )â(0) + v(t )â†(0) + ĉ(t ), (17)

where the time-dependent coefficients are determined by sub-
stituting Eq. (17) into Eq. (16):

u̇(t ) = − i�u(t ) −
∫ t

0
f (t − τ )u(τ )dτ − 2iGv∗(t ),

v̇(t ) = − i�v(t ) −
∫ t

0
f (t − τ )v(τ )dτ − 2iGu∗(t ),

d

dt
ĉ(t ) = − i�ĉ(t ) −

∫ t

0
f (t − τ )ĉ(τ )dτ − 2iGĉ†(t )

− iFeff (t ) − iR̂(t ), (18)

subjected to the initial condition u(0) = 1, v(0) = 0, and
ĉ(0) = 0. ĉ(t ) can be analytically derived from the inhomo-
geneous integrodifferential equation (18):

ĉ(t ) = α̂(t ) + β(t ), (19)

where the dissipation and coherent contribution
α̂(t ) = i

∫ t
0 dτ [v(t − τ )R̂†(τ ) − u(t − τ )R̂(τ )] and β(t ) =

i
∫ t

0 dτ [v(t − τ )F ∗
eff (t ) − u(t − τ )Feff (t )], respectively. The

first term α̂(t ) and second term β(t ) of Eq. (19) denote the
influences of the non-Markovian composite environment
(right cavity plus its Markovian environment) and effective
single-photon driving field on the dynamics for the left
cavity, respectively. One is that the driving field forces
the left cavity to tend to coherence, while the other is
that the non-Markovian composite environment causes
the system to dissipate. When the left cavity interacts
with the composite environment composed of the right
cavity (i.e., as a pseudomode [201–213]) and a Markovian
environment, the dynamics of the left cavity behaves as the
dissipation or the backflow oscillation of the photon from
the composite environment, where the former corresponds
to the Markovian approximation, while the latter exhibits
non-Markovian effects. The derivation of Eq. (19) can be
found in Appendix D.

In Fig. 7, we plot the transition paths of the left cavity with
the non-Markovian regime and Markovian limit. Two tran-
sitions can form the destructive quantum interference paths
when the dissipation γ is small enough in the non-Markovian
regime with the second-order correlation function g(2)(0)  1
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FIG. 7. (a) The two-photon pump and single-photon driving field
respectively mediating the dissipationless left cavity and Markovian
dissipative right cavity are equivalent to the fact that the two-
photon pumped left cavity couples with a driven non-Markovian
environment [see Eq. (20) and Appendix E for more details]. In
other words, the parts outside the left cavity can be considered
as a non-Markovian composite environment [right cavity plus its
Markovian environment, see Eq. (13)], which corresponds to the
pseudomode theory [201–213]. (b) Energy-level diagram of the left
cavity with the zero-, one-, and two-photon states and transition
paths leading to the quantum interference responsible for the strong
photon antibunching. There are two interference paths occurring
in the left cavity from |0〉a to |2〉a in the non-Markovian regime:

(i) |0〉a
G−−→ |2〉a excited by two-photon pump with strength G and

(ii) |0〉a
Feff−−→ |1〉a

Feff−−→ |2〉a driven by effective single-photon driv-
ing field with strength Feff . However, there is only one path from
|0〉a to |2〉a mediated by two-photon pump when the dissipation
tends to infinity under the Markovian limit, where Feff is close
to zero.

in Fig. 7(b). In the case, the steady effective single-photon
driving field equals F̄eff= − igF/(i� + γ /2), which meets the
interference condition G = 10−4ωa ∼ |F̄ |2eff = 1.5 × 10−4ω2

a
at �opt = −1.597 82ωa and γ = 0.2ωa for the red circle in
Fig. 2. This means photons of the dissipative right cavity
could flow back to the left cavity via the coupling strength g,
which causes UPB in the non-Markovian regime together with
the direct excitation by two-photon pump. With the increase
of dissipation γ , especially, when the dissipation γ goes to
infinity for the bad cavity limit [214–220] under the Marko-
vian limit, the effective single-photon driving field Feff is
close to zero in Fig. 7(c). It indicates that only one transition
exists under the Markovian limit and the closed quantum
interference path is broken (e.g., G = 10−4ωa � |F̄ |2eff =
4 × 10−8ω2

a for �opt = −0.000 04ωa and γ = 199ωa for
the black line in Fig. 4), which leads to photon bunching
occurring.

IV. EXACT NON-MARKOVIAN MASTER EQUATION
FOR THE LEFT CAVITY

In Appendix E, we have proved that the total Hamiltonian
(13) is equivalent to the two-photon pumped left cavity inter-
acting with a driven non-Markovian composite environment
(consisting of the right cavity plus its Markovian environ-
ment), whose Hamiltonian reads

ĤT = �â†â + G(â†2 + â2) +
∑

j

χ j B̂
†
j B̂ j +

∑
j

μ∗
j â

†B̂ j

+μ j B̂
†
j â +

∑
j

ν∗
j B̂ j +

∑
j

ν j B̂
†
j , (20)

where the dressed annihilation operator B̂ j satisfies the
Bosonic orthogonal-normalization relation. The coupling co-
efficient and driving strength are μ j = gα j and ν j = Fα j ,
respectively. α j and χ j are determined by Eq. (E4). The initial
state (C2) and total Hamiltonian (20) remain linear and Gaus-
sian and allow exact integration [121,128,154,157,221–231],
which makes the reduced density matrix ρ = TrbρS also
a Gaussian. With the conservation of trace (Trρ̇ = 0) and
Hermiticity (ρ = ρ†), we obtain the exact reduced non-
Markovian master equation for the left cavity:

ρ̇ = − i[Ĥ(t ), ρ]

+ κ1(t )
(
âρâ† − 1

2 â†âρ − 1
2ρâ†â

)
+ κ2(t )

(
1
2 âρâ† + 1

2 â†ρâ − 1
2 â†âρ − 1

2ρââ†
)

+ [
κ∗

3 (t )
(
âρâ − 1

2 ââρ − 1
2ρââ

) + H.c.
]
, (21)

with the time-dependent effective Hamiltonian

Ĥ(t ) = X (t )â†â + [Y (t )â†2 + Z (t )â† + H.c.], (22)

where the time-dependent coefficients in Eq. (21) can be
found in Eq. (F3) in Appendix F. Now we discuss the physical
meaning of the time-dependent coefficients in the exact non-
Markovian master equation (21) as follows.

(i) The first term in Eq. (22) accounts for the
free dynamics of the left cavity, where X (t ) =
� + δω(t ) with δω(t ) = Im[u∗(t )

∫ t
0 f (t − τ )u(τ )dτ −

v∗(t )
∫ t

0 f (t − τ )v(τ )dτ ]/ϑ (t ) obtained by Eqs. (18) and
(F3) is modified by the frequency shift δω(t ) owing to the left
cavity coupling with the composite environment.

(ii) The second term in Eq. (22) denotes the two-photon
process, which originates from the two-photon pump (conver-
sion rate G) to the left cavity in Eq. (2).

(iii) The third term in Eq. (22) is a coherent term, which
denotes the effective driving to the left cavity, where the
effective driving strength Z (t ) is affected by the interaction
between the left cavity and composite environment.

(iv) κ1(t ) in Eq. (21) is a time-dependent damping rate,
which denotes the dissipation in the left cavity induced by the
composite environment.

(v) κ2(t ) in Eq. (21) is the fluctuation (noise) coefficient
due to the backreaction between the left cavity and composite
environment.

(vi) κ3(t ) in Eq. (21) denotes the incoherent two-photon
pump rate, which is induced by the interaction between the
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1

FIG. 8. |u(t )| in Eq. (18) as a function of the time t with different
dissipation γ from 0.2ωa to 0.7ωa, which lies in the non-Markovian
regime. The solid lines and circles correspond to G = 0.0001ωa and
0, respectively. The other parameters chosen are the same as those
in Fig. 2.

two-photon pump (conversion rate G) in Eq. (2) and the left
cavity.

In order to explain interesting phenomena in the non-
Markovian regime in Figs. 2 and 3 compared with those in the
Markovian regime in Figs. 4 and 5, we plot |u(t )| in Eq. (18)
as a function of the time t with the different dissipation γ in
Figs. 8–10, which are discussed as follows.

(i) In Fig. 8, we find that |u(t )| changes from oscillating
to damping when the dissipation exceeds a threshold with
the fixed two-photon pump G = 0.0001ωa (marked by solid
lines), which is consistent with that at G = 0 (marked by cir-
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FIG. 9. |u(t )| as a function of the time t with different dissipation
γ taking 0.7ωa 0.75ωa, 0.79ωa, and 0.81ωa near the threshold γ =
0.8ωa. The circles and solid lines correspond to Eq. (23) for G = 0
and Eq. (18) for G = 0.0001ωa, respectively. With Figs. 8 and 9, we
find that |u(t )| exhibits the backflow oscillation of the photon from
the non-Markovian composite environment for γ < 0.8ωa, while it
displays decay in the Markovian regime when γ > 0.8ωa. The other
parameters chosen are the same as those in Fig. 2.
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FIG. 10. The figure corresponds to the Markovian regime, where
the optimal detuning �opt takes negative values. The other parame-
ters chosen are the same as those in Fig. 4.

cles). This means that the weak two-photon pump has almost
no influence on the properties of non-Markovianity for the left
cavity. From Eq. (18) with the case for G = 0, we have

u(t ) = e−0.25t (γ+4i�)

[
cosh(0.25t

√
γ 2 − 16g2)

+ γ sinh(0.25t
√

γ 2 − 16g2)√
γ 2 − 16g2

]
, γ > 4g,

u(t ) = e−0.25t (γ+4i�)

[
cos(0.25t

√
16g2 − γ 2)

+ γ sin(0.25t
√

16g2 − γ 2)√
16g2 − γ 2

]
, γ < 4g,

u(t ) = e−t (g+i�)(1 + gt ), γ = 4g, (23)

which indicate the existence of a threshold γcr = 4g. With
g = 0.2ωa, the threshold is calculated as γcr = 0.8ωa, which
can also be numerically confirmed by Figs. 8–10. In the non-
Markovian regime γ < 0.8ωa, the left cavity is affected by
the non-Markovian behavior [|u(t )| exhibits the oscillation]
in Figs. 8 and 9(a)–9(c), where there are photons coming
from the right cavity backflow to the left cavity and UPB
occurs in the non-Markovian regime in Figs. 2 and 3. This
phenomenon can also be explained from the perspective of
non-Markovian composite environmental memory time. The
Lorentzian spectral density J (ω) corresponding to the mem-
ory function f (t ) = g2e−(i�+ γ

2 )t ≡ ∫
J (ω)e−iωt dω in Eq. (16)

reads

J (ω) = �

2π

λ2

(ω − �)2 + λ2
, (24)

where λ = γ /2 and � = 4g2/γ . The parameter λ defines the
spectral width of the non-Markovian composite environment
[136–143,185], which is connected to the non-Markovian
composite environment memory time TE = λ−1, while the
time scale TS on the state of the system changing is given by
TS = �−1.
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FIG. 11. The dissipation rate κ1(t ) in Eq. (21) of the left cavity
as a function of the time t with different dissipation γ taking 0.2ωa,
0.5ωa, and 0.78ωa, which correspond to the non-Markovian regime.
The other parameters chosen are the same as those in Fig. 2.

When the memory time TE of the non-Markovian com-
posite environment is comparable to characteristic time TS of
the system (i.e., TE ∼ TS) in the non-Markovian regime, the
memory effect of the non-Markovian composite environment
should be taken into account and the dynamics of the left
cavity exhibits the backflow oscillation of the photon in Figs. 8
and 9(a)–9(c). In this case, the second-order correlation func-
tion g(2)(0) clearly shows that UPB occurs and arrives at 10−4

in Figs. 2 and 3 with the dissipation γ < 0.8ωa.
(ii) With the increase of dissipation to γ > 0.8ωa (beyond

the threshold γcr = 0.8ωa) in the Markovian regime, the os-
cillation disappears and damping occurs in Figs. 9(d) and
10, where UPB becomes weak as shown in Figs. 4 and 5.
Especially, UPB disappears and photon bunching [g(2)(0) >

1] appears when the dissipation takes a sufficiently large
value γ = 199ωa shown in black solid line in Figs. 4 and 5.
This is because under the Markovian limit TE  TS (leading
to γ � g, i.e., the memory time TE of the non-Markovian
composite environment is sufficiently shorter than character-
istic time TS of the system), we show f (t ) → 0, Feff (t ) → 0,
R̂(t ) → 0 in Eq. (16), and |u(t )| → 1 in Eq. (18) when the
dissipation approaches infinity (γ → ∞) in the bad cavity
limit [214–220]. In this case, there is no effective dissipation
in the left cavity, but only a two-photon pump exists, i.e.,
ρ̇S = −i[�â†â + G(â†2 + â2), ρS].

(iii) From the above discussions in (i) and (ii), we find
that the dissipation γ can characterize the properties of the
non-Markovian composite environment [136–143,185]. On
both sides of the threshold γcr = 0.8ωa, it can be determined
whether the left cavity is non-Markovian or Markovian, which
is the reason for the division between antibunching and bunch-
ing. In other words, UPB occurs in the non-Markovian regime
(γ < 0.8ωa), while it becomes weak for the dissipation γ >

0.8ωa and then disappears if γ � 0.8ωa (e.g., γ = 199ωa) in
the Markovian regime.

(iv) Our purpose in deriving non-Markovian master equa-
tion (21) is to demonstrate that a coupled-cavities system with
the dissipation γ leads to an exact non-Markovian master
equation for the left cavity, which can explain the photon
blockade phenomena in Figs. 2–5 with non-Markovian effects
through Figs. 11–13. To be specific, the dissipation rate κ1(t )

0 10 20 30 40 50
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0.25

0.3

0.35

0 1 2 3
0

0.005

0.01

FIG. 12. The figure shows the dissipation rate κ1(t ) in Eq. (21)
in the Markovian regime, where the optimal detuning �opt takes
negative values. The other parameters chosen are the same as those
in Fig. 4.

in the exact non-Markovian master equation (21) is a peri-
odic function of time in Fig. 11 and takes negative values
sometimes. In particular, κ1(t ) has discrete singular points
where the left cavity gains photons from the non-Markovian
composite environment, which is a typical feature of non-
Markovianity [137,160,161,177,178]. With the increase of the
dissipation γ (greater than 0.8ωa) in Fig. 12, κ1(t ) varies from
oscillation to a finite steady value. When the dissipation γ

goes to infinity, the dissipation rate κ1(t ) and single-photon
driving field Feff (t ) tend to zero, which corresponds to the
Markovian limit and means no photons flow back to the left
cavity, where the photon bunching effect happens. Moreover,
we find that the two-photon term |Y (t )| is close to the square
of coherent driving term |Z (t )| in Fig. 13(a), which leads to the
forming of the destructive quantum interference paths in Fig. 2
[UPB appears in the minimum value of g(2)(0) for the red
circle], while |Y (t )| = 10−4ωa � |Z (t )|2 = 10−9ωa in Fig. 4
breaks the quantum interference paths (photon bunching oc-
curs) in Fig. 13(b).

FIG. 13. In order to further understand the origin of UPB for
the left cavity with the non-Markovian effect, we in this figure plot
the time-dependent coefficients in the exact non-Markovian mas-
ter equation (21): effective transition frequency |X (t )|, two-photon
term |Y (t )|, coherent driving term |Z (t )|, decay rate |κ1(t )|, fluc-
tuation (noise) coefficient |κ2(t )|, and squeezing rate |κ3(t )| as a
function of the time t . Figure 13(a) takes �opt = −1.597 82ωa,
φopt = −1.507 42 rad, and γ = 0.2ωa in Fig. 2, while �opt =
−0.000 04ωa, φopt = −2.406 19 rad, and γ = 199ωa in Fig. 4 cor-
respond to Fig. 13(b). The other parameters chosen are g = 0.2ωa,
G = 0.0001ωa, and f = 0.1ωa.
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FIG. 14. The second-order correlation function [g(2)(0) in log
scale] of the left cavity as a function of the phase φ (in units of rad)
with the different dissipations γ = 0.2ωa, 0.4ωa, 0.6ωa, and 0.79ωa

for (a)–(d) in the non-Markovian regime. The red circles indicate the
approximate analytical result (26), while the blue stars correspond to
the numerical simulation by solving master equation (3). The other
parameters chosen are the same as those in Fig. 2.

V. ANALYTICAL EXPRESSIONS FOR THE
SECOND-ORDER CORRELATION FUNCTION

In this section, we derive an approximate analyti-
cal expression for the second-order correlation function
and compare it with the numerical simulation by solving
master equation (3). To approximately obtain the ana-
lytical solution of the second-order correlation function,
we need to estimate Eq. (3). Under the weak driving
condition, we have |Ē00| � |Ē10|, |Ē01| � |Ē11|, |Ē02|, |Ē20|
and assume that the vacuum state is approximately oc-
cupied with Ē00 = 1 in Eq. (B1). By solving Eq. (B1),
we obtain (� − iγ /2)Ē01 + gĒ10 = −F , gĒ01 + �Ē10 = 0,
FĒ10 + (2� − iγ /2)Ē11 + √

2gĒ02 + √
2gĒ20 = 0, FĒ01 +

gĒ11 + √
2(� − iγ /2)Ē02 = 0, and gĒ11 + √

2�Ē20 = −G,
which lead to

Ē10 = gF

(� − iγ /2)� − g2
,

Ē20 = −G[(� − iγ /2)� − g2](� − iγ /2) − g2F 2

√
2[(� − iγ /2)� − g2]2 . (25)

With Eq. (25), we can obtain the approximate analytical ex-
pression of the second-order correlation function:

g(2)(0) 	 G2|[(� − iγ /2)� − g2](� − iγ /2) − g2F 2|2
g4F 4

.

(26)

In order to compare the approximate analytical solution with
the numerical solution of the second-order correlation func-
tion, we plot g(2)(0) as a function of the phase φ in Fig. 14.
The red circles indicate the approximate analytical result (26),
while the blue stars correspond to the numerical simulation
by solving master equation (3). We find that the approximate
analytical results of the second-order correlation function
show good agreement with those obtained by the numerical
simulation.

Our analytical method is developed to find the opti-
mal parameters (�opt, φopt) that minimize the second-order

ation function where a truncation of the Hilbert space to
two photons is used. Therefore the analytical solution (26)
of the second-order correlation function is inaccurate when
the photon number is large. However, as shown in Fig. 14,
the optimal values are the same as those from the numerical
solution by solving master equation (3), which demonstrates
the feasibility of our analytical method.

From Fig. 14, we observe that the second-order correlation
function g(2)(0) has slight differences between the analytical
solution and numerical simulation. The reason leading to this
difference is that the Hilbert space is truncated into the finite
dimension in the analytical derivation. On the other hand,
when we substitute the optimal condition given by Eq. (6)
into the analytical solution of g(2)(0) in Eq. (26), we find
g(2)(0) → 0 due to Ē20 → 0 as predicted. However, in the
numerical calculation for g(2)(0), the multiphoton state |m, n〉
(m + n � 3) is actually occupied with the very small proba-
bility in the weak driving limit, which has been ignored in the
analytical analysis. Overall, we do not take the multiphoton
state |m, n〉 (m + n � 3) into account in Eq. (5). This is the
essential reason leading to the very small difference between
the analytical result and numerical simulation for the second-
order correlation function.

VI. DISCUSSION ON THE EXISTENCE
OF DISSIPATIONS IN BOTH CAVITIES

Considering the dissipation γ1 in the left cavity, we give
the Markovian master equation for coupled cavities and corre-
sponding non-Markovian Heisenberg-Langevin equation for
the left cavity:

ρ̇S = − i[ĤS, ρS] + γ1

(
âρSâ† − 1

2
â†âρS − 1

2
ρSâ†â

)

+ γ

(
b̂ρSb̂† − 1

2
b̂†b̂ρS − 1

2
ρSb̂†b̂

)
,

d

dt
â = − i(� − iγ1/2)â − 2iGâ† −

∫ t

0
f (t − τ )â(τ )dτ

− iFeff (t ) − iR̂(t ) − √
γ1ĥin(t ), (27)

where f (t ), Feff (t ), and R̂(t ) are the same as those in Eq. (16),
and ĥin(t )= ∑

k1
e−i(�k1 −ωl )t ĥk1/

√
2π with �k1 and ĥk1 respec-

tively denoting the eigenfrequency and annihilation operator
of the Markovian environment corresponding to the left cav-
ity. Through the effective non-Hermitian Hamiltonian Ĥeff =
ĤS − iγ1â†â/2 − iγ b̂†b̂/2, we can obtain the optimal condi-
tion for UPB occurring,

0 = [g2G − G(� − iγ1/2)(� − iγ /2)][(� − iγ1/2)

+ (� − iγ /2)](� − iγ /2) + g2F 2(� − iγ /2) − g4G

+ g2F 2(� − iγ1/2) + g2G(� − iγ1/2)(� − iγ /2),

(28)

under the weak driving condition. Through numerical sim-
ulation similar to Secs. II– IV, we find that the dissipation
γ1 in the left cavity has an influence on the optimal values
(�opt, φopt ) in Eq. (28) and second-order correlation func-

tion g(2)(0) = TrS (â†â†ââρ̄S )/[TrS (â†âρ̄S )]2 [ρ̄S denotes the
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FIG. 15. UPB with the non-Markovian effect for the quantum
network can be realized in the dissipationless left cavity (eigenfre-
quency ωa) mediated by two-photon pump with amplitude G and
frequency ωp, where the left cavity couples to several dissipative
right cavities (eigenfrequency ωn and dissipation γn) with the cou-
pling strength gn. The right cavity bn is driven by single-photon
driving field with frequency �n and amplitude Fn.

steady density matrix satisfying ˙̄ρS = 0 in Eq. (27)], but it
does not change our main conclusions (UPB with the non-
Markovian effect) due to the effective single-photon driving
field of Eq. (27) remaining finite. We will not discuss it in
detail here (readers who are interested in this question can
try it out).

VII. DISCUSSION FOR A TWO-PHOTON PUMPED LEFT
CAVITY COUPLING WITH NONINTERACTING
SINGLE-PHOTON DRIVEN RIGHT CAVITIES

In this section, we generalize the above results to a general
quantum network involving several right cavities driven by
single-photon driving fields with frequency �n and amplitude
Fn in Fig. 15, whose master equation and corresponding total
Hamiltonian are given by

ρ̇S = − i[ĤS, ρS]

+
∑

n

γn

(
b̂nρSb̂†

n − 1

2
b̂†

nb̂nρS − 1

2
ρSb̂†

nb̂n

)
, (29)

and ĤT = ĤS + ĤR + ĤI with

ĤS = �â†â +
∑

n

�nb̂†
nb̂n +

∑
n

gn(âb̂†
n + â†b̂n)

+ G(â†2 + â2) +
∑

n

F ∗
n b̂n +

∑
n

Fnb̂†
n,

ĤR =
∑
n,k

(ωn,k − �)ê†
n,k ên,k,

ĤI = i
∑
n,k

Vn,k (ê†
n,kb̂n − b̂†

nên,k ), (30)

where � = ωa − �, �n = ωn − �, and ên,in(t )= ∑
k

e−i(ωn,k−�)t ên,k/
√

2π . In Eq. (30), we have assumed driving
frequency �n = � and pump frequency ωp = 2�. gn denotes
coupling strength between the left cavity with frequency
ωa and right cavity bn with frequency ωn. Vn,k = √

γn/2π

is the coupling strength between cavity bn and Markovian
environments with Bosonic annihilation operators ên,k and
frequencies ωn,k . In this case, Eq. (16) becomes

d

dt
â = − i�â − 2iGâ† −

∫ t

0
f (t − τ )â(τ )dτ

− i
∑

n

Fn,eff (t ) − i
∑

n

R̂n(t ), (31)

where f (t ) = ∑
n g2

ne−(i�n+ γn
2 )t , Fn,eff (t ) = −ignFn

∫ t
0

e−(i�n+ γn
2 )(t−τ )dτ , and R̂n(t ) = gnb̂n(0)e−(i�n+ γn

2 )t − gn
√

γn∫ t
0 ên,in(τ )e−(i�n+ γn

2 )(t−τ )dτ . With the linearity of Eq. (31)
and defining â(0) ≡ â, â†(0) ≡ â†, b̂n(0) ≡ b̂n, b̂†

n(0) ≡ b̂†
n,

ên,k (0) ≡ ên,k , ê†
n,k (0) ≡ ê†

n,k , we have

â(t ) = u1(t )â(0) + v1(t )â†(0) + ĉ1(t ), (32)

with

ĉ1(t ) =
∑

n

μn(t )b̂n(0) +
∑

n

νn(t )b̂†
n(0)

+
∑
n,k

αnk (t )ên,k (0) +
∑
n,k

βnk (t )ê†
n,k (0) + η(t ).

(33)

The time-dependent functions u1(t ), v1(t ), μn(t ), νn(t ),
αnk (t ), βnk (t ), and η(t ) in Eq. (33) can be determined by
substituting Eq. (32) into Eq. (31):

u̇1(t ) = − i�u1(t ) −
∫ t

0
f (t − τ )u1(τ )dτ − 2iGv1

∗(t ),

v̇1(t ) = − i�v1(t ) −
∫ t

0
f (t − τ )v1(τ )dτ − 2iGu1

∗(t ),

d

dt
ĉ1(t ) = − i�ĉ1(t ) −

∫ t

0
f (t − τ )ĉ1(τ )dτ − 2iGĉ†

1(t )

− i
∑

n

Fn,eff (t ) − i
∑

n

R̂n(t ). (34)

With the above results, we show that the initial condition
and initial state are two different concepts discussed below.

(i) u1(0) represents an initial condition, whose value is
determined by the Heisenberg operator â(t ) in Eq. (32) at time
t = 0. To be specific, with â(0) = u1(0)â(0) + v1(0)â†(0) +
ĉ1(0) by taking t = 0 to â(t ) = u1(t )â(0) + v1(t )â†(0) +
ĉ1(t ), we obtain

u1(0) = 1, v1(0) = 0, μn(0) = 0,

νn(0) = 0, αn,k (0) = 0, βn,k (0) = 0, η(0) = 0, (35)

which remain unchanged and are independent of the param-
eters in Eq. (30). This is a mathematical fact, and therefore
u1(0) = 1 is what we must use. However, if u1(0) �= 1,
Eq. (32) will be violated.

(ii) ρS (0) denotes the initial state of the master equa-
tion (29), which is changeable and can be re-prepared at
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FIG. 16. Energy-level diagram of the quantum network with the zero-, one-, and two-photon states and transition paths leading to the
quantum interference responsible for the strong photon antibunching. For the left cavity, the quantum interference processes occur in n + 1
paths as the figure shows.

the initial time t = 0. When we reset the cavities, the initial
number of photons in the cavities is tunable, which can be
realized in experiment [159–161]. In this case, the different
initial states ρS (0) [being not related to u1(t )] can affect the
time-dependent evolution of the system density matrix ρS (t )
controlled by the master equation (29). But this cannot change
the steady state ρ̄S of the master equation (29) since ˙̄ρS = 0 is
independent of the initial state. Therefore, the different initial
states ρS (0) do not affect the steady second-order correlation
function g(2)(0) = TrS (â†â†ââρ̄S )/[TrS (â†âρ̄S )]2.

Moreover, we make the Laplace transformation to Eq. (34)
and get

ĉ1(t ) = Â(t ) + B(t ), (36)

where Â(t ) = i
∑

n

∫ t
0 dτ [v1(t − τ )R̂†

n(τ ) − u1(t − τ )R̂n(τ )]
and B(t ) = i

∑
n

∫ t
0 dτ [v1(t − τ )F ∗

n,eff (t ) − u1(t − τ )Fn,eff (t )].
Comparing Eqs. (33) and (36), we obtain

μn(t) = − ign

∫ t

0
e−(i�n+ γn

2 )τ u1(t − τ )dτ ,

νn(t ) = ign

∫ t

0
e−(−i�n+ γn

2 )τv1(t − τ )dτ ,

αnk (t ) = ign

√
γn

2π

∫ t

0
dτu1(t − τ )e−(i�n+ γn

2 )τ

×
∫ τ

0
dτ1e[ γn

2 −i(ωn,k−�−�n )]τ1 ,

βnk (t ) = − ign

√
γn

2π

∫ t

0
dτv1(t − τ )e−(−i�n+ γn

2 )τ

×
∫ τ

0
dτ1e[ γn

2 +i(ωn,k−�−�n )]τ1 ,

η(t ) = i
∑

n

∫ t

0
dτ [v1(t − τ )F ∗

n,eff (t ) − u1(t − τ )Fn,eff (t )].

(37)

By solving the coupled equations in Eq. (34), we can
obtain the complete information of the quantum network.
It is particularly useful in the derivation of the exact

non-Markovian master equation for UPB with the
non-Markovian effect, which is achieved by integrating
out the environmental degrees of freedom (similar
to Secs. III and IV). The quantum network with
dissipative right cavities and driving fields increases
controllabilities for UPB with the non-Markovian effect,
which has n + 1 quantum interference paths shown
in Fig. 16.

VIII. CONCLUSION

In summary, we have studied UPB with the non-Markovian
effect in a system consisting of the dissipationless left
cavity (mediated by two-photon pump) and Markovian dis-
sipative right cavity (driven by single-photon driving field).
We derived the exact non-Markovian Heisenberg-Langevin
equation and reduced master equation for the left cavity,
which contains the two-photon pump and effective single-
photon driving field. When the dissipation falls below a
threshold, UPB occurs in the non-Markovian regime due
to the nonzero effective single-photon driving field. UPB
weakens for the left cavity when the dissipation exceeds the
threshold in the Markovian regime, and then disappears if the
dissipation tends to infinity, which originates from violation
of the closed quantum interference paths due to the effective
single-photon driving field reaching zero. With the destruc-
tive quantum interference effects between different paths for
two-photon space, UPB has been analytically found, which
is in good agreement with that obtained by the numerical
simulation. The existence of dissipations in both cavities is
also discussed. Moreover, we extend the results to the system
containing a left cavity (mediated by two-photon pump) cou-
pling with noninteracting dissipative right cavities (driven by
single-photon driving fields).

The investigations of the left cavity and dissipative right
cavity respectively mediated by two-photon pump and single-
photon driving field might open a way to better understand
the connections between UPB and non-Markovianities, which
are available to a variety of physically relevant systems, e.g.,
(1) second-order nonlinearity â2b̂† + b̂â†2 [49,50], (2) Kerr
nonlinear medium â†â†ââ [105,232], (3) Jaynes-Cummings
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model
∑

k gk (σ−b†
k + bkσ+) [98,233–237] or Rabi model∑

k vkσx(b†
k + bk ) [238,239], and (4) first-order â†â(b̂+b̂†)

[240–242] and (5) quadratic optomechanical couplings
â†â(b̂ + b̂†)2 [25,243–247], interacting with Markovian en-
vironments, which deserve future studies for UPB with
non-Markovian effects. As an outlook, how to explore CPB
with the non-Markovian effects is still a challenge, which
originates from CPB requiring the system to have nonlin-
earities (linearization methods might be applied to quantum
nonlinear systems).
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APPENDIX A: DEGENERATE OPTICAL
PARAMETRIC AMPLIFIER

The two-photon pump can be realized by a degenerate
optical parametric amplifier (OPA) in a single cavity con-
taining a χ (2) nonlinear medium [193–198] given by H̃OPA =
ωcâ†â + ωp p̂† p̂ + Jp(â†2 p̂ + p̂†â2), where â and p̂ are the
photon annihilation operators of the two cavity modes with
frequencies ωc and ωp, respectively. Jp denotes the coupling
strength via χ (2) nonlinear medium [248], which mediates
the conversion of a photon in cavity p to two photons
[13,49,50]. The coupling strength between two cavities is
given by

Jp = Dε0

(
h̄ωc

2ε0

)√
h̄ωp

2ε0

∫
dr

χ (2)(r)

[ε(r)]3 α2
1 (r)α2(r), (A1)

where ε0 is the vacuum permittivity. ε(r) denotes the per-
mittivity. D is a degeneracy factor. α1(r) and α2(r) are the
wave functions for modes â and p̂, respectively. It is widely
recognized that all quantum amplifiers are essentially nonlin-
ear systems [194,248]. As one of the examples of parametric
amplification nonlinear interactions, the schematic diagram
of the OPA physical process is shown in Fig. 1. The OPA
interaction involves a pump photon with frequency ωp being
converted into two photons with identical frequency ωc with
the relation ωp = 2ωc due to the second-order nonlinearity.
The pump is treated approximately as a classical coherent
field because the pump depletion is negligible [249–251],
namely, p̂ → βe−i(θp−ωpt ) (mean-field approximation, which
requires pump amplitude to be very large), with β and θp

being the amplitude and phase of the pump. With this, the
OPA Hamiltonian becomes

ĤOPA = ωcâ†â + Ge−iωPt â†2 + GeiωPt â2, (A2)

where G = Jpβe−iθp is the nonlinear strength of the OPA with
Jp given by Eq. (A1). Obviously, G is proportional to the
amplitude of the pump and second-order nonlinearity of the
medium.

APPENDIX B: DERIVATION OF EQ. (6)

Substituting Ĥeff = ĤS − iγ b̂†b̂/2 [ĤS is given by Eq. (2)]
into Schrödinger equation i ∂

∂t |ψ̄〉 = Ĥeff |ψ̄〉, we obtain

i ˙̄E01 = FĒ00 + (� − iγ /2)Ē01 + g ¯̄E10 +
√

2F ∗Ē02 = 0,

i ˙̄E10 = gĒ01 + �Ē10 + F ∗Ē11 = 0,

i ˙̄E11 = FĒ10 + (2� − iγ /2)Ē11 +
√

2gĒ02 +
√

2gĒ20 = 0,

i ˙̄E02 =
√

2FĒ01 +
√

2gĒ11 + 2(� − iγ /2)Ē02 = 0,

i ˙̄E20 =
√

2GĒ00 +
√

2gĒ11 + 2�Ē20 = 0. (B1)

Under the weak driving condition, we have |Ē00| �
|Ē10|, |Ē01| � |Ē11|, |Ē02|, |Ē20|. The condition for
g(2)(0) = 〈â†â†ââ〉/〈â†â〉2 	 〈ψ̄ |â†â†ââ|ψ̄〉/〈ψ̄ |â†â|ψ̄〉2 	
2|Ē20|2/|Ē10|4 = 0 is derived from Eq. (B1) by setting
Ē20 = 0. This leads to −FĒ00 = (� − iγ /2)Ē01 + gĒ10,
0 = gĒ01 + �Ē10, 0 = FĒ10 + (2� − iγ /2)Ē11 + √

2gĒ02,
0 = FĒ01 + gĒ11 + √

2(� − iγ /2)Ē02, and 0 = GĒ00 +
gĒ11. Moreover, we obtain Ē01/Ē10 = −�/g and
Ē00 = −gĒ10/F − (� − iγ /2)Ē01/F . Ē10, Ē11, and Ē02

having nontrivial solutions require

0 = [g2G − G(� − iγ /2)�](2� − iγ /2)

× (� − iγ /2) + g2F 2(� − iγ /2) − g4G

+ g2F 2� + g2G(� − iγ /2)�. (B2)

By separating the real and imaginary parts of Eq. (B2), we
can get the optimal condition in Eq. (6). The expressions
for these coefficients in Eq. (7) are m̄ = 4096G2, n̄ =
−8192g2G2 + 1280G2k2 + 256G2(−16g2 + 5k2), ō = 4096
g4G2 − 512g2G2k2 + 64G2k4 + 64G2(4g2 + k2)2 − 512g2G2

(−16g2 + 5k2) + 80G2k2(−16g2 + 5k2), p̄ = −4096 f 4g4 +
256g4G2k2 − 128g2G2(4g2 + k2)2 + 20G2k2(4g2 + k2)2 +
256g4G2(−16g2 + 5k2) − 32g2G2k2(−16g2 + 5k2) + 4G2

k4(−16g2 + 5k2), q̄ = −512 f 4g4k2 + 64g4G2(4g2 + k2)2

− 8g2G2k2(4g2 + k2)2 + G2k4(4g2 + k2)2 + 16g4G2k2

(−16g2 + 5k2), and r̄ = −16 f 4g4k4 + 4g4G2k2(4g2 + k2)2.

APPENDIX C: DERIVATION OF EQ. (3)

The Heisenberg-Langevin equation [135,252] under the
Markovian approximation is written as

d

dt
Â(t ) = − i[Â(t ), ĤS (t )] − γ

2
[Â(t ), b̂†(t )]b̂(t )

− √
γ [Â(t ), b̂†(t )]êin(t ) + γ

2
b̂†(t )[Â(t ), b̂(t )]

+ √
γ ê†

in(t )[Â(t ), b̂(t )], (C1)

where the Heisenberg operator Â(t ) = eiĤT t Âe−iĤT t with
ĤT given by Eq. (13), êin(t )= ∑

k e−i(ωk−ωl )t êk/
√

2π with
[êin(t ), ê†

in(t ′)] = δ(t − t ′), and the total system has been
transformed in a rotating frame with the driving frequency ωl

[see Eqs. (2) and (13)]. We take

ρT (0) = |0〉aa〈0| ⊗ |0〉bb〈0| ⊗ |0〉EE 〈0| (C2)

as an initial state, where |0〉a, |0〉b, and |0〉E respectively
denote the vacuum states of the left cavity, the right cavity,
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and the Markovian environment, which lead to â|0〉a = 0,
b̂|0〉b = 0, and êk|0〉E = 0. In this case, we have

d

dt
〈Â(t )〉 = Tr

[
dÂ(t )

dt
ρT (0)

]
≡ TrS[Âρ̇S (t )] (C3)

= −i〈[Â(t ), ĤS (t )]〉 − γ

2
〈[Â(t ), b̂†(t )]b̂(t )〉

−√
γ 〈[Â(t ), b̂†(t )]êin(t )〉

+ γ

2
〈b̂†(t )[Â(t ), b̂(t )]〉

+√
γ 〈ê†

in(t )[Â(t ), b̂(t )]〉, (C4)

where Tr = TrSTrR, TrS = TraTrb, ρS (t ) = TrR{ρT (t )},
and ρT (t ) = e−iĤT tρT (0)eiĤT t . With 〈[Â(t ), b̂†(t )]êin(t )〉 =
Tr[[Â(t ), b̂†(t )]êin(t )ρT (0)] and 〈ê†

in(t )[Â(t ), b̂(t )]〉 = Tr
{[Â(t ), b̂(t )]ρT (0)ê†

in(t )} due to êin(t )ρT (0) = 0 and
ρT (0)ê†

in(t ) = 0, Eq. (C4) becomes

d

dt
〈Â(t )〉 = − iTr{[Â(t ), ĤS (t )]ρT (0)}

− γ

2
Tr{[Â(t ), b̂†(t )]b̂(t )ρT (0)}

+ γ

2
Tr{b̂†(t )[Â(t ), b̂(t )]ρT (0)}

= − iTrS{[Â, ĤS]ρS (t )} − γ

2
TrS{[Â, b̂†]b̂ρS (t )}

+ γ

2
TrS{b̂†[Â, b̂]ρS (t )}. (C5)

With Tr{[Â, B̂]Ĉ} = Tr{Â[B̂, Ĉ]}, we get

d

dt
〈Â(t )〉 = TrS

(
Â{−i[ĤS, ρS (t )] − γ

2
[b̂†, b̂ρS (t )]

+ γ

2
[b̂, ρS (t )b̂†]}

)
. (C6)

Equation (3) can be obtained via Eqs. (C3) and (C6).

APPENDIX D: DERIVATION OF EQ. (19)

Defining C(t ) = v(t ) + u(t ) with C(0) = 1 and
D(t ) = v(t ) − u(t ) with D(0) = −1 leads to d

dt D(t ) =
−i�D(t ) + 2iGD∗(t ) − ∫ t

0 dτ [ f (t − τ )D(τ )]. Introducing
M(t ) = 1

2 [D(t ) + D∗(t )] with M(0) = −1 and N (t ) =
1
2i [D(t ) − D∗(t )] with N (0) = 0, we have

d

dt
M(t ) =�N (t ) + 2GN (t ) −

∫ t

0
dτ [M(τ ) fr (t − τ )]

−
∫ t

0
dτ [N (τ ) fi(t − τ )],

d

dt
N (t ) = − �M(t ) + 2GM(t ) −

∫ t

0
dτ [N (τ ) fr (t − τ )]

+
∫ t

0
dτ [M(τ ) fi(t − τ )], (D1)

where fr (t ) = 1/2 ∗ [ f (t ) + f ∗(t )] and fi(t ) = i/2 ∗ [ f (t ) −
f ∗(t )]. Making the Laplace transformation to Eq. (D1) gives
sM(s) + 1 = �N (s) + 2GN (s) − fr (s)M(s) − fi(s)N (s) and

sN (s) = −�M(s) + 2GM(s) + fi(s)M(s) − fr (s)N (s), or

M(s) = fr (s) + s

−[� − fi(s)]2 + 4G2 − [ fr (s) + s]2 ,

N (s) = � − fi(s) − 2G

[� − fi(s)]2 − 4G2 + [ fr (s) + s]2 . (D2)

For d
dt C(t ) = −i�C(t ) − 2iGC∗(t ) − ∫ t

0 f (t − τ )C(τ )dτ

and defining P(t ) = 1
2 [C(t ) + C∗(t )] with P(0) = 1 and

Q(t ) = 1
2i [C(t ) − C∗(t )] with Q(0) = 0, we obtain

d

dt
P(t ) = �Q(t ) − 2GQ(t ) −

∫ t

0
fi(t − τ )Q(τ )dτ

−
∫ t

0
fr (t − τ )P(τ )dτ ,

d

dt
Q(t ) = − �P(t ) − 2GP(t ) +

∫ t

0
fi(t − τ )P(τ )dτ

−
∫ t

0
fr (t − τ )Q(τ )dτ , (D3)

and sP(s) − 1 = �Q(s) − 2GQ(s) − fi(s)Q(s) − fr (s)P(s),
sQ(s) = −�P(s) − 2GP(s) + fi(s)P(s) − fr (s)Q(s), or

P(s) = fr (s) + s

[� − fi(s)]2 − 4G2 + [ fr (s) + s]2 ,

Q(s) = � − fi(s) + 2G

−[� − fi(s)]2 + 4G2 − [ fr (s) + s]2 . (D4)

Collecting all these together, we get

u(t ) = 1
2 {[P(t ) − M(t )] + i[Q(t ) − N (t )]},

v(t ) = 1
2 {[P(t ) + M(t )] + i[Q(t ) + N (t )]}. (D5)

Moreover, setting Ô(t ) = 1
2 [ĉ(t ) + ĉ†(t )] with Ô(0) = 0

and B̂(t ) = 1
2i [ĉ(t ) − ĉ†(t )] with B̂(0) = 0, we obtain

d

dt
Ô(t ) = �B̂(t ) − 2GB̂(t )

+ i

2
[F ∗

eff (t ) − Feff (t )] + i

2
[R̂†(t ) − R̂(t )]

−
∫ t

0
fi(t − τ )B̂(τ )dτ −

∫ t

0
fr (t − τ )Ô(τ )dτ,

d

dt
B̂(t ) = − �Ô(t ) − 2GÔ(t )

− 1

2
[R̂†(t ) + R̂(t )] − 1

2
[F ∗

eff (t ) + Feff (t )]

−
∫ t

0
fr (t − τ )B̂(τ )dτ +

∫ t

0
fi(t − τ )Ô(τ )dτ,

(D6)

and sB̂(s) = −�Ô(s) − 2GÔ(s) − 1
2 [R̂(s) + R̂†(s)] −

1
2s [Feff (s) + F ∗

eff (s)] − fr (s)B̂(s) + fi(s)Ô(s), sÔ(s) =
�B̂(s) − 2GB̂(s) + i

2 [R̂†(s) − R̂(s)] + i
2s [F ∗

eff (s) − Feff (s)] −
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fi(s)B̂(s) − fr (s)Ô(s), or

Ô(s) = [R̂(s) + Feff (s)/s]{� − fi(s) + i[ fr (s) + 2iG + s]}
−2{[� − fi(s)]2 − 4G2 + [ fr (s) + s]2}

+ H.c.,

B̂(s) = i[R̂(s) + Feff (s)/s]{� − fi(s) + i[ fr (s) − 2iG + s]}
2{[� − fi(s)]2 − 4G2 + [ fr (s) + s]2}

+ H.c.. (D7)

With the above results, we have

ĉ(s) = i[v(s)R̂†(s) − u(s)R̂(s)] + β(s), (D8)

with β(s) = i[v(s)F ∗
eff (s) − u(s)Feff (s)]. Equation (19) can be

obtained by reversing Laplace transformation to Eq. (D8).

APPENDIX E: DERIVATION OF EQ. (20)

The Hamiltonian of the right cavity coupling with the
Markovian environment in a rotating frame with the driving
frequency ωl [see Eqs. (2) and (13)],

Ĥbe = �b̂†b̂ +
∑

k

(ωk − ωl )ê
†
k êk + i

∑
k

√
γ

2π
(ê†

k b̂ − b̂†êk ),

(E1)

can be diagonalized as [253]

Ĥbe =
∑

j

χ j B̂
†
j B̂ j, (E2)

where B̂ j = α j b̂ + ∑
k β jk êk meets the bosonic orthogonal-

normalization property [B̂ j, B̂†
m] = δ jm with

b̂ =
∑

j

α∗
j B̂ j, êk =

∑
j

β∗
jk B̂ j . (E3)

Making the commutation relation [B̂ j, Ĥbe] with Eqs. (E1) and
(E2) leads to

χ jα j = �α j + i
∑

k

β jk

√
γ /2π,

χ jβ jk = −i
√

γ /2πα j + β jk (ωk − ωl ), (E4)

which also satisfy the eigenequation with eigenvalue χ j and
eigenstate |ε j〉 based on Hamiltonian (E1) in single exciton
subspace (originating from the total excitation number N̂ =
b̂†b̂ + ∑

k ê†
k êk conserved):

Ĥbe|ε j〉 = χ j |ε j〉, |ε j〉 = α j |10〉 +
∑

k

β jk|01k〉, (E5)

where α j and β jk denote the probability amplitudes on the
states |10〉 and |01k〉 with the right cavity and kth mode in
the environment respectively having one photon. Substituting
Eqs. (E2) and (E3) into Eq. (13), we obtain Eq. (20). In order
to compare with Eq. (16), we write down the Heisenberg
equation with Eq. (20):

d

dt
â = −i�â − 2iGâ† − i

∑
j

μ∗
j B̂ j, (E6)

d

dt
B̂ j = −iχ j B̂ j − iμ j â − iν j, (E7)

which result in

d

dt
â = − i�â − 2iGâ† −

∫ t

0
f̃ (t − τ )â(τ )dτ

− iF̃eff (t ) − iR̃(t ), (E8)

with

f̃ (t − τ ) = g2x(t ),

F̃eff (t ) = −igF
∫ t

0
x(t − τ )dτ ,

R̃(t ) = gx(t )b̂ − g
∑

k

yk (t )êk, (E9)

where x(t ) = ∑
j |α j |2e−iχ j t and yk (t ) = ∑

j α
∗
j β jke−iχ j t re-

spectively correspond to the time-dependent probability
amplitudes in |10〉 and |01k〉 with Eq. (E1) under the ini-
tial state |ψ (0)〉 = |10〉 in single exciton subspace proven as
follows. Inserting the completeness relation

∑
j |ε j〉〈ε j | with

Eq. (E5) into |ψ (t )〉be = e−iĤbet |10〉, we obtain

|ψ (t )〉be =
∑

j

|α j |2e−iχ j t |10〉+
∑

jk

α∗
j β jke−iχ j t |01k〉

≡ x(t )|10〉 +
∑

k

yk (t )|01k〉. (E10)

The Schrödinger equation i∂t |ψ (t )〉be = Ĥbe|ψ (t )〉be

gives ẋ(t ) = −i�x(t ) − √
γ /2π

∑
k yk (t ) and ẏk (t ) =

−i(ωk − ωl )yk (t ) + √
γ /2πx(t ) with x(0) = 1 and yk (0) =

0, which lead to yk (t ) = √
γ /2π

∫ t
0 e−i(ωk−ωl )(t−τ )x(τ )dτ

and ẋ = −i�x(t ) − ∫ t
0 f1(t − τ )x(τ )dτ with f1(t − τ ) =

γ

2π

∑
k e−i(ωk−ωl )t = γ δ(t − τ ). With those, we get

x(t ) = e−(i�+ γ

2 )t ,

yk (t ) =
√

γ /2π

∫ t

0
e−i(ωk−ωl )(t−τ )−(i�+ γ

2 )τ dτ . (E11)

Substituting Eq. (E11) into Eq. (E9), we find that f̃ (t ), F̃eff (t ),
and R̃(t ) in Eq. (E9) are exactly equal to f (t ), Feff (t ), and R̂(t )
in Eq. (16), respectively.

APPENDIX F: DERIVATION OF EQ. (21)

In the Heisenberg picture with the initial state ρT (0)
in Eq. (C2) fixed, the time evolution of any physical
observable can be obtained directly from Eqs. (17)–(19)

through the identity Tr[
dÂc1c2 (t )

dt ρT (0)] ≡ Tra[Âc1c2 (0) dρ(t )
dt ]

with Âc1c2 (t ) = â(t )†c1 â(t )c2 , where ρ(t ) ≡ TrbρS (t ) given by
Eq. (21) denotes the reduced density matrix for the left
cavity. ρS (t ) = TrEρT (t ) is determined by Eq. (3), where
ρT (t ) = U (t )ρT (0)U †(t ) is the density matrix of the to-
tal system containing the Markovian environment. Tr ≡
TraTrbTrE denotes traces over all the parts of the total
system. With Eq. (17), the expectation values A01(t ) =
〈â(t )〉, A02(t ) = 〈â(t )â(t )〉, and A11(t ) = 〈â†(t )â(t )〉 are
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controlled by

d

dt
A01(t ) = ς (t )[A01(t ) − β(t )] + ξ (t )[A∗

01(t ) − β∗(t )]

+ β̇(t ),

d

dt
A02(t ) = 2ς (t )A02(t ) + 2ξ (t )A11(t ) + 2A01(t )[β̇(t )

− ς (t )β(t ) − ξ (t )β∗(t )] + d

dt
〈α̂2〉 − 2ς (t )〈α̂2〉

− ξ (t )〈α̂α̂† + α̂†α̂〉 + ξ (t ),

d

dt
A11(t ) = ϑ̇

ϑ
〈Â11(t ) − α̂†α̂〉 + d

dt
〈α̂†α̂〉 + {ξ ∗(t )〈Â02(t )

− α̂2〉 + A∗
01(t )[β̇(t ) − ς (t )β(t ) − ξ (t )β∗(t )]

+ H.c.}, (F1)

with ς (t ) = (u̇u∗ − v̇v∗)/ϑ (t ), ξ (t ) = (uv̇ − u̇v)/ϑ (t ), and
ϑ (t ) = |u(t )|2 − |v(t )|2, where u(t ) and v(t ) are determined
by Eq. (18).

To give the time coefficients in Eq. (21), we compute

d

dt
A01(t ) = −

[
1

2
κ1(t ) + iX (t )

]
A01(t )−2iY (t )A∗

01(t )−iZ (t ),

d

dt
A02(t ) = − 4iY (t )A11(t ) − [κ1(t ) + 2iX (t )]A02(t )

− [κ3(t ) + 2iY (t )] − 2iZ (t )A01(t ),

d

dt
A11(t ) = 1

2
κ2(t ) − κ1(t )A11(t ) + {2iY ∗(t )A02(t )

+ iZ∗(t )A01(t ) + H.c.}. (F2)

By comparing Eqs. (F1) and (F2), we get

Y (t ) = −ξ (t )/2i,

X (t ) = −Im[ς (t )],

Z (t ) = i[β̇(t ) − ς (t )β(t ) − ξ (t )β∗(t )],

κ1(t ) = −ϑ̇ (t )/ϑ (t ),

κ2(t ) = 2[∂/∂t + κ1(t )]〈α̂†α̂〉 − 2{ξ ∗(t )〈α̂2〉 + H.c.},
κ3(t ) = [2ς (t ) − ∂/∂t]〈α̂2〉 + ξ (t )〈α̂α̂† + α̂†α̂〉. (F3)
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