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Photon-photon correlation of condensed light in a microcavity
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The study of temporal coherence in a Bose-Einstein condensate of photons can be challenging, especially
in the presence of correlations between the photonic modes. In this work, we use a microscopic, multimode
model of photonic condensation inside a dye-filled microcavity and the quantum regression theorem to derive
an analytical expression for the equation of motion of the photon-photon correlation function. This allows us
to derive the coherence time of the photonic modes and identify a nonmonotonic dependence of the temporal
coherence of the condensed light with the cutoff frequency of the microcavity.
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I. INTRODUCTION

A defining property of a Bose-Einstein condensate (BEC)
is the macroscopic coherence exhibited by the particles in
the lowest energy mode—a feature that allows the conden-
sate to behave like a massive quantum wave [1,2]. While
features such as thermal equilibrium and large population of
the ground state are the telltale signatures of a BEC, onset of
quantum coherence can be a defining characteristic of conden-
sates that do not thermalize completely and essentially operate
out of equilibrium, such as exciton-polaritons [3,4] and pho-
tons [5–8]. As such, theoretical and experimental investigation
of coherence in both equilibrium and nonequilibrium conden-
sates plays an important role in characterizing the properties
of these macroscopic states. Over the years, coherence of
BEC has been observed using interference experiments with
ultracold atoms [9,10]. Moreover, coherence in condensates
of excitons-polaritons [11] and organic polaritons [12] have
also been reported, while spontaneous phase selection [13]
and spatiotemporal coherence [14,15] has been observed in
photonic condensates.

The photonic Bose-Einstein condensates formed inside a
dye-filled microcavity is driven-dissipative in nature, sus-
tained by a detailed balance between the rate at which the
dye molecules are incoherently driven and losses of molecular
and photonic excitation in the system. The thermalization of
the photon gas inside the microcavity is due to the vibrational
states of the dye molecule, which allow thermal equilibration
of photons via energy-dependent absorption and emission
processes. From a physical perspective, one of the central
differences between a photonic BEC and a laser is the rate of
thermalization it is operating under. While a photonic BEC
works in a near-equilibrium regime, close to thermal equi-
librium with the dye molecules, a laser operates at a much
lower thermalization rate and is firmly in the nonequilibrium
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regime. As such, macroscopic occupation of photons occurs in
the lowest energy mode in a photon condensate, irrespective
of the gain, whereas for a laser the large population typi-
cally corresponds to the mode with the highest gain. Between
these regimes lie exotic phases of light that exhibit strong
multimode properties [16], nonstationary kinetics [17,18], and
possible vortex-like features [19].

A key characteristic of Bose-Einstein condensates that op-
erate in the near-equilibrium regime is the spatiotemporal
coherence. While condensates of exciton-polaritons exhibit
significant interparticle interactions, which lead to phase co-
herence [20] and superfluid behavior in the system [21],
photons in a BEC do not interact strongly with each other
[22,23]. Instead, coherence is created from indirect interaction
of photons with the dye molecules, mediated via stimu-
lated emissions [24]. This leads to coherence properties such
as symmetry-broken phase coherence [13], grand-canonical
photon statistics [25], and transition from short-range to long-
range spatial order across the condensation threshold [14,15],
which has been experimentally observed. While phase coher-
ence is generally well understood in these systems, studies
on temporal coherence that are consistent with experimental
results have been limited [14,16].

The properties of a photon condensate are well described
by a microscopic model [26], derived from the light-matter
interaction between a multimode cavity and an ensemble of
emitters that represents the electronic and vibrational states
of the dye molecules. The model can perfectly capture the
thermalization [27] and near-equilibrium properties [28] of
the photon gas in the cavity, and also highlight features such
as decondensation [29] and noncritical slowing down of dy-
namics [30]. First-order correlation function and the photon
linewidth [27] based on a single-mode model predict a perfect
temporal coherence in the condensed mode, consistent with
the Schawlow-Townes limit at large photon numbers [31].
While the theoretical results are in agreement with experimen-
tal observations in the vicinity of the BEC threshold [14,16],
it exhibits significant deviation at higher photon numbers.

In this work, we derive the equation of motion of the
photon-photon or the first-order correlation function of the
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FIG. 1. Illustration of a photon BEC setup. (a) A microcavity, formed using a pair of curved and flat mirrors, filled with dye molecules
(two-level systems) in a solvent (gray cloud). The figure illustrates different processes such as emission (Ep), absorption (Aq), photon loss (κ),
and loss of molecular excitation (�↓). The cavity plane can be divided into a grid, with each box indexed as ri (shaded region), and focused
pumping (� j

↑) at the center (red region). (b) A one-dimensional portrayal of the BEC setup showing the grids and the probability density
|�p|2 for the first six cavity modes. The unexcited (black) and excited (red) are uniformly distributed in the plane (three per grid). The excited
molecules are located closer to the pump spot.

photon gas inside a dye-filled microcavity, especially when
interactions between the different cavity modes are explic-
itly taken into account. Such a model already provides great
insight into the role of spatial coherence in the kinetics of
the condensed light in the cavity [19,28]. Our focus here is
on the temporal coherence of the condensed light, and by
using the quantum regression theorem, we derive an analytical
expression for the equation of motion of the photon-photon
correlation. This allows us to study the temporal coherence
or the coherence time of light inside the cavity for different
system parameters.

The paper is arranged as follows. After the Introduction in
Sec. I, we study the multimode model in Sec. II, and derive
the rate equations for the photon correlations and molecular
excitations. In Sec. III, we represent the photon-photon corre-
lations in terms of the coefficients of the density matrix of the
system. In Sec. IV, the time derivative of these coefficients is
obtained to ultimately derive the equation of motion of the
photon-photon correlation in Sec. V. In Sec. VI, the time
evolution of the correlation is numerically studied and the
coherence time of the condensed light for different cutoff
frequencies and pumping rate are presented. The results are
discussed in Sec. VII.

II. THEORETICAL MODEL

The interaction of photons with the dye molecules inside
a microcavity can be studied using a microscopic model [26].
In its most general form, the theoretical model is valid for
multiple cavity modes and also takes into account finite inter-
mode correlations [28]. The dynamics of the quantum system
is governed by the following master equation:

dρ

dt
= −i[Ĥ0, ρ̂] + 1

2

∑
i,p

(κL[âp] + �i
↑L[σ̂+

i ] + �↓L[σ̂−
i ])

+ 1

2

∑
i,p,q

(
� i

p,q{Aq[âqσ̂
+
i ρ, â†

pσ̂
−
i ]+Ep[â†

pσ̂
−
i ρ, âqσ̂

+
i ]}

+ H.c.
)
, (1)

where Ĥ0 = ∑
p δpâ†

pâp is the bare energy of the cavity
photons, and L[x̂] = 2x̂ρx̂† − {x̂†x̂, ρ}, with {·} being the
anticommutator. Here, âp (â†

p) is the annihilation (creation)
operator of photons in the pth cavity mode, and κ is the rate at
which it is lost from the cavity. The Pauli operators σ±

i denote
the electronic states of the dye molecule at location ri in the
cavity plane, which is pumped at a rate �i

↑, but decays with
a uniform rate �↓ to noncavity modes. The pump is focused
at the center of the cavity and has a Gaussian profile. An
illustration of the setup, highlighting the different processes,
is shown in Fig. 1.

The modes of the cavity are determined by the experi-
mental setup. The frequency ω0 of the lowest cavity mode,
referred to as cutoff frequency, is determined by the cavity
length; the mode spacing 	ω is given by the curvature of the
cavity mirrors [16]. The lowest energy mode ω0 corresponds
to the cutoff frequency of the cavity, which is adjusted by
the cavity length, and the mode spacing 	ω is given by
the curvature of one of the mirrors [16]. The frequency of
cavity mode p is then given by ωp = ω0 + p	ω. The rate
of absorption and emission of photons in the pth mode are
given by Ap and Ep, respectively, and can either be calculated
[27] or estimated from experimental data of the absorption
cross section [32]. Moreover, these rates are known to follow
the Kennard-Stepanov relation [33–35], Ap = Epe−βδp , with
δp = ωZPL − ωp, where ωZPL is the zero-phonon line or the
transition frequency between the electronic levels of a dye
molecule. The choice of cutoff frequency is important in
choosing the appropriate absorption-emission spectrum that
allows for near-equilibrium conditions for photons to thermal-
ize and condense [26]. The expression � i

p,q = ψp(ri )ψq(ri )
gives the overlap of the spatial profile of modes p and q at po-
sition ri, where ψk is the mode function of the kth mode given
by the Hermite-Gauss functions. The number of molecules
and modes are denoted by N and M, respectively, and the
molecules are assumed to be uniformly distributed inside the
cavity.

The dynamics as well as the steady behavior of the cavity
modes and the molecular excitation can be studied in terms of
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the equations of motion of the relevant observables, such as
the mode population or photon correlation, obtained from the
above master equation. In most cases, it is easier to work with
rate equations compared to directly solving the density matrix,
especially when the system contains a large number of modes
and an inhomogeneous distribution of molecular excitations.

On the other hand, equations of motion for observables
such as the mode population 〈â†

pâp〉 and the molecular excita-
tion 〈σ+

i σ−
i 〉 or two-mode correlation function 〈â†

pâq〉 can be
computed with relatively little computational resources when
certain approximations are taken into consideration. First, it
is helpful to use the fact that coupling between different dye
molecules has been neglected on account of the incessant
collision between the molecules of the dye and the solvent,
which quickly decoheres any intermolecular coherence. Sec-
ondly, one can invoke the semiclassical approximation such
that correlations between molecules and photons can be fac-
torized, i.e., 〈σ+

i (t )âq(t )〉 ≈ 〈σ+
i (t )〉〈âq(t )〉. This is typically a

good approximation when the number of emitters in a cavity
is large, which is true in the case of a dye-filled microcavity,
where the number of dye molecules inside the microcavity is
very large.

The photon population and correlations can be written
as a matrix n, with elements npq(t ) = 〈â†

p(t )âq(t )〉, and the
molecular excitation fraction as a vector f with elements fi =∑

j〈σ+
j σ−

j 〉δ(ri − r j ). The semiclassical equations of motion
for n and f are then given by

ṅ =
(

i� − κ

2

)
n + {f+ E(n + I) − f−An} + H.c., (2)

ḟ = −{�↓ + 2Ẽ}f + {�↑ + 2Ã}(1 − f ), (3)

where f+ and f− have elements f +
pq = ∑

i fi�
i
pq and f −

pq =∑
i(1 − fi )� i

pq, respectively. A, E, and � are diagonal ma-
trices with elements Ap, Ep, and ωp, respectively. �↑ is a
diagonal matrix with entries �i

↑ and 1 is a vector with all
elements equal to unity. The matrices Ẽ and Ã are diagonal
with elements Tr[�iE(n + I)] and Tr[�inA], respectively,
where �i has the same dimension as n and has elements � i

pq.
Importantly, Eqs. (2) and (3) allow for the computation of the
photon correlation function 〈â†

p(t )âq(t )〉 at time t , as well as
at the steady state of the system, for a given set of system
parameters.

III. PHOTON-PHOTON CORRELATION FUNCTION

The primary focus of the work is to calculate the first-order
correlation function, which would allow for the estimation of
the spectral linewidth, as well as the temporal coherence of
the multimode photon gas inside the dye-filled microcavity.
The key quantity of interest is the photon-photon correlation,

cpq(t2 − t1) = 〈â†
p(t2)âq(t1)〉, (4)

where p and q denote the cavity modes. For most experiments
involving the investigation of spatiotemporal coherence, the
initial state of the system at t1 is the steady state ρss. As
such, only the time difference, t = t2 − t1, is relevant, and the
two-time correlation reduces to cpq(t ) = 〈â†

p(t )âq(0)〉, where
one can set the initial time t1 = 0, and t2 = t . Therefore, the

two-time correlation can now be calculated using the term
Tr[â†

p(t )âq(0)ρss].
The correlation function can be calculated using the quan-

tum regression theorem [36,37], which allows for setting
up an equation of motion for the two-time correlation. The
function 〈â†

p(t )âq(0)〉 can be considered as the time evolution
of the term 〈â†

p〉, governed by the master equation given in
Eq. (1), however, with the initial state given by ρ ′(0) = âqρss.
In other words, using the regression theorem, we have the
relation

cpq(t ) = 〈â†
p〉 = Tr[â†

pρ
′] = Tr[â†

p(t )âq(0)ρss]. (5)

Similar approaches have been used to derive the first-order
[27] and second-order correlation function [18]. But, these
are mostly restricted to just single-mode systems, where there
are no interactions arising from intermode correlations and the
overall dynamics is fairly simple.

To apply the regression theorem, it is helpful to work
with the density matrix formalism, which can be written in
an expanded form using an appropriate orthonormal basis.
For M photon modes and N molecules inside the cavity, one
such basis is {|n, s〉}, where |n〉 = |n0n1 . . . np . . . nM〉 with
np being the population of the pth mode. Similarly, |s〉 =
|s1s2 . . . si . . . sN 〉 is the molecular excitation state, where si

can take values 0 or 1, depending on whether the ith molecule
is excited or not. Thus, the density matrix ρ can then be
expressed in this basis as

ρ =
∑
n,n′,s

Cn,n′,s|n〉〈n′| ⊗ |s〉〈s|, (6)

where |n, s〉〈n′, s′| = |n〉〈n′| ⊗ |s〉〈s|, based on the fact that
there is no coherence between the molecules and the semi-
classical approximation is valid. Now, the diagonal elements
of ρ are those that satisfy n = n′ and the off-diagonal terms
are for n 	= n′. In general, n, n′ � 0, which means np � 0 ∀ p
and implies that mode population is nonnegative. As such, the
following rearrangement of terms can be made:∑

n′�0

∑
n�0

|n〉〈n′| =
∑
n′�0

∑
n′−k�0

|n′ − k〉〈n′|

≡
∑
k�n

∑
n�0

|n − k〉〈n|. (7)

So, ρ can now be rearranged in terms of |n − k〉〈n|, where
n′ − n = k,

ρ =
∑

k

( ∑
n,s

Rk
n,s|n − k〉〈n| ⊗ |s〉〈s|

)
, (8)

and Rk
n,s = 〈n − k, s| ρ |n, s〉. Note that k can be nonpositive

and the above expression can be thought of as representing
the density matrix by summing the kth diagonal terms.

The two-time correlation can now be computed by taking
the trace Tr[â†

pρ
′], where

ρ ′ = âqρ =
∑
k,n,s

Pk
n,s |n − k〉〈n| ⊗ |s〉〈s|, (9)

where we expand ρ ′ similarly as in Eq. (8) with a new set of
coefficients {Pk

n,s} which are related to the steady-state coef-
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ficients by Pk
n,s(0) = √

nq − kq + 1 R
k−kq
n,s , where kq is defined

as a vector with the qth term as unity and zero elsewhere. As
such, we obtain the following expression:

cpq(t ) = Tr[â†
pρ

′] = Tr

[
â†

p

∑
k,n,s

Pk
n,s|n − k〉〈n| ⊗ |s〉〈s|

]

=
∑
n,s

( ∑
k,n′

√
np − kp + 1 Pk

n,s〈n′|n − k + kp〉

× 〈n|n′〉
)

⊗
∑

s′
〈s′|s〉〈s|s′〉

=
∑
n,s

√
np P

kp
n,s. (10)

This gives us a time evolution of the photon-photon correla-
tion in terms of the coefficients

ċpq(t ) = d

dt
〈â†

p(t )âq(0)〉 =
∑
n,s

√
np Ṗ

kp

n,s. (11)

IV. CALCULATION OF COEFFICIENTS

The estimation of the photon-photon correlation now de-
pends on finding the solution to Eq. (11), which is obtained by

finding the terms Ṗ
kp
n,s. In particular, the above time derivative

needs to be expressed as a function of the coefficients defined
in Eqs. (8) and (9), which gives the expression for the operator

ρ ′ in terms of {Pkp
n,s}. Hence, to obtain the time derivative of the

two-time correlation, the natural step is to calculate the deriva-
tive of the operator ρ ′ using the master equation in Eq. (1). In
particular, the different terms in the master equation need to
be investigated for their contribution to the time derivative,
starting from the Hamiltonian Ĥ0 to the Lindblad terms L[σ̂±

i ]
and L[âp]. For example, contribution from Ĥ0 in finding the
relevant terms in ρ̇ will simply come from

ρ̇
Ĥ0= −i[Ĥ0, ρ] = −i(Ĥ0ρ − ρĤ0), (12)

where Ĥ0 = ∑
m â†

mâm. Here are the contributions from the
different terms in the master equation:

(i) Ĥ0 contribution

Ṗ
kp
n,s

Ĥ0−→ iδpP
kp
n,s. (13)

(ii) L[âp] contribution

Ṗ
kp
n,s

L[âp]−→
∑

m

κ

[
C0(m)P

kp

n+km,s −
(

nm − δp,m

2

)
P

kp
n,s

]
, (14)

where C0(m) = √
(nm + 1)(nm + 1 − δp,m). Note that κ de-

scribes the loss rate for all cavity modes, and a state n can
lose a photon in mode m and thus change into n − km, where
km (as defined earlier) is a vector with the mth element as 1
and 0 everywhere else. Conversely, a photon population n can
come from state n + km by losing a photon in mode m. As

such, these states have probability P
kp

n+km,s.

(iii) L[σ̂±
i ] contribution

Ṗ
kp
n,s

L[σ̂+
i ]−→

∑
i,∀si=1

�i
↑ P

kp

n,s−si
− �̃↑ P

kp
n,s, (15)

where �̃↑ = ∑
i,∀si=0 �i

↑ and si is a vector with the ith element
as 1 and 0 everywhere else. As �i

↑ is the pumping rate, it
excites the state s to s + si by exciting the ith molecule.
Similarly, a state s may be pumped from a state s − si

with probability P
kp

n,s−si
. The term L[σ̂−

i ], being the decay
of a molecule with rate �↑, simply produces a reverse-state
transformation. A more detailed description of the above
transformations is shown in Appendix A.

(iv) Am and Em′ contribution

Ṗ
kp
n,s

Am−→
∑
m,m′

Am′

2

[
C1

( ∑
i,∀ si=1

� i
m,m′ P

kp−km′+km

n+km,s−si

)

− C2

( ∑
i,∀ si=0

� i
m,m′

)
P

kp−km′+km
n,s

]
, (16)

where C1 = √
(nm′ − δp,m′ + 1)(nm + 1) and C2 =√

(nm − δm,p + 1 − δm,m′ )(nm′ − δp,m′ ).
Note that the process of absorption and emission, as gov-

erned by Am and Em′ in Eq. (1), gives rise to intermode
correlations. In the case of m = m′ the mode is coupled to

itself. Mathematically, this is a state with probability P
kp
n,s,

which upon absorption of a photon in mode m by the ith
molecule at location ri will transform to a state with proba-

bility P
kp

n+km,s−si
. Now, including m 	= m′ introduces intermode

correlations, which reveals itself in the coupling of different ki
terms. For instance, kp in the derivative on the left-hand side
is connected to the kp − km′ + km on the right for all m and
m′. Similar calculations can also be done for transformations
arising from the emission term Em′ . The contribution from the
Hermitian conjugates in Eq. (1) are calculated in a similar
manner.

Now, the full expression of Ṗ
kp
n,s is simply the sum of the

different contributions, which gives us a general relation of

the time derivative to the set {Pkp
n,s}.

V. EQUATION OF MOTION

In Eq. (11), we represent the time derivative of the two-
time correlation function ċpq(t ) = d

dt 〈â†
p(t )âq(0)〉 in terms of

the rate of change of the probabilities Ṗ
kp
n,s. Moreover, in

Eqs. (13)–(16), we derived the time derivatives in terms of

the probabilities {Pkp
n,s}. As such, the equation of motion of the

two-time correlation function 〈â†
p(t )âq(0)〉 can now be derived

independently of these probabilities, which in practical condi-
tions can be very difficult to estimate.

From Sec. IV, the contributions from the Ĥ0 and L[âp]
terms in the master equation lead to

d

dt
〈â†

p(t )âq(0)〉 = (iδp − κ/2)〈â†
p(t )âq(0)〉, (17)

and therefore introduce an oscillatory and a decay term in
the equation of motion. The terms related to pumping and
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decay of molecules in the system, given by L[σ±
i ], do not

contribute to the photon correlation. However, the absorption
and emission terms, given by Am and Em′ , make a significant
contribution to the equation of motion. For Am this is given
by

d

dt
〈â†

p(t )âq(0)〉 = −
∑
n,s,m

Am
√

nm

2

( ∑
i,∀si=0

� i
p,m

)
Pkm

n,s. (18)

The contribution from Em′ is given simply by replacing the
absorption term with emission, the index m by m′, and the
summation over all si = 1. An extended derivation of Eq. (18)
is shown in Appendix B.

Importantly, the contributions from Am and Em′ still contain
coefficients Pkm

n,s . A useful condition to use at this point is the
semiclassical approximation discussed in Sec. II, which fac-
torizes the correlation between photons and molecules. This

leads to P
kp
n,s ≈ P

kp
n Ps, where one can interpret Ps to be proba-

bility for molecules to have an excitation profile described by
s. As such, Eq. (10) can be written as

cpq(t ) = 〈â†
p(t )âq(0)〉 =

∑
n,s

√
np P

kp
n,s

=
∑

n

√
npP

kp
n

∑
s

Ps =
∑

n

√
npP

kp
n , (19)

where the sum over probabilities of all possible molecular
excitation profiles is unity, i.e.,

∑
s Ps = 1. Now, to simplify

the expression in Eq. (18), we use the semiclassical approxi-
mation in Eq. (19), such that

ċpq(t ) ≈ −
∑
n,m

Am
√

nm

2
Pkm

n

∑
s

(
Ps

∑
i,∀si=0

� i
p,m

)
,

= −
∑

m

Am

2
cmq(t )

∑
s

(
Ps

∑
i,∀si=0

� i
p,m

)
. (20)

The coefficient
∑

s(Ps
∑

i,∀si=0 � i
p,m) here is not straightfor-

ward. It is a sum of the mode function � i
p,m at locations

ri, where the molecule is not excited as described by the
vector |s〉. The above expression can be rewritten as shown in
Appendix C, as

∑
i �

i
p,m(1 − fi ), where fi is the probability of

finding an excited molecule at location ri or equivalently, the
excitation fraction. A similar expression can also be obtained
from the emission Em′ term.

Therefore, bringing all the terms together, the full equa-
tion of motion for the photon-photon correlation is given by

d

dt
〈â†

p(t )âq(0)〉 = (iδp − κ/2)〈â†
p(t )âq(0)〉

+
∑

m

(Em

2
f +
mp − Am

2
f −
mp

)
〈â†

m(t )âq(0)〉,
(21)

where f +
mp = ∑

i fi�
i
m,p and f −

mp = ∑
i(1 − fi )� i

m,p.
The photon-photon correlation or the first-order correlation

function allows for the estimation of the emission spectrum
of the cavity and the temporal coherence of the different
modes. The time evolution of the correlation function cpq(t ) =

FIG. 2. The emission spectrum of the first few photonic modes.
The figure shows the spectral function Sp(ω), normalized with the
initial steady-state population 〈â†

p(t )âp(t )〉 at t = 0), for the ground
state p = 0 (solid blue line), the first excited p = 1 (dashed black
line), and the second excited p = 2 (red crossed line) modes. The
pump is focused at the center, with a width equal to thrice the
oscillator length l0. The cavity cutoff frequency ω0 ≈ 520 THz, with
spacing between two adjacent cavity modes, 	ω = 1.7 THz. The
rate of loss of cavity photons is equal to κ ≈ 0.2 THz and the
absorption (Am) and emission (Em) rates are calculated from experi-
mental data [32]. The loss of excitations outside the cavity modes is
�↓ ≈ 3 × 10−5 THz and pumping rate �↑ = 0.2 × �↓.

〈â†
p(t )âq(0)〉 is governed by the equation of motion in Eq. (21),

which can be numerically solved for a particular set of system
parameters. The initial state of the system, at time t = 0, is
the steady-state correlation given by 〈â†

p(0)âq(0)〉 = 〈â†
pâq〉ss,

which is obtained by finding the steady-state solutions of
Eqs. (2) and (3) discussed in Sec. II.

VI. TEMPORAL COHERENCE

The temporal coherence of the different photonic modes
can be studied from the spectral function of the emitted light
from the cavity [38], given by the relation

Sp(ω) = Re

[ ∫ ∞

−∞
〈â†

p(t )âp(0)〉 eiωt dt

]
, (22)

which can be estimated by numerically solving for
〈â†

p(t )âp(0)〉 using Eq. (21). Figure 2 shows the emission
spectrum of the condensed ground state mode p = 0, in com-
parison with the first and second excited modes, p = 1 and
p = 2, respectively. The plots show that the ground state has
a much narrower linewidth compared to the higher modes,
which implies high temporal coherence in the condensed
ground state mode. A notable point is the spectrum of the
excited modes. The first excited mode has lower emission than
the second excited mode, which implies that the second mode
is more populated. This is due to the choice of a Gaussian
pump spot focused at the center of the cavity, which tends to
excite the even modes, with mode functions that peak at the
center. Moreover, the even modes also couple more strongly
to the ground state [39].
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FIG. 3. Variation of temporal coherence with cavity cutoff fre-
quency. The plots show the coherence time of the lowest energy or
ground state mode for different cutoff frequencies of the cavity, and
for three different pumping rates �↑, in units of �↓. All other system
parameters are the same as in Fig. 2.

Importantly, from the close to Lorentzian lineshape in
Fig. 2, it can be inferred that the decrease of the correlation
function is exponential. Thus, the coherence time τp for cavity
mode p can be defined as the decay constant of the photon-
photon correlation

〈â†
p(t )âp(0)〉 = cp(t ) = cp(0) exp [−t/τp]. (23)

Figure 3 shows the variation of the coherence time τ0 of the
lowest energy state with the cutoff frequency ω0 of the cavity.
The cutoff frequency of the cavity is a critical system parame-
ter that not only defines the energy of the lowest cavity mode,
but also photon-energy-dependent rates of absorption (Ap)
and emission (Ep) of photons by the dye molecules inside the
cavity. The figure shows that the coherence time is dependent
on the cavity cutoff frequency, but does not vary monotoni-
cally with change in the cutoff frequency. This is either due to
the nonmonotonic variation of thermalization inside the cavity
across the chosen range of cutoff frequencies or strong mode
competition for molecular excitations. The figure also shows
how the coherence time of the ground state depends on the
pump power, which controls the total number of photons in the
cavity and therefore drives the photon condensation transition.

VII. CONCLUSION

In this work, we derive an equation of motion for the first-
order correlation function or the photon-photon correlation for
the photon gas inside a dye-filled microcavity. The nonequi-
librium model takes into account a multimode photonic cavity,
where finite intermode coherences are not completely ignored,
which makes the calculations significantly more complex but
allows us to compute photon-photon correlations between
different modes. Importantly, these relations allow the theo-
retical and computational investigation of temporal coherence
of photon condensates that are consistent with actual experi-
mental findings for a far wider set of parameters [39].

The work opens the door to study more complex behavior
of photon correlations and temporal coherence, especially in
regimes where strong mode competition for excitation exists.
A particular phenomenon of interest is to study how temporal
coherence behaves in the regime of multimode condensate,
where molecular excitations are clamped by a condensing
mode and different modes compete to unclamp the excitation,
leading to the phenomenon of decondensation [29]. More-
over, other directions include a more comprehensive study of
spatiotemporal correlations in photon condensation under the
influence of a nonstationary pump, where phenomena such
as vortex-like structure formation [19] and partially coherent
light can be engineered.
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APPENDIX A: DETAILED CALCULATION
OF COEFFICIENTS

The derivation of the coefficients in Sec. IV, which arise
due to the different terms in the master equation given by
Eq. (1), can be investigated more carefully. The first nontrivial
term is L[σ±

i ], which represents the dynamics due to pumping
and decay of molecules as governed by the rates �i

↑ and �↓,
respectively. These are given by∑

n,s

Ṗ
kp
n,s|n − kp〉〈n| ⊗ |s〉〈s|

L[σ+
i ]−→ −1

2

∑
i,n,s

�i
↑L[σ̂+

i ]P
kp
n,s|n − kp〉〈n| ⊗ |s〉〈s|,

= −
∑
n,s

P
kp
n,s|n − kp〉〈n|

⊗
∑

i,∀si=0

�i
↑(|s〉〈s| − |s + si〉〈s + si|). (A1)

The first term on the right-hand side of Eq. (A1) contains
the contribution from the {σ−

i σ+
i , ρ} term of the opera-

tor L[σ+
i ] which acts on |s〉〈s|, if and only if si = 0, i.e.,

σ−
i σ+

i |s〉〈s| = |s〉〈s|σ−
i σ+

i = δsi,0|s〉〈s|. Comparing the basis
states |n − kp〉〈n| and |s〉〈s| on both sides, the coefficient from

the first term is −P
kp
n,s �̃↑, where the term �̃↑ = ∑

i,∀si=0 �i
↑,

which is the total pump rate at all unexcited sites in the state
|s〉.

The second term on the right-hand side arises due to
the contribution from the σ+

i ρσ−
i term of L[σ+

i ]. Note that
this term increases the excitation at locations where the
molecules are unexcited or σ+

i |s〉〈s|σ−
i = δsi,0|s + si〉〈s + si|.

This is illustrated in Fig. 4. As such, we obtain the term∑
i,∀si=0 �i

↑|s + si〉〈s + si|, which for any fixed s is a summa-
tion over all states with one more excitation than s. Taking all
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FIG. 4. Visualization of the term
∑

i,∀si=0 �i
↑ as a square, where

each block ri denotes a position, and black (white) implying the
molecule at the position is excited (nonexcited). For a specific s
there are associated squares with one more excitation, give by a term
�

j
↑ which creates excitation at a new position r j , with new basis

|s + s j〉〈s + s j |.

s into account and noting that there will be no |s〉〈s|, where
si = 0 ∀i, the total contribution of the second term may be
rewritten by a simple change of indices,

∑
n,s

P
kp
n,s|n − kp〉〈n| ⊗

∑
i,∀si=0

�i
↑|s + si〉〈s + si|

→
∑
n,s′

P
kp

n,s′−s′
i
|n − kp〉〈n| ⊗

∑
i,∀s′

i=1

�i
↑|s′〉〈s′|. (A2)

The change of indices above is better illustrated in Fig. 5.
Now by comparing terms on the left- and right-hand side with

FIG. 5. Visualization of |s′〉〈s′| as a square, with different con-
tributing terms coming from a set of squares, with one less excitation

at position r j compared to s′. Thus, each term contributes �
j
↑ P

kp

n,s′−s j
.

the same basis |n − kp〉〈n| ⊗ |s〉〈s|, we obtain

Ṗ
kp
n,s

L[σ+
i ]=

∑
i,∀si=1

�i
↑ P

kp

n,s−si
− �̃↑ P

kp
n,s. (A3)

The contribution from decay to noncavity modes governed by
the �↓ term can be obtained in a similar manner.

Next, there are the contributions due to the absorption
and emission processes, which are given by operators of
the Am[âmσ̂+

i ρ, â†
m′ σ̂

−
i ] and Em′ [â†

m′ σ̂
−
i ρ, âmσ̂+

i ], respectively.
For the Am term, the relevant relation between the coefficients
is∑

n,s

Ṗ
kp
n,s|n − kp〉〈n| ⊗ |s〉〈s|

Am−→ 1

2

∑
m,m′,i

� i
m,m′Am′ (âm′ σ̂+

i ρâ†
mσ̂−

i − â†
mσ̂−

i âm′ σ̂+
i ρ).

(A4)

Calculating the first term on the right-hand side gives us the
contribution from the term âm′ σ̂+

p ρ â†
mσ̂−

p :

1

2

∑
m,m′,i

� i
m,m′Am′ âm′ σ̂+

i ρ â†
mσ̂−

i

= 1

2

∑
m,m′,i

( ∑
n,s

� i
m,m′Am′ P

kp
n,s

√
(nm′ − δp,m′ )nm |n − kp − km′ 〉〈n − km| ⊗ δsi,0|s + si〉〈s + si|

)

= 1

2

∑
m,m′,n,s

[
Am′

√
(nm′ − δp,m′ )nm |n − kp − km′ 〉〈n − km| ⊗

∑
i,∀si=1

� i
m,m′ P

kp

n,s−si
|s〉〈s|

]

= 1

2

∑
m,m′,n′,s

[
Am′

√
(n′

m′ − δp,m′ + δm,m′ )(n′
m + 1)|n − kp − km′ + km〉〈n′| ⊗

∑
i,∀si=1

� i
m,m′P

kp

n+km,s−si
|s〉〈s|

]
, (A5)

where n − km = n′ and the indices in the molecular states have been rearranged.
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Similarly, the second term on the right-hand side is the contribution due to â†
mσ̂−

i âm′ σ̂+
i ρ:

1

2

∑
p

� i
m,m′Am′ â†

mσ̂−
i âm′ σ̂+

i ρ

= 1

2

∑
m,m′,n,s

[
Am′P

kp
n,s

√
(nm + 1 − δm,p − δm,m′ )(nm′ − km′ )|n − kp − km′ + km〉〈n| ⊗

∑
i,∀si=0

� i
m,m′ |s〉〈s|

]
(A6)

Combining the relations from Eqs. (A5) and (A6), and aligning the corresponding basis, the following expression for the
coefficient is obtained:

Ṗ
kp
n,s

Am−→ 1

2

∑
m,m′

[
Am′

√
(nm′ − δp,m′ + 1)(nm + 1)

( ∑
i,∀si=1

� i
m,m′P

kp−km′+km

n+km,s−si

)

− Am′P
kp−km′+km
n,s

√
(nm + 1 − δm,p − δm,m′ )(nm′ − km′ )

( ∑
i,∀si=0

� i
m,m′

)]
. (A7)

The contribution from the Hermitian conjugate and molecular emission, given by the rate Em′ in the master equation, can be
calculated along similar lines.

APPENDIX B: DERIVATION OF EQUATION OF MOTION

The detailed derivation of the equation of motion for the photon-photon correlation, using the coefficients arising from
the different terms in the master equation, is presented. Again, the terms in the equation arising from Ĥ0 and L[â] are quite
straightforward,

d

dt
〈â†

p(t )âq(0)〉 Ĥ0−→
∑
n,s

iδp
√

npṖ
kp
n,s = iδp〈â†

p(t )âq(0)〉 (B1)

L[â]−→
∑
n,s,m

κ
√

np

[√
(nm + 1)(nm + 1 − δp,m)P

kp

n+km,s −
(

nm − 1

2
δm,p

)
P

kp
n,s

]
(B2)

= −1

2

∑
n,s

κ
√

npP
kp
n,s = −κ

2
〈â†

p(t )âq(0)〉, (B3)

as the m 	= l terms cancel out in the calculation. Next, the contributions from the terms L[σ±
i ] are considered:

d

dt
〈â†

p(t )âq(0)〉 L[σ+
i ]−→

∑
n

√
np

∑
s

{( ∑
i,∀si=1

�i
↑P

kp

n,s−si

)
−

∑
i,∀si=0

�i
↑P

kp
n,s

}
. (B4)

Note in Eq. (B4) that
∑

s(
∑

i,∀si=1 �i
↑P

kp

n,s−si
) = ∑

s′ cs′P
kp

n,s′ is just a linear combination of P
kp

n,s′ . For each s′ on the right there
exists only one term from the left with s = s′ + si (∀si = 0), which then gives cs′ = ∑

i,∀si=0 �i
↑. Including the expression for cs′

above, the following relation is obtained:

d

dt
〈â†

i (t )â j (0)〉 L[σ±
i ]−→ 0. (B5)

A similar derivation can be done for the contribution from the term L[σ−
i ].

The contribution for the absorption and emission, given by the rates Am and Em′ , respectively, are considered next. First, the
term Am for the case m = m′:

d

dt
〈â†

p(t )âq(0)〉 Am−→
∑
n,s

Ap

[√
np + 1 np

( ∑
i,∀si=1

∣∣ψ i
p

∣∣2
P

kp

n+km,s−si

)
− (nm − δm,p

2
)P

kp
n,s

( ∑
i,∀si=0

∣∣ψ i
p

∣∣2

)]

+
∑

n,s,m 	=p

Am

[
(nm + 1)

√
np

( ∑
i,∀si=1

∣∣ψ i
m

∣∣2
P

kp

n+km,s−si

)
− nm

√
npP

kp
n,s

( ∑
i,∀si=0

∣∣ψ i
m

∣∣2

)]
, (B6)
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where |ψ i
m|2 is the squared wave function of cavity mode m. Now, the last two lines in Eq. (B6) are all m 	= p contributions, and

by taking n′ = n + km, the last two lines become

∑
n′,s,m 	=p

Amn′
m
√

np

( ∑
i,∀si=1

∣∣ψ i
m

∣∣2
Pkm

n′,s−si

)
−

∑
n,s,m 	=p

Amnm
√

npPkm
n,s

( ∑
i,∀si=0

∣∣ψ i
m

∣∣2

)
. (B7)

Similar to the calculations for L[σ±
i ], the first bracket

∑
i,∀si=0 |ψ i

m|2 is transformed to
∑

i,∀si=1 |ψ i
m|2, and therefore cancel when

m 	= l . Therefore, only the m = p terms remain:

d

dt
〈â†

p(t )âq(0)〉 Am−→ −1

2

∑
n,s

Ap
√

np P
kp
n,s ×

( ∑
i,∀si=0

∣∣ψ i
p

∣∣2

)
. (B8)

For m 	= m′:

d

dt
〈â†

p(t )âq(0)〉 Am′−→
∑

n,s,m 	=m′

Am′

2

{√
np(nm′ − δp,m′ + 1)(nm + 1)

( ∑
i,∀si=1

� i
m,m′ Pki−km′ +km

n+km,s−si

)

− √
np(nm′ − δp,m′ + 1 − δm,m′ )(nm − δm,p)

( ∑
i,∀si=0

� i
m,m′

)
Pki−km′+km

n,s

+ √
np(nm−δm,l+1)(nm′ + 1)

( ∑
i,∀si=1

� i
m,m′P

ki+km′−km
n+km′ ,s−si

)
−√

npnm(nm′ + 1 − δm,m′ )

( ∑
i,∀si=0

� i
m,m′

)
Pki+km′−km

n+km′−km,s

}
.

Am′−→
∑

n,s,m 	=m′

Am′

2

( ∑
i,∀si=0

� i
m,m′

){√
np(nm′ − δm′,p + 1)(nm + 1)P

kp−km′+km

n+km,s

− √
np(nm′ − δm′,p + 1 − δm,m′ )(nm − δmi )P

kp−km′+km
n,s + √

np(nm − δmi + 1)(nm′ + 1)P
kp+km′−km

n+km′ ,s

− √
npnm(nm′ + 1 − δm,m′ )P

kp+km′−km

n+km′ −km,s

}
. (B9)

Rearrangement of some of the indices on the right-hand side of Eq. (B9) gives us

d

dt
〈â†

p(t )âq(0)〉 Am′−→
∑

n,s,m 	=m′

Am′

2

( ∑
i,∀si=0

� i
m,m′

){√
(np − δm,p)(nm′ − δp,m′ + 1)nmP

kp−km′+km
n,s

− √
np(nm′ − δp,m′ + 1 − δm,m′ )(nm − δm,p)P

kp−km′+km
n,s + √

(np − δp,m′ )(nm − δm,p + 1)nm′P
kp+km′−km
n,s

− √
(np − δp,m′ + δm,p)nm′ (nm + 1 − δm,m′ )P

kp+km′−km
n,s

}
. (B10)

For m 	= m′, there can be two cases, either m = p or m 	= p, for any m′. For the latter case, d
dt 〈â†

p(t )âq(0)〉 = 0. For m = p,
the expression is

d

dt
〈â†

p(t )âq(0)〉 Am′−→
∑

n,s,m=p,m′

Am′

2

( ∑
i,∀si=0

� i
m′,p

)
×

{
np

√
nm′Pkm′

n,s − (np + 1)
√

nm′Pkm′
n,s

}
,

=
∑

n,s,m=p,m′

−Am′

2

( ∑
i,∀si=0

� i
m′,p

)
√

nm′Pkm′
n,s . (B11)

Again, similar calculations exist for terms arising from emission, Em.

APPENDIX C: SEMICLASSICAL APPROXIMATION

The semiclassical approximation used in obtaining the equation of motion in Sec. V is discussed in more detail. The
approximation can be written as Pkm

n,s = Pkm
n Ps, where the probabilities for the photon and molecules are factorized, which implies

that the two subsystems are uncorrelated. Moreover,
∑

s Ps = 1, where Ps is probability of having excitation profile s. Under the
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semiclassical approximation we have

〈â†
p(t )âq(0)〉 =

( ∑
n

√
np P

kp
n

)
×

( ∑
s

Ps

)
=

∑
n

√
np P

kp
n . (C1)

Applying the approximation in Eq. (C1) to the equation of motion,

d

dt
〈â†

p(t )âq(0)〉 =
(

iδp − κ

2

)
〈â†

p(t )âq(0)〉 −
∑

m

Am

2

(∑
n

√
nm Pkm

n

)( ∑
s

∑
i,∀si=0

Ps � i
m,p

)

+
∑

m

Em

2

( ∑
n

√
nm Pkm

n

)( ∑
s

∑
i,∀si=1

Ps � i
m,p

)

=
(

iδp − κ

2

)
〈â†

p(t )âq(0)〉 −
∑

m

Am

2
〈â†

m(t )âp(0)〉
[ ∑

s

(
Ps

∑
i,∀si=0

� i
m,p

)]

+
∑

m

Em

2
〈â†

m(t )âp(0)〉
[ ∑

s

(
Ps

∑
i,∀si=1

� i
m,p

)]
. (C2)

The term
∑

s(Ps
∑

i,∀si=1 � i
m,p) can be transformed into

∑
i �

i
m,p(

∑
s′,∀si=1 Ps′ ), where the last summation is over all s′ with

unity at position i. The sum
∑

s′ Ps′ is simply the total probability of net excitation of the ith molecule (i.e., the molecules at
position ri). Using a similar argument,

∑
s(Ps

∑
i,∀si=0 � i

p,m) can be changed to
∑

i �
i
p,m(

∑
s,∀si=0 Ps), where

∑
s Ps is the net

probability of the ith molecule being unexcited. Let f be a vector, where fi is the excitation fraction at position ri, which results
in

∑
i �

i
p,m(

∑
s′ Ps′ ) = ∑

i fi�
i
p,m and

∑
i �

i
p,m(

∑
s Ps) = ∑

i(1 − fi )� i
p,m.

The equation of motion of the photon-photon correlation under the semiclassical approximation is then given by

d

dt
〈â†

p(t )âq(0)〉 =
(

iδp − κ

2

)
〈â†

p(t )âq(0)〉 − 1

2

∑
m,i

(
Am〈â†

m(t )âp(0)〉(1 − fi )�
i
p,m − Em〈â†

m(t )âp(0)〉 fi�
i
p,m

)
. (C3)
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