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Magnon blockade induced by parametric amplification
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We propose to achieve and enhance the magnon blockade effect in an optomechanical-magnetic system based
on a quantum destructive interference mechanism between three indirect transition pathways. By introducing
a degenerate parametric amplifier, we analytically obtain the optimal parametric gain and phase for achieving
the magnon blockade. Under the optimized parameter conditions, the driving detunings of cavity and magnon
modes can be flexibly controlled to achieve the smallest second-order magnon correlation function. Moreover,
the magnon blockade can exhibit fascinating features by proper driving detuning and weaker driving strength.
Our scheme combines the benefits of destructive interference-induced magnon blockade and energy-level
anharmonicity-induced magnon blockade, which results in a reduction of equal-time second-order magnon
correlation while simultaneously avoiding time-delay second-order magnon correlation with rapid oscillation.
Our work provides an alternative and experimentally feasible platform for manipulating few-magnon states and
generating single-magnon sources.
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I. INTRODUCTION

Hybrid quantum systems involving microwave cavity pho-
tons and magnons characterized by collective spin excitations
in yttrium iron garnet (YIG) have aroused extensive attention
with regard to the implementation of quantum cryptography
[1,2] and quantum information processing [3,4]. It has been
experimentally demonstrated that the strong or ultrastrong
coupling between magnons of YIG and cavity photons can
be created through a magnetic dipole interaction [5–8], which
arises from the fact that the YIG possesses an extremely
high spin density and a low damping rate [9,10]. Based on
such hybrid systems, many fascinating phenomena such as
the ground-state cooling of a magnomechanical resonator
[11–13], bipartite or tripartite entanglement [14,15], magnon
quadrature squeezing [16,17], and magnon blockade (MB)
[18–23] have been verified in theory and experiment.

Recently, as a typical pure quantum effect, the investigation
of the magnon blockade has drawn considerable concern and
made substantial progress. Analogous to the photon blockade
(PB) [24–27], the MB can be generated through two phys-
ical mechanisms. One depends on the system energy-level
anharmonicity [18,20,22,23,28–31] where the second magnon
will be prohibited when the first magnon is excited to the
single-magnon state, known as conventional magnon block-
ade (CMB). The other mechanism relies on the destructive
interference [26,32–38] between different transition pathways
from a one-magnon state to a two-magnon state, called uncon-
ventional magnon blockade (UMB). Compared to the CMB,
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the UMB is possible in a weak-coupling scenario, which is not
a challenging task in the magnetic domain and is experimen-
tally much easier to achieve. The MB was first theoretically
implemented in a hybrid ferromagnet-superconductor hybrid
system by appropriately selecting qubit-magnon strength and
driving detuning [18]. Subsequently, many schemes have been
proposed to obtain the antibunched light based on the MB
effect, such as CMB in an optomechanical-magnetic system
assisted by a two-level atom [22], quantum-interference-
enhanced MB in an YIG coupled to superconducting circuits
[20,39], tunable MB in a ferromagnet-superconductor system
with two qubits [40], phase-controlled MB in a cavity mag-
netic system with a three-level atom [41], and parity-time
symmetry-enhanced MB in a cavity magnoni system [42].

On the other hand, directional parametric amplification has
been employed in microring resonator systems to achieve
a nonreciprocal photon blockade effect without the need
for Sagnac-Fizeau shifts produced by rotating the resonator
[43–47]. This could be interpreted to mean that parametric
amplification promotes the enhancement of the nonlinear cou-
pling strength [48–51]. In addition, it has been utilized to
realize frequency conversion [52,53] and to obtain photon
sources [54]. In particular, the authors in Ref. [55] con-
structed an all-optical diode and three-port quasicirculator
by nonreciprocity induced by the parametric amplification.
Moreover, Wei et al. have successfully enhanced the phonon
blockade effect by applying a degenerate parametric drive to
the mechanical oscillator [56]. The aforementioned studies
sufficiently illustrate the significance of the parametric am-
plification in generating the blockade effect. However, here
we utilize the parametric amplification to generate a magnon
blockade.

In this paper, we consider a hybrid optomechanical-
magnetic system aiming to study the generation of the MB.
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A degenerate optical parametric amplifier (OPA) is placed in
the optomechanical cavity [57,58], which has enabled many
interesting phenomena such as the generation of squeezed
light [48], the improvement of mechanical ground-state cool-
ing [59,60], and the enhancement of precise measurement
[61]. Here we utilize the parametric amplification induced by
the OPA to increase a new transition pathway, resulting in an
enhanced destructive interference. To begin with, we prove the
rationality of approximation from the original Hamiltonian
to the effective Hamiltonian, whereby a three-mode system
is simplified as a two-mode system consisting of magnon
and photon modes. Then we analytically derive the optimal
conditions for strong magnon antibunching and find that the
analytical solutions agree well with the numerical simulations.
Based on the optimal conditions, we show that the MB is
strongly dependent on the parametric gain and driving phase.
Moreover, the driving detunings of the cavity and magnon
modes for the smallest second-order magnon correlation func-
tion can be flexibly tuned. Interestingly, by selecting specific
driving detunings of the cavity and magnon, along with opti-
mal parametric gain and phase, our scheme can combine the
advantages of the UMB and the CMB, which reduces g(2)

m (0)
and simultaneously avoids g(2)

m (τ ) with rapid oscillation. Fi-
nally, we discuss the thermal magnon and photon excitations
on the MB and find that the thermal bath for photon and
magnon modes has a negligible impact on the results. Our
work opens up a different route to implement the quantum
manipulation of a single-magnon level and prepare magnon
sources, which may has a significant practical relevance for
precision metrology and quantum information processing.

The paper is organized as follows: In Sec. II, we introduce
the hybrid optomechanical-magnetic system with an OPA,
describe the system dynamics using a general master equation,
and verify the rationality of the Hamiltonian approximation.
In Sec. III, we analytically obtain the optimized parameter
conditions for the MB, further combine the advantages of the
UMB and the CMB by choosing proper driving detunings
of cavity and magnon modes, and investigate the influence
of thermal photon and magnon excitations on the MB effect.
Finally, we present the conclusion in Sec. IV.

II. SYSTEM MODEL AND THEORETICAL FRAMEWORK

As schematically shown in Fig. 1, we consider a hybrid
optomechanical-magnetic system consisting of a small YIG
sphere and an OPA. The system contains a cavity mode with
resonance frequency ωc, a magnon mode with resonance fre-
quency ωm, and a phonon mode with resonance frequency ωb.
The cavity mode couples with the magnon and phonon modes
via magnetic dipole and radiation pressure, respectively. The
cavity mode interacts with the OPA pumped by an external
laser with frequency ωd . In order to achieve an antibunching
effect, it is necessary to coherently drive the cavity mode using
an external weak field with frequency ωl . The Hamiltonian of
the three-mode system can be written as (h̄ = 1)

H = ωca†a + ωbb†b + ωmm†m + ga†a(b† + b)

+ Gm(a†m + am†) + E (a†e−iωl t + aeiωl t )

+ G(eiθ a†2e−iωd t + e−iθ a2eiωd t ), (1)

a b
YIGOPA

cavity

m
, lE

, dG

FIG. 1. Sketch of the hybrid quantum system. A degenerate para-
metric amplifier is placed in an optomechanical cavity coupled to a
small YIG sphere. The cavity mode a is pumped by an external weak
field with amplitude E and frequency ωl . The parametric amplifica-
tion with amplitude G and frequency ωd on the cavity is generated
by pumping the parametric amplifier. The cavity mode a couples to
the magnon mode m and phonon mode b through magnetic dipole
interaction and radiation-pressure interaction, respectively.

where a (a†), m (m†), and b (b†) represent the annihilation
(creation) operators of the cavity, magnon, and phonon, re-
spectively. The first three terms are the free energies of the
cavity, magnon, and phonon modes, respectively. The fourth
term describes the optomechanical interaction with single-
photon coupling strength g, and the fifth term describes the
magnetic dipole interaction between the cavity and magnon
modes with coupling strength Gm. The last term represents
the coupling between the cavity field and the OPA with the
parametric gain G, depending on the power of the pump
driving the OPA, and the phase of the pump driving the OPA
θ . It is worthy mentioning that in a recent experiment, the
authors utilized backward Raman amplification to enhance
the phase-insensitive parametric gain, which in turn improves
the phase-sensitive operation [62]. Moreover, with current
laser technologies, the parametric pump has the stable fre-
quency and phase during a timescale of μs [63,64]. In the
rotating frame with respect to ωl (a†a + m†m), and adopting
ωd = 2ωl , the Hamiltonian in Eq. (1) can be transformed into
a time-independent form,

H2 = �ca†a + ωbb†b + �mm†m + ga†a(b† + b)

+ Gm(a†m + am†) + (Ea† + Geiθ a†2 + H.c.), (2)

where �c(m) = ωc(m) − ωl is the frequency detuning be-
tween the cavity (magnon) mode and the cavity driving
field. To show that the Hamiltonian exhibits an anhar-
monic energy level, we apply a unitary transformation U =
exp[g/ωba†a(b† − b)] to H2, leading to a Hamiltonian H3 =
U †H2U with the form

H3 = �ca†a + ωbb†b + �mm†m − g2/ωb(a†a)2

+ Gm

[
ma†e− g

ωb
(b†−b) + m†ae

g
ωb

(b†−b)
]

+ Ea†e− g
ωb

(b†−b) + Geiθ a†2e− 2g
ωb

(b†−b) + H.c., (3)

where �g = g2/ωb. With the condition g � ωb, exponential
factors with g/ωb in Hamiltonian (3) can be safely ignored, in
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FIG. 2. (a) Time evolution of fidelity F for different optomechanical coupling strength g. (b) Second-order magnon correlation function
g(2)

m (0) and (c) photon correlation function g(2)
a (0) as a function of κt with Hamiltonian H2 (pink line) and H4 (cyan line). In (b), G and

θ are taken as Gopt = |E 2(�̃a − 2�g + �̃m )/[�̃m(�̃a − �g) − G2
m]| and θ = Arg{E 2(�̃a − 2�g + �̃m )/[�̃m(�̃a − �g) − G2

m]} according to
Eq. (13), respectively. In (c), G and θ are taken as Gopt

2 = |E 2�̃2
m(�̃a − �g + �̃m )/[G2

m − �̃m(�̃a − �g)]Z| and θ = Arg{E 2�̃2
m(�̃a − �g +

�̃m )/[G2
m − �̃m(�̃a − �g)]Z} according to Eq. (14), respectively. The other parameters are ωb = 100κ , γb = 10−6ωb, Gm = 3κ , E = 0.1κ ,

and �c = �m = 0.

which case the above Hamiltonian can be rewritten as

H4 = �ca†a + �mm†m − �g(a†a)2 + Gm(a†m + am†)

+ (Ea† + Geiθ a†2 + H.c.). (4)

It can be known from Eq. (4) that the original optomechanical
interaction has changed to a Kerr nonlinearity of the cavity
field with strength �g. Note that the mechanical oscillator
decouples with the cavity field at the same time. Hence, when
we are only interested in optical and magnetic properties, we
can omit the mechanical part. Next we will demonstrate that
the magnon-photon beam-splitter interaction plays a key role
in generating the MB. Via considering the dissipation terms
of the cavity and magnon modes, the dynamics of the hybrid
quantum system can be described by the following master
equation:

ρ̇ = −i[H4, ρ] + κaL[a]ρ + κmL[m]ρ, (5)

where ρ is the system density operator, and L[o]ρ = oρo† −
(o†oρ + ρo†o)/2 (o = a, m) is the Lindblad superoperator for
operator o. κa (κm) is the decay rate of the cavity (magnon)
mode. For the sake of simplicity, it is taken to κa = κm

hereafter. The photon and magnon blockade effects can
be characterized by the equal-time second-order correlation
function,

g(2)
a (0) = 〈a†2a2〉

〈a†a〉2
= Tr(ρssa†2a2)

[Tr(ρssa†a)]2
,

g(2)
m (0) = 〈m†2m2〉

〈m†m〉2
= Tr(ρssm†2m2)

[Tr(ρssm†m)]2
, (6)

where ρss is the steady-state solution of master equation (5) by
setting ρ̇ = 0, and g(2)(0) = 〈o†2o2〉/〈o†o〉2 can be obtained
by numerically solving the master equation (5) using the
PYTHON package QUTIP [65]. Typically, g(2)

o (0) < 1 implies
the sub-Poissonian statistics, corresponding to the photon
and magnon antibunching effect. By contrast, g(2)

o (0) > 1
describes the super-Poissonian statistics, corresponding to
the bunching effect, meaning that the excitation of the first
magnon (photon) favors subsequent magnons (photons). To
obtain a nearly perfect magnon (photon) blockade effect, the
equal-time second-order correlation function g(2)

o (0) should
tend to zero.

Before giving the analytical results and studying the
magnon blockade effect, we first examine the rationality
from Hamiltonian (2) to Hamiltonian (4). In Fig. 2(a), we
present fidelity F (ρ1, ρ2) between states ρ1 governed by
U †H2U and ρ2 determined by H4 as a function of time
under different coupling strength g. We can observe that
F (ρ1, ρ2) decreases as optomechanical coupling g increases,
which is consistent with the requirement of the Hamiltonian
derivation as illustrated above. For g = 0.02ωb, the value of
F (ρ1, ρ2) in the steady state maintains above 0.999, which
is sufficient to guarantee the validity of the approximation.
By utilizing g = 0.02ωb, we plot g(2)

m (0) and g(2)
a (0) as a

function of κt in Figs. 2(b) and 2(c), respectively. The results
show the evolution of g(2)(0) depending on H2 and H4 agrees
well, which further proves that the approximation for the
Hamiltonian derivation is reasonable.

III. MAGNON BLOCKADE AND OPTIMAL CONDITIONS

In this part, we are mainly interested in the magnon block-
ade when the cavity is weakly driven. Before giving a full
discussion of the magnon blockade effect, we first prefer to
derive the analytical solutions by solving the Schrödinger
equation i∂|ψ〉/∂t = Hnon|ψ〉, where

Hnon = H4 − i
κa

2
a†a − i

κm

2
m†m, (7)

and |ψ〉 is the wave function of the system, which can be
truncated to two excitation subspaces in the weak driving field
limit (E , G � κa, κm), and can be written as

|ψ〉 = C00|00〉 + C01|01〉 + C10|10〉
+C02|02〉 + C11|11〉 + C20|20〉, (8)

where |Cam|2 represents the probability of staying in state
|am〉. |am〉 = |a〉 ⊗ |m〉 is a direct product state, which means
that there are a photons in the cavity mode and m magnons in
the magnon mode. Substituting the above wave function and
non-Hermitian Hamiltonian into the Schrödinger equation,
the dynamical equations of the occupying probabilities can be
obtained as

iĊ01 = �̃mC01 + GmC10 + EC11,

iĊ10 = (�̃a − �g)C10 + GmC01 +
√

2EC20 + EC00,
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FIG. 3. Second-order magnon correlation function on a logarithmic scale log10[g(2)
m (0)] as a function of (a) G, (b) (θ ) and the driving

detuning �c, and (c) G and θ . The white dashed lines represent the optimal conditions decided by Eq. (13). �c = �m = 0 is taken in (c). The
other parameters are the same as given in Fig. 2.

iĊ11 = (�̃m + �̃a − �g)C11 + EC01 +
√

2Gm(C02 + C20),

iĊ02 = 2�̃mC02 +
√

2GmC11,

iĊ20 = 2(�̃a − 2�g)C20 +
√

2EC10 +
√

2GmC11

+
√

2GeiθC00. (9)

With the condition C00 � 1 � C01,C10 � C11,C02,C20,
and neglecting the terms of C11 and C20 in the first
two in the above equation, the single excitation and
two excitation coefficients in the steady state can be
solved as

C01 = −EGm

G2
m − �̃m(�̃a − �g)

,

C10 = E�̃m

G2
m − �̃m(�̃a − �g)

,

C11 = Gm�̃m
{
E2(�̃a − 2�g + �̃m) + eiθ G

[
G2

m − �̃m(�̃a − �g)
]}

�
,

C02 = G2
m

{
E2(�̃a − 2�g + �̃m) + eiθ G

[
G2

m − �̃m(�̃a − �g)
]}

√
2�

,

C20 = �̃2
mE2(�̃a − �g + �̃m) − eiθ G

[
G2

m − �̃m(�̃a − �g)
]
Z√

2�
, (10)

where �̃m(a) = �m(a) − iκ/2, Z = G2
m − �̃m(�̃a − �g +

�̃m), and

� = [
G2

m − �̃m(�̃a − �g)
][

G2
m(�̃a − 2�g + �̃m)

− �̃m(�̃a − 2�g)(�̃a − �g + �̃m)
]
. (11)

Then the equal-time second-order magnon and photon corre-
lation functions can be expressed as

g(2)
m (0) = 2|C02|2

(|C01|2 + 2|C02|2 + |C11|2)2
≈ 2|C02|2

|C01|4 ,

g(2)
a (0) = 2|C20|2

(|C10|2 + 2|C20|2 + |C11|2)2
≈ 2|C20|2

|C10|4 . (12)

Then, the realization of g(2)
m (0) −→ 0 and g(2)

a (0) −→ 0 re-
quires C02 = 0 and C20 = 0, respectively, which indicates the
nearly perfect MB and PB. Hence, one can obtain the condi-
tion of the destructive interference-induced MB as

Gopteiθ = E2(�̃a − 2�g + �̃m)

�̃m(�̃a − �g) − G2
m

. (13)

Similarly, the condition of the destructive interference-
induced PB can be obtained as

Gopt
2 eiθ = E2�̃2

m(�̃a − �g + �̃m)[
G2

m − �̃m(�̃a − �g)
]
Z

. (14)

To verify the optimal UMB condition, we plot the equal-time
second-order magnon correlation function on a logarithmic
scale log10[g(2)

m (0)] as a function of �c and G (θ ) in Figs. 3(a)
and 3(b), where the white dashed lines present the optimal
values to realize the UMB. It is obvious that as the driving
detuning increases, G is required to increase to balance the
influence on the optimal conditions. Furthermore, the plot of
log10[g(2)

m (0)] as a function of θ and G is shown in Fig. 3(c)
with �c = �m = 0. It is found that when θ = 0.4755π and
G = 0.0011κ , there exists a minimum value of log10[g(2)

m (0)],
which is consistent with the optimal UMB condition. In the
following study, we adopt the optimal parameters G and θ to
explore the MB effect.

Figures 4(a) and 4(b) show the equal-time second-order
correlation function on a logarithmic scale log10[g(2)(0)] as
a function of the detuning �c under the optimal condition of
UMB and UPB, respectively. When the selected parameters
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FIG. 4. (a), (b) Second-order magnon and photon correlation
functions on a logarithmic scale log10[g(2)

a (0)] and log10[g(2)
m (0)] as

a function of the driving detuning �c. (c), (d) Photon-number and
magnon-number distributions Pn,m=1,2 as a function of the driving
detuning �c. The solid and dashed lines are the exact numerical
results obtained by solving Eqs. (5) and (6), and asterisks indicate
the analytical solutions given by Eq. (12). (e) log10[g(2)

m (0)] and (f)
log10[g(2)

a (0)] as a function of the driving detuning �c, where blue
and orange lines and black asterisks indicate that the number of
Fock states is truncated to N = 3 and N = 5 for the two modes,
respectively. E = 0.01κ is taken in all the plots. The other parameters
are the same as given in Fig. 2.

satisfy the conditions of destructive interference-induced MB
or PB, optimal detuning points for realizing the MB and
the PB correspond to photon bunching and magnon bunch-
ing, respectively. One can find that �c = κ is the optimal
UMB and UPB condition, in conjunction with other param-
eters ensuring the optimal parametric gain G and phase θ .
Moreover, the results from Figs. 4(a) and 4(b) demonstrate
that parameter conditions for achieving the MB and PB
are entirely different. Furthermore, we also present photon-
number and magnon-number distributions Pn,m=1,2 defined
by Pn(m) = Tr[|n(m)〉oo〈n(m)|ρss] as a function of the driving
detuning �c in Figs. 4(c) and 4(d), respectively, correspond-
ing to the optimal conditions decided by Eqs. (13) and (14).
Because of that, the blockades depend on the destructive
interference mechanism rather than the energy-level an-
harmonicity; the detunings corresponding to the smallest
log10[g(2)

o (0)] are not the detunings contributing to the largest
mean magnon or photon numbers. In contrast, the dips in
distributions P02 and P20 demonstrate the result of the quantum
destructive interference. In the numerical simulation in the
above figures, the Fock spaces of the magnon and photon

00

01

02

10

20 11

G

E

2E E

2 mG 2 mG

mG

FIG. 5. Energy-level diagram of the system showing the zero-,
one-, and two-magnon states (horizontal black lines without arrows)
and the corresponding transition pathways (color lines with arrows)
leading to the destructive interference for preventing the two-magnon
occupation.

modes are truncated to N = 3, which allows for up to two
magnons or photons to be excited. To verify the validity of
the numerical results, we plot log10[g(2)

m (0)] and log10[g(2)
a (0)]

for different numbers of Fock states in Figs. 4(e) and 4(f),
respectively. It can be seen that there is almost no difference
in the steady-state correlation functions. In other words, the
determination of the steady-state regime is not significantly
affected even as the number of truncated Fock states continues
to increase under the current parameters.

Next, we will proceed to investigate physical causes of
the MB and the PB. As shown in Fig. 5, for the UPB, there
are three excitation pathways to reach the two-photon state:

two direct excitations (a) |00〉 G−→ |20〉, (b) |00〉 E−→ |10〉
√

2E−−→
|20〉, and one indirect excitation (c) |00〉 E−→ |10〉 Gm−→ |01〉 E−→
|11〉

√
2Gm−−−→ |20〉. When the optimal conditions are satis-

fied, the two-photon state cannot be occupied due to the
quantum destructive interference between three excitation
pathways. Meanwhile, there are three excitation pathways
to reach the two-magnon state which is different with

three indirect pathways: (a) |00〉 G−→ |20〉
√

2Gm−−−→ |11〉
√

2Gm−−−→
|02〉, (b) |00〉 E−→ |10〉

√
2E−−→ |20〉

√
2Gm−−−→ |11〉

√
2Gm−−−→ |02〉, and

(c) |00〉 E−→ |10〉 Gm−→ |01〉 E−→ |11〉
√

2Gm−−−→ |02〉. Different tran-
sition pathways naturally lead to different optimal parametric
gain G and phase θ for achieving UPB and UMB.

The cavity-magnon coupling Gm occurs multiple times in
the transition pathways to access the two-magnon state, which
could play an essential role in the generation of the MB. We
plot log10[g(2)

m (0)] and log10[g(2)
a (0)] as a function of Gm/κ in

Fig. 6(a). The optimal parameter conditions including para-
metric gain G and phase θ for individual blockades are taken.
Under these parameter conditions, log10[g(2)

m (0)] decreases as
cavity-magnon coupling strength Gm increases (Gm = 0 leads
to no MB, not shown here), which is completely in line
with our conjecture. This can be interpreted to mean that
Gm participates in each pathway to attain the two-magnon
state, that is to say, interference pathways would not form
in the absence of Gm. In contrast, log10[g(2)

a (0)] increases as
cavity-magnon coupling strength Gm increases. The role of
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FIG. 6. (a) Second-order magnon and photon correlation func-
tions on a logarithmic scale log10[g(2)

a (0)] and log10[g(2)
m (0)] as

a function of cavity-magnon coupling strength Gm. (b) Second-
order magnon correlation function on a logarithmic scale
log10[g(2)

m (0)] as a function of �c for different parametric
amplification G. �c = �m = κ is used in (a), and �c =
�m in (b). In (a), for magnon blockade, G and θ are
taken as Gopt = |E 2(�̃a − 2�g + �̃m )/[�̃m(�̃a − �g) − G2

m]| and
θ = Arg{E 2(�̃a − 2�g + �̃m )/[�̃m(�̃a − �g) − G2

m]} according to
Eq. (13), respectively, and for photon blockade, G and θ are taken
as Gopt

2 = |E 2�̃2
m(�̃a − �g + �̃m )/[G2

m − �̃m(�̃a − �g)]Z| and θ =
Arg{E 2�̃2

m(�̃a − �g + �̃m )/[G2
m − �̃m(�̃a − �g)]Z} according to

Eq. (14), respectively. E = 0.01κ is taken in (a) and (b). The other
parameters are the same as given in Fig. 2.

Gm is to destroy the PB effect rather than contribute to it.
This is because when Gm = 0, there still are two transition

pathways to access the two-photon state, i.e., (a) |00〉 G−→ |20〉
and (b) |00〉 E−→ |10〉

√
2E−−→ |20〉, which can ensure C20 = 0.

The enhancement of Gm will actually weaken the interference
effect, resulting in the increase of log10[g(2)

a (0)].
Besides for cavity-magnon coupling strength Gm, paramet-

ric gain G also has a positive effect on the generation of the
MB. To confirm the dependence of log10[g(2)

m (0)] on paramet-
ric gain G, we show, in Fig. 6(b), log10[g(2)

m (0)] as a function of
�c for various parametric gain G. For the parameters G and
θ given by Eq. (13), the function g(2)

m (0) finds its minimum
value as 10−2.2 when �c/κ = 1. Nevertheless, the value of
g(2)

m (0) is one order of magnitude larger with G = 0.5Gopt. In
particular, in the absence of parametric gain, no MB occurs for
any driving detuning, which demonstrates that the parametric
gain G has a significant contribution to the enhancement of
the MB due to its involvement in the interference pathway of
the two-magnon state.

In the discussion above, we have adopted �m = �c for
simplicity. To verify whether �m = �c is the optimal relation-
ship between two detunings for achieving strong MB, we plot
log10[g(2)

m (0)] as a function of �c/κ for different values of �m,
namely, �m/κ = 0, 1, 2, 3, in Fig. 7(a). It is clearly observed
that when �c/κ = 0, 1, 2, and 3, log10[g(2)

m (0)] is smallest,
respectively, corresponding to �m/κ = 0, 1, 2, and 3, which
confirms that �c = �m is the optimal relationship generating
the strong MB. Furthermore, log10[g(2)

m (0)] as a function of
�c/κ is shown with �m = �c in Fig. 7(b), which reveals that
the perfect MB occurs at different values of �c owing to the
changes of optimal parameters Gopt and θopt. It is worthwhile
to note that when the optimal parameters are taken by absorb-
ing �c/κ = �m/κ = 3 into Eq. (13), log10[g(2)

m (0)] takes local
minimum values at �c/κ = �m/κ = ±3. This is because at
�c/κ = �m/κ = ±3, there also exists G2

m = �c�m, which
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FIG. 7. (a) Second-order magnon correlation function on a log-
arithmic scale log10[g(2)

m (0)] as a function of the driving detuning
�c when �m/κ = 0, 1, 2, and 3 for different pairs of optimal pa-
rameters G and θ . (b) log10[g(2)

m (0)] as a function of �c = �m for
different pairs of optimal parameters G and θ , which result in the
perfect MB occurring at �c/κ = 0, 1, 2, 3. In (a) and (b), different
pairs of optimal parameters G and θ are obtained by absorbing
�c/κ = �m/κ = 0, 1, 2, 3 into Eq. (13), respectively, corresponding
to green, blue, pink, and red lines. (c), (d) log10[g(2)

m (0)] as a function
of �c and �m. The white dashed lines represent the optimal CMB
condition G2

m = �c�m. The other parameters are the same as given
in Fig. 2.

satisfies the condition for single-magnon excitation resonance.
Therefore, for �c/κ = �m/κ = 3, the appearance of the MB
combines the conditions of the CMB and the UMB, where
�c/κ = �m/κ = 3 along with other parameters can make
sure optimal G and θ . For �c/κ = �m/κ = −3, the MB is
originated from the fulfillment of the single-magnon excita-
tion resonance condition. To better understand this condition,
log10[g(2)

m (0)] as a function of �c/κ and �m/κ is presented in
Fig. 7(c). The white dashed lines denote the CMB condition,
i.e., G2

m = �c�m. With the condition, the g(2)
m (0) can be min-

imized, which indicates that the numerical results match the
analytical solutions very well. In Fig. 7(d), with κm = 10κa

and other parameters unchanged, g(2)
m (0) is nearly one order

of magnitude smaller. Meanwhile, the CMB condition is de-
stroyed and the UMB condition is not affected by the ratio of
two decay rates.

To further explain the important role of the parametric
amplification in the generation of strong MB and illustrate
the advantage of joint mechanisms for realizing the MB,
we present the time-delay second-order correlation function
log10[g(2)

m (τ )] for three cases in Fig. 8, that is, (i) without
the parametric amplification (G = 0); (ii) with G = Gopt and
�c = 0 (only satisfying the UMB condition); and (iii) with
G = Gopt and �c = 3κ (satisfying simultaneous UMB and
CMB conditions). As is predicted, g(2)

m (τ ) is always equal
to one when G is not considered. However, when G is
taken as its optimal value, the strong MB can be realized.
For �c = 0, log10[g(2)

m (τ )] exhibits obvious oscillations, and
log10[g(2)

m (τ )] > 0 appears at certain moments, which corre-
sponds to the UMB characteristic and indicates that high time
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FIG. 8. Evolution of time-delay second-order correlation func-
tion log10[g(2)

m (τ )] vs time t for (i) G = 0, (ii) G = Gopt , �c = 0, and
(iii) G = Gopt, �c/κ = 3. The other parameters are the same as given
in Fig. 2.

resolution is required for observation. When G = Gopt and
�c = 3κ , log10[g(2)

m (τ )] gradually approaches zero, implying
that high time resolution is not necessary and the joint detec-
tion of the single magnon becomes easier. Besides, the value
of log10[g(2)

m (0)] is less with �c = 3κ compared to �c = 0
under a weaker driving strength E = 0.01κ . In other words,
with G = Gopt and �c = 3κ , our scheme combines the advan-
tages of the UMB and the CMB, that is, we can reduce g(2)

m (0)
and simultaneously avoid g(2)

m (τ ) with oscillation during the
evolution.

Finally, we investigate the thermal bath of the photon
and the magnon on the MB. Introducing the thermal bath
effect, the Lindblad operator κL[o]ρ in Eq. (5) should be
rewritten as (n̄th + 1)κL[o]ρ + n̄thκL[o†]ρ, where the equi-
librium thermal occupation numbers n̄th = n̄a, n̄m, respec-
tively, correspond to o = a, m. As displayed in Figs. 9(a) and
9(b), the steady-state log10[g(2)

m (0)] is plotted as a function
of the thermal excitations n̄a and n̄m for different detun-
ings, respectively. We find that log10[g(2)

m (0)] increases as
the thermal excitation numbers increase. The thermal exci-
tations of the photon and magnon modes almost have the
same influence on the MB. Moreover, for �c = 0, although
log10[g(2)

m (0)] is smallest at n̄a = 0, it is most susceptible to
damage by the number of thermal excitations. In contrast, for
�c = 3κ , log10[g(2)

m (0)] exhibits a greater robustness to the
thermal excitations, approximately surviving up to n̄a, n̄m =
0.01. Comparing with other bosons, like phonons, the thermal
occupations for the optical and magnetic systems are usually
negligible. Therefore, the thermal bath for photon and magnon
modes has an insignificant effect on the results.
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FIG. 9. Second-order magnon correlation function on a logarith-
mic scale log10[g(2)

m (0)] as a function of (a) mean photon thermal
occupation n̄a and (b) mean magnon thermal occupation n̄m for dif-
ferent frequency detuning �c/κ = (0, 2, 3) under the optimal UMB
condition. The other parameters are the same as given in Fig. 2.

In view of the rapid advancement of experimental technol-
ogy, our proposal holds the potential to be implemented in
various physical systems, including whispering-gallery-mode
(WGM) microcavities [66–68]. In optical WGM systems, in-
troducing an OPA into the high-quality cavity can be achieved
through the cavity boosted second-order or third-order optical
nonlinearity [69,70]. In particular, the second-order nonlinear-
ity in the WGM cavity can be utilized as the OPA to construct
an optomechanical system [69]. On the other hand, it has
been experimentally confirmed that the strong or ultrastrong
coupling between YIG magnons and cavity photons can be
realized by a magnetic dipole interaction [5–8]. Therefore,
our hybrid system consisting of an OPA introduced to a
optomechanical-magnonic system holds the promise to be
feasible in experiment.

IV. CONCLUSIONS

In conclusion, we have proposed a scheme to generate
and enhance the MB in a hybrid optomechanical-magnetic
system with an OPA through quantum destructive interference
between different transition pathways. Under the condition
of weak optomechanical coupling, we can eliminate the me-
chanical mode and thus the system is reduced to a two-mode
system, including magnon and photon modes. We analyti-
cally obtain optimal parameters G and θ , which is shown to
be in excellent agreement with the numerical results. With
these optimal parameters, we observe that the second-order
magnon correlation function decreases as the cavity-magnon
coupling strength increases. Indeed, the dipole magnetic in-
teraction plays a crucial role in the realization of the MB
since it participates in every transition pathway to access the
two-magnon state. Moreover, we demonstrate that by utilizing
different optimal parameters G and θ , we can flexibly ad-
just the driving detunings of the magnon and photon modes
to achieve the minimum second-order magnon correlation
function. Interestingly, with a specific driving detuning and
optimal parameters G and θ , we can harness the advantages
of destructive interference and energy-level anharmonicity,
which guarantees the reduction of equal-time second-order
magnon correlation and eliminates rapid oscillations of the
time-delay second-order magnon correlation. Furthermore,
we find that our blockade scheme under optimized conditions
is robust against the thermal noises. Our work paves a way
towards magnon manipulation at the few-magnon state and
may have potential applications in producing single-magnon
emitters [71,72], which refers to a system or structure that can
locally excite and produce a single magnon. The generation
and propagation of magnons are inevitably closely related to
their medium, but our work focuses on how to effectively
control the local generation of a few-magnon state.
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linear optics with single photons enabled by strongly interacting
atoms, Nature (London) 488, 57 (2012).

[31] D. Y. Wang, C. H. Bai, X. Han, S. Liu, S. Zhang, and H. F.
Wang, Enhanced photon blockade in an optomechanical system
with parametric amplification, Opt. Lett. 45, 2604 (2020).
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