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Phase-sensitivity enhancement based on a four-beam nonlinear interferometer
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We propose a different type of nonlinear interferometer, namely, four-beam nonlinear interferometer, which
can realize phase-sensitivity enhancement. We compare the phase sensitivity of the four-beam nonlinear
interferometer and the corresponding shot-noise limit. Our results demonstrate that the four-beam nonlinear
interferometer can achieve a phase-sensitivity enhancement compared with the corresponding shot-noise limit.
Moreover, taking the losses into consideration, the phase sensitivity of the four-beam nonlinear interferometer
can also beat the corresponding shot-noise limit. Our scheme may find potential applications in multiparameter
quantum metrology.
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I. INTRODUCTION

In metrology [1], optical interferometers have been widely
utilized for measuring small variations of different physical
quantities [2]. However, it was revealed by Caves [3] in 1981
that the sensitivities of traditional optical interferometers are
bounded by 1/

√
Ns [shot-noise limit (SNL)], where Ns is the

average photon number inside the interferometer [4]. In order
to beat such limit, quantum metrology [5–7] was developed
by applying the basic principles of quantum physics to metrol-
ogy. How to improve the performance of the interferometer is
a critical task for quantum metrology, resulting in the devel-
opment of quantum interferometer.

To improve the measurement accuracy of the interferome-
ter, a quantum interferometer can be constructed by injecting
different types of quantum states, such as squeezed states
[8–11], Fock states [12], and NOON states [13,14]. For ex-
ample, squeezed states have been used to reduce the noise
of the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [15,16] and the polarization interferometer [17].
Meanwhile, the performance of an interferometer also de-
pends on detection schemes, such as parity detection [18,19],
homodyne detection [20], and intensity detection [21]. More-
over, replacing the linear beam splitters in the Mach-Zehnder
interferometer (MZI) [22,23] with parametric amplifiers (PAs)
can obtain a quantum-enhanced phase sensitivity. This leads
to the birth of SU(1,1) interferometer [24].

Phase sensitivity is crucial for characterizing the perfor-
mance of an interferometer. It is defined as the uncertainty
of phase estimation. Specifically, this physical quantity rep-
resents the minimal variation of internal phase that can be
detected. It has been demonstrated that SU(1,1) interferometer
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can achieve quantum enhancement of phase sensitivity
[25–34] compared with MZI. Moreover, multiple-beam in-
terference can improve signal-to-noise ratio [35], which is
important for improving the sensitivity of an interferom-
eter. In this paper, by introducing four-beam interference
into interferometer, we propose a different type of nonlinear
interferometer, namely, four-beam nonlinear interferometer
(FBNI). We find that FBNI can realize a phase-sensitivity
enhancement compared with the corresponding SNL. In ad-
dition, we discuss the effect of losses on the phase sensitivity
of FBNI.

II. MODEL AND PHASE SENSITIVITY OF FOUR-BEAM
NONLINEAR INTERFEROMETER

The schematic of FBNI is shown in Fig. 1. FBNI con-
sists of two four-beam PAs (FBPAs), which are realized by
spatially multiplexed four-wave mixing (FWM) processes in
hot rubidium vapor cells. We consider a coherent state |α〉in

and three vacuum states as inputs of the first FBPA. The red,
yellow, and blue beams denote pump, probe, and conjugate
beams, respectively. We define âin1, âin2, âin3, âin4 as the an-
nihilation operators of the four inputs and â1, â2, â3, â4 as
the annihilation operators of the outputs from the first FBPA.
The two pump beams are symmetrically crossed at the center
of the vapor cell in a horizontal plane. The coherent input
beam âin3 is crossed with pump1 in a vertical plane. In this
way, these three beams intersect at the center of the vapor
cell. There are two single-pump FWM processes [36,37] and
two dual-pump FWM processes [38,39] in the whole process.
First, the conjugate beam â1, probe beam â3 and pump1 are
depicted on the same black line, representing a conventional
single-pump FWM process. In this process, two annihilated
photons both come from pump1, while conjugate beam â1

and probe beam â3 obtain one photon, respectively. In other
words, the interaction between input probe beam âin3 and
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FIG. 1. Schematic for FBNI with two FBPAs. The green boxes
are phase shifters. The red, yellow, and blue beams denote the pump,
probe, and conjugate beams, respectively. The input conjugate fields
âin1, âin2 and probe field âin4 are vacuum fields, while the input probe
field âin3 is a coherent field.

pump1 results in the generation of conjugate beam â1 and
the amplification of input probe beam âin3. At the same time,
the input probe beam âin3 also interacts with both pump1 and
pump2 simultaneously, initiating a dual-pump FWM process.
This process is represented by the black line connecting con-
jugate beam â2 and probe beam â3. This black line passes
through the midpoint of two pump beams, indicating that the
two annihilated photons in the dual-pump FWM process come
from both pump beams. As a result of this dual-pump FWM
process, conjugate beam â2 is generated, and the input probe
beam is amplified again. Subsequently, the single-pump FWM
process between new conjugate beam â2 and pump2 generates

the probe beam â4. And the dual-pump FWM process between
new conjugate beam â1 and dual pump beams also generates
the probe beam â4. Through these FWM processes, one am-
plified probe beam (â3) and three new beams (one new probe
beam â4 and two new conjugate beams â1, â2) are obtained.
The two pump beams in this FBPA have the same power and
beam waist. Under such configuration, the interaction strength
of each single-pump FWM process can be regarded as ξ1, and
the interaction strength of each dual-pump FWM process can
be regarded as ξ2. Then, the interaction Hamiltonian of the
first FBPA can be given by

Ĥ = ih̄[ξ1(â†
1â†

3 + â†
2â†

4) + ξ2(â†
1â†

4 + â†
2â†

3)] + H.c., (1)

where H.c. is the Hermitian conjugate. Thus, the input-output
relations of such a FBPA can be given by

â1 = Aâin1 + Bâin2 + Câ†
in3 + Dâ†

in4,

â2 = Bâin1 + Aâin2 + Dâ†
in3 + Câ†

in4,

â†
3 = Câin1 + Dâin2 + Aâ†

in3 + Bâ†
in4, (2)

â†
4 = Dâin1 + Câin2 + Bâ†

in3 + Aâ†
in4,

where A = √
G1G2, B = √

(G1 − 1)(G2 − 1), C =√
G2(G1 − 1), and D = √

G1(G2 − 1). G1 = cosh2(ξ1t )
is the intensity gain of the single-pump FWM process,
and G2 = cosh2(ξ2t ) is the intensity gain of the dual-pump
FWM process. t is the interaction time scale. Then, the four
outputs of the first FBPA are sent into the second FBPA
simultaneously by using a 4f imaging system and interact
with two new pump beams (pump3 and pump4). The second
FBPA has the same configuration and intensity gains as the
first FBPA. The output fields of the second FBPA process can
be given by

b̂1 = Aeiθ1 â1 + Bei(φ1−φ2+θ2 )â2 + Cei(2φ1−θ3 )â†
3 + Dei(φ1+φ2−θ4 )â†

4,

b̂2 = Be−i(φ1−φ2−θ1 )â1 + Aeiθ2 â2 + Dei(φ1+φ2−θ3 )â†
3 + Cei(2φ2−θ4 )â†

4,

b̂†
3 = Ce−i(2φ1−θ1 )â1 + De−i(φ1+φ2−θ2 )â2 + Ae−iθ3 â†

3 + Be−i(φ1−φ2+θ4 )â†
4, (3)

b̂†
4 = De−i(φ1+φ2−θ1 )â1 + Ce−i(2φ2−θ2 )â2 + Bei(φ1−φ2−θ3 )â†

3 + Ae−iθ4 â†
4,

where φk (k = 1, 2) is the phase of new pump fields. θ j de-
notes the phases of the conjugate fields ( j = 1, 2) and probe
fields ( j = 3, 4). Combining Eqs. (2) and (3), we can obtain
the input-output relations of the whole FBNI, which are given
in Appendix A.

The phase sensitivity �ϕ of the interferometer can be de-
fined as

�ϕ =
√

〈(�N̂out )2〉
|∂〈N̂out〉/∂ϕ|2 , (4)

where 〈(�N̂out )2〉 = 〈N̂2
out〉 − 〈N̂out〉2 and ϕ is the internal

phase of the interferometer. 〈(�N̂out )2〉 and 〈N̂out〉 stand for

the intensity noise and average intensity of the measured
field, respectively. For the above coherent state injected FBNI,
direct intensity detection is chosen as the measurement strat-
egy. For simplicity, the phase difference between two pump
fields (φ1 − φ2), two conjugate fields (θ1 − θ2), and two probe
fields (θ3 − θ4) is set to be equal, which can be realized
by phase locking. In this way, the total phase inside FBNI
can be expressed as ϕ = 2φ2 − θ2 − θ4 [40] [see details in
Eq. (A3) and corresponding descriptions in Appendix A].
The phase of N̂out will only depend on ϕ. Assuming that
the number of injected photons Nâin3 � 1 and intensity gain
G1 = G2 = G, the phase sensitivities of FBNI with different
photon number combinations can be obtained. Based on the
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FIG. 2. The phase sensitivities of FBNI with four photon number combinations versus ϕ in the lossless case with the same internal photon
number and G1 = G2 = G. When (a) G = 1.5, (b) G = 2, (c) G = 2.5, and (d) G = 3, the phase sensitivities of FBNI with photon number
combinations N1 (N2), N1 + N2, N1 + N2 + N4, and N1 + N2 + N3 + N4 are denoted by yellow dashed, pink solid, dark blue dotted, and light
blue dot curves, respectively. The corresponding SNLs are denoted by gray straight lines.

analysis provided in Appendix A, it has been concluded that
the optimal phase sensitivities are obtained with the photon
number combinations of N1(N2) for a single port, N1 + N2

for two ports, N1 + N2 + N4 for three ports, and N1 + N2 +
N3 + N4 for four ports. The corresponding expressions are
given by

�ϕN1 = �ϕN2 =
√

4ε(2G − 1)2(cos ϕ + 1)2 + (cos ϕ + 1)√
εNs| sin ϕ| ,

�ϕN1+N2 =
√

κ (cos ϕ + 1)2 + (cos ϕ + 1)√
2εNs| sin ϕ| ,

�ϕN1+N2+N4 =
√

(2G − 1)2[3εκ (1 + 3ε)(cos ϕ + 1)2 + 2(ε + 3ε2)(cos ϕ + 1)]

2ε(1 + 3ε)| sin ϕ|√Ns
, (5)

�ϕN1+N2+N3+N4 = κ (cos ϕ + 1) + 1

4ε(2G − 1)| sin ϕ|√Ns
,

where Ns = (2G − 1)2Nâin3 is the total internal photon number
of FBNI. ε = 2G(G − 1) and κ = 16G(G − 1)(2G − 1)2. As
mentioned above, the SNL is given by

�ϕSNL = 1/
√

Ns. (6)

III. RESULTS AND DISCUSSION

Based on the above equations, we depict the phase sensi-
tivities of each phase point for FBNI with these four photon
number combinations and the corresponding SNL in the ideal
case without considering the losses. It is well known that the
phase sensitivity of an interferometer can be enhanced by
increasing the internal photon number. For a fair comparison,
the internal photon numbers Ns of FBNI with different photon
number combinations are kept equal. As shown in Fig. 2, the
yellow dashed, pink solid, dark blue dotted, and light blue dot
curves represent the phase sensitivities of FBNI with photon
number combinations N1 (N2), N1 + N2, N1 + N2 + N4, and
N1 + N2 + N3 + N4, respectively. The gray straight lines rep-
resent the corresponding SNLs. As shown in Figs. 2(a)–2(d),
the phase sensitivities of the FBNI, obtained from photon
number combination N1 + N2 + N4 (dark blue dotted curves),
are better than the phase sensitivities derived from the other
combinations at different intensity gain G. In other words, for

the same Ns, the photon number combination N1 + N2 + N4 is
identified as optimal for achieving superior phase sensitivity
for FBNI. Therefore, we choose the phase sensitivity obtained
by detecting the photon number combination N1 + N2 + N4 as
the phase sensitivity of FBNI in the following discussion. The
phase sensitivity of FBNI increases as the intensity gain G
increases from 1.5 to 3, as shown in Figs. 2(a)–2(d). When
G = 2.5, the phase sensitivity of FBNI at the phase point
ϕ = π is about 8.22 dB below the SNL, as shown in Fig. 2(c).
Compared with the SNL, the FBNI achieves an enhancement
of about 8.22 dB with G = 2.5.

With the change of internal photon number Ns, the phase-
sensitivity scalings on a 10 log10-10 log10 scale are depicted
in Fig. 3. The blue solid and gray dashed lines are the phase-
sensitivity scalings of FBNI and the corresponding SNL,
respectively. With the increase of Ns, the optimal phase sen-
sitivity can be enhanced, as shown in Fig. 3. When G = 3
as shown in Fig. 3(d), the phase sensitivity of FBNI (blue
solid line) is about 9.26 dB below the SNL (gray dashed
line). In other words, FBNI beats the SNL by about 9.26 dB,
which clearly shows the ability of FBNI in phase-sensitivity
enhancement. More importantly, as shown in Figs. 3(a)–3(d),
it can be seen that the higher the intensity gain is, the more the
phase sensitivity of FBNI improves.
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FIG. 3. The phase-sensitivity scalings of FBNI in the ideal case
without considering the losses. When (a) G = 1.5, (b) G = 2, (c)
G = 2.5, and (d) G = 3, the phase sensitivities of FBNI and the cor-
responding SNLs versus the internal photon number Ns are denoted
by blue solid and gray dashed lines, respectively.

In real experiments, optical losses are unavoidable. The
output field after losses can be regarded as a combination
of the input field and vacuum field on a beam splitter [41].
Taking the losses of interferometers into account, the phase
sensitivity of FBNI with loss ratio η is derived in Appendix B.
The corresponding phase-sensitivity scalings are shown in
Fig. 4. In order to clearly show the effects of intensity gain
and losses on the phase sensitivity, we normalize the phase
sensitivities to the SNLs. As shown in Fig. 4, the blue solid
curves represent the phase sensitivities of FBNI. The gray
dashed lines represent the corresponding SNLs. It can be
found that the phase sensitivities increase with the increase
of intensity gain, which is consistent with the results in Fig. 2
and Fig. 3. Meanwhile, with the loss ratio η increasing from
0 to 0.15, the phase sensitivities of FBNI become worse, as
shown in Figs. 4(a)–4(d). This is due to the fact that the
greater the losses are, the more uncorrelated noises [42] will
be introduced and amplified, resulting in the deterioration of
phase sensitivities. As shown in Figs. 4(a)–4(d), considering
the losses, the phase sensitivity of FBNI still beats the SNL.
For example, in the case of η = 0.15 and G = 2.5 as shown in
Fig. 4(d), the phase sensitivity of FBNI is about 4.89 dB below
the SNL. In other words, the FBNI still achieves a phase-
sensitivity enhancement of about 4.89 dB with η = 0.15 and
G = 2.5.

IV. CONCLUSION

In conclusion, we have proposed a different type of nonlin-
ear interferometer (FBNI) consisting of two identical FBPAs.
Such FBNI can achieve an enhancement in terms of phase
sensitivity. We compare the phase sensitivities of FBNI and

FIG. 4. The phase-sensitivity scalings of FBNI in the case with
considering the losses. When (a) η = 0, (b) η = 0.05, (c) η = 0.1,
and (d) η = 0.15, the phase sensitivities of FBNI versus G are de-
noted by blue solid curves. The phase sensitivities are normalized to
the corresponding SNLs, which are denoted by gray dashed lines.

the corresponding SNL. We show that FBNI can achieve a
phase-sensitivity enhancement of about 9.26 dB compared
to the SNL when G = 3. In addition, we discuss the effect
of losses on the phase sensitivity of FBNI. Considering the
losses, the phase sensitivity of FBNI still beats the SNL. Such
a nonlinear interferometer may find potential applications in
multiparameter quantum metrology.
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APPENDIX A: PHASE SENSITIVITY OF THE FOUR-BEAM
NONLINEAR INTERFEROMETER

FBNI is mainly composed of two FBPAs based on FWM
processes in hot rubidium vapor cells. Combining Eqs. (2)
and (3) in the main text, the input-output relations of the
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whole FBNI can be described as

b̂1 = [A2eiθ1 + B2ei(φ1−φ2+θ2 ) + C2ei(2φ1−θ3 ) + D2ei(φ1+φ2−θ4 )]âin1

+ [ABeiθ1 + ABei(φ1−φ2+θ2 ) + CDei(2φ1−θ3 ) + CDei(φ1+φ2−θ4 )]âin2

+ [ACeiθ1 + BDei(φ1−φ2+θ2 ) + ACei(2φ1−θ3 ) + BDei(φ1+φ2−θ4 )]â†
in3

+ [ADeiθ1 + BCei(φ1−φ2+θ2 ) + BCei(2φ1−θ3 ) + ADei(φ1+φ2−θ4 )]â†
in4,

b̂2 = [ABe−i(φ1−φ2−θ1 ) + ABeiθ2 + CDei(φ1+φ2−θ3 ) + CDei(2φ2−θ4 )]âin1

+ [B2e−i(φ1−φ2−θ1 ) + A2eiθ2 + D2ei(φ1+φ2−θ3 ) + C2ei(2φ2−θ4 )]âin2

+ [BCe−i(φ1−φ2−θ1 ) + ADeiθ2 + ADei(φ1+φ2−θ3 ) + BCei(2φ2−θ4 )]â†
in3

+ [BDe−i(φ1−φ2−θ1 ) + ACeiθ2 + BDei(φ1+φ2−θ3 ) + ACei(2φ2−θ4 )]â†
in4,

b̂†
3 = [ACe−i(2φ1−θ1 ) + BDe−i(φ1+φ2−θ2 ) + ACe−iθ3 + BDe−i(φ1−φ2+θ4 )]âin1

+ [BCe−i(2φ1−θ1 ) + ADe−i(φ1+φ2−θ2 ) + ADe−iθ3 + BCe−i(φ1−φ2+θ4 )]âin2

+ [C2e−i(2φ1−θ1 ) + D2e−i(φ1+φ2−θ2 ) + A2e−iθ3 + B2e−i(φ1−φ2+θ4 )]â†
in3

+ [CDe−i(2φ1−θ1 ) + CDe−i(φ1+φ2−θ2 ) + ABe−iθ3 + ABe−i(φ1−φ2+θ4 )]â†
in4,

b̂†
4 = [ADe−i(φ1+φ2−θ1 ) + BCe−i(2φ2−θ2 ) + BCei(φ1−φ2−θ3 ) + ADe−iθ4 ]âin1

+ [BDe−i(φ1+φ2−θ1 ) + ACe−i(2φ2−θ2 ) + BDei(φ1−φ2−θ3 ) + ACe−iθ4 ]âin2

+ [CDe−i(φ1+φ2−θ1 ) + CDe−i(2φ2−θ2 ) + ABei(φ1−φ2−θ3 ) + ABe−iθ4 ]â†
in3

+ [D2e−i(φ1+φ2−θ1 ) + C2e−i(2φ2−θ2 ) + B2ei(φ1−φ2−θ3 ) + A2e−iθ4 ]â†
in4, (A1)

where A = √
G1G2, B = √

(G1 − 1)(G2 − 1), C = √
G2(G1 − 1), and D = √

G1(G2 − 1). G1 = cosh2(ξ1t ) is the intensity gain
of the single-pump FWM process, and G2 = cosh2(ξ2t ) is the intensity gain of the dual-pump FWM process. t is the interaction
time scale. Together with the error-propagation analysis [43], assuming that the number of injected photons Nâin3 � 1, the
intensity noise of the measured field b̂1 can be approximated as

〈(�N̂1)2〉 ≈ [2A2C2 + 2B2D2 + 2A2C2 cos(2φ1 − θ1 − θ3) + 2B2D2 cos(2φ2 − θ2 − θ4)

+ 2ABCD cos(φ1 + φ2 − θ1 − θ4) + 2ABCD cos(φ1 + φ2 − θ2 − θ3)

+ 2ABCD cos(φ1 − φ2 − θ1 + θ2) + 2ABCD cos(φ1 − φ2 − θ3 + θ4)][A4 + B4 + C4 + D4

+ 2A2C2 + 2B2D2 + 2A2D2 + 2B2C2 + 2A2B2 + 2C2D2 + 4A2C2 cos(2φ1 − θ1 − θ3)

+ 4B2D2 cos(2φ2 − θ2 − θ4) + 4A2D2 cos(φ1 + φ2 − θ1 − θ4) + 4B2C2 cos(φ1 + φ2 − θ2 − θ3)

+ 4A2B2 cos(φ1 − φ2 − θ1 + θ2) + 4C2D2 cos(φ1 − φ2 − θ3 + θ4) + 4ABCD cos(2φ1 − θ1 − θ3)

+ 4ABCD cos(2φ2 − θ2 − θ4) + 4ABCD cos(φ1 + φ2 − θ1 − θ4) + 4ABCD cos(φ1 + φ2 − θ2 − θ3)

+ 4ABCD cos(φ1 − φ2 − θ1 + θ2) + 4ABCD cos(φ1 − φ2 − θ3 + θ4)]Nâin3 . (A2)

For simplicity, the phase difference (θ1 − θ2, θ3 − θ4, φ1 − φ2) between fields with the same frequency inside FBNI is set to be
equal, which can be realized by phase locking. In this way, the intensity noise of the measured field b̂1 can be simplified to

〈(�N̂1)2〉 ≈ [2A2C2 + 2B2D2 + 4ABCD + 2A2C2 cos(2φ2 − θ2 − θ4) + 2B2D2 cos(2φ2 − θ2 − θ4)

+ 4ABCD cos(2φ2 − θ2 − θ4)][A4 + B4 + C4 + D4 + 2A2C2 + 2B2D2 + 2A2D2 + 2B2C2

+ 6A2B2 + 6C2D2 + 8ABCD + 4A2C2 cos(2φ2 − θ2 − θ4) + 4B2D2 cos(2φ2 − θ2 − θ4)

+ 4A2D2 cos(2φ2 − θ2 − θ4) + 4B2C2 cos(2φ2 − θ2 − θ4) + 16ABCD cos(2φ2 − θ2 − θ4)]Nâin3 . (A3)

For convenience, ϕ = 2φ2 − θ2 − θ4 is defined as the total phase inside FBNI. Then, the intensity noise of the measured field
b̂1 can be given by

〈(�N̂1)2〉 ≈ (2A2C2 + 2B2D2 + 4ABCD + 2A2C2 cos ϕ + 2B2D2 cos ϕ + 4ABCD cos ϕ)(A4 + B4

+ C4 + D4 + 2A2C2 + 2B2D2 + 2A2D2 + 2B2C2 + 6A2B2 + 6C2D2 + 8ABCD

+ 4A2C2 cos ϕ + 4B2D2 cos ϕ + 4A2D2 cos ϕ + 4B2C2 cos ϕ + 16ABCD cos ϕ)Nâin3 . (A4)
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FIG. 5. The phase sensitivities of FBNI with photon number at a single output port and the corresponding SNL versus ϕ in the lossless case
with the same internal photon number and G1 = G2 = G. When (a) G = 1.5, (b) G = 2, (c) G = 2.5, and (d) G = 3, the phase sensitivities of
FBNI with photon number N1 (N2), N3, and N4 are denoted by blue solid, yellow dot, and pink dashed curves, respectively. The corresponding
SNLs are denoted by gray straight lines.

When G1 = G2 = G, the corresponding phase sensitivity with photon number N1 can be given by

�ϕN1 =
√

4ε(2G − 1)2(cos ϕ + 1)2 + (cos ϕ + 1)√
εNs| sin ϕ| , (A5)

where Ns = (2G − 1)2Nâin3 is the total internal photon number of the interferometer, and ε = 2G(G − 1). Similarly, the phase
sensitivities of FBNI with photon number N2, N3, N4 can be given by

�ϕN2 =
√

4ε(2G − 1)2(cos ϕ + 1)2 + (cos ϕ + 1)√
εNs| sin ϕ| ,

�ϕN3 =
√

(2G − 1)2[κε(1 + ε)(cos ϕ + 1)2 + 2ε(3 + 5ε)(cos ϕ + 1) + 1]

2ε(1 + ε)| sin ϕ|√Ns
,

�ϕN4 =
√

(2G − 1)2[4ε(2G − 1)2(cos ϕ + 1)2 + (cos ϕ + 1)]√
2ε| sin ϕ|√Ns

, (A6)

where κ = 16G(G − 1)(2G − 1)2. By comparing �ϕN1 and �ϕN2 , it is observed that when G1 = G2 = G, the phase sensitivities
with photon numbers N1 and N2 are equal.

In order to clearly compare the phase sensitivities of FBNI obtained by detecting photon number at a single port, these phase
sensitivities versus ϕ are shown in Fig. 5 with the same internal photon number. As shown in Fig. 5, the blue solid, yellow dot,
and pink dashed curves represent the phase sensitivities of FBNI with photon number N1 (N2), N3, and N4. The corresponding
SNLs are denoted by gray straight lines. Within a phase region around π , the blue solid curves are always below the yellow dot
and pink dashed curves for any value of G, as shown in Figs. 5(a)–5(d). In other words, the phase sensitivities of two conjugate
output ports (N1, N2) of FBNI are better than those of probe output ports (N3, N4). As the intensity gain G increases from 1.5 to
3, the phase sensitivity of FBNI with photon number N1 (N2) is improved, as shown in Figs. 5(a)–5(d). When G = 3, the phase
sensitivity of FBNI with photon number N1 (N2) is about 6.90 dB below the SNL, as obtained by comparing the minimum of the
blue solid curve and gray straight line in Fig. 5(d).

We also calculate the phase sensitivities obtained from various combinations of photon numbers at any two output ports of the
FBNI. The phase sensitivities of FBNI from combinations of photon numbers N1 − N3, N2 − N3, N3 − N4, N1 − N4, N2 − N4,
N1 + N3, N2 + N3, N3 + N4, N1 + N4, N2 + N4, N1 + N2 can be given by

�ϕN1−N3 = �ϕN2−N3 =
√

(2G − 1)2[ε(3 + 4ε)(cos ϕ + 1) + 1]

ε| sin ϕ|√Ns
,

�ϕN3−N4 =
√

(2G − 1)2[6ε(2G − 1)2(cos ϕ + 1) + 1]

2ε| sin ϕ|√Ns
,

�ϕN1−N4 = �ϕN2−N4 =
√

(2G − 1)2ε(1 + 4ε)(cos ϕ + 1)

ε| sin ϕ|√Ns
,

�ϕN1+N3 = �ϕN2+N3 =
√

(2G − 1)2[εκ (3 + 4ε)(cos ϕ + 1)2 + ε(11 + 20ε)(cos ϕ + 1) + 1]

ε
√

Ns(3 + 4ε)| sin ϕ| ,
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FIG. 6. The phase sensitivities of FBNI with various combinations of photon numbers at any two output ports and the corresponding SNL
versus ϕ in the lossless case with the same internal photon number and G1 = G2 = G. When (a) G = 1.5, (b) G = 2, (c) G = 2.5, and (d)
G = 3, the phase sensitivities of FBNI with photon number combinations N1 − N3 (N2 − N3), N3 − N4, N1 − N4 (N2 − N4), N1 + N3 (N2 + N3),
N3 + N4, N1 + N4 (N2 + N4), and N1 + N2 are denoted by light blue diamond, purple dot, orange dash-dotted, dark blue dashed, pink triangle,
yellow dotted, and dark green solid curves, respectively. The corresponding SNLs are denoted by gray straight lines.

�ϕN3+N4 =
√

2εκ (2G − 1)2(cos ϕ + 1)2 + 6ε(2G − 1)2(cos ϕ + 1) + 1

2ε(2G − 1)| sin ϕ|√Ns
,

�ϕN1+N4 = �ϕN2+N4 =
√

(2G − 1)2[κ (cos ϕ + 1)2 + (cos ϕ + 1)]√
ε(1 + 4ε)Ns| sin ϕ| ,

�ϕN1+N2 =
√

κ (cos ϕ + 1)2 + (cos ϕ + 1)√
2εNs| sin ϕ| . (A7)

As shown in Fig. 6, the phase sensitivities of FBNI with
various photon number combinations N1 − N3 (N2 − N3),
N3 − N4, N1 − N4 (N2 − N4), N1 + N3 (N2 + N3), N3 + N4,
N1 + N4 (N2 + N4), and N1 + N2 versus ϕ are depicted by
light blue diamond, purple dot, orange dash-dotted, dark
blue dashed, pink triangle, yellow dotted, and dark green
solid curves, respectively. The corresponding SNLs are de-
noted by gray straight lines. When G1 = G2 = G, photon
numbers at two conjugate ports of FBNI are equal (N1 =
N2), that is, the denominator |∂〈N̂1 − N̂2〉/∂ϕ| is 0 and
the phase sensitivities of FBNI with the photon number
combination N1 − N2 cannot be plotted. Similarly, due to
the equality of N1 and N2, swapping N1 and N2 in the
photon number combinations does not change the correspond-
ing phase sensitivity. So �ϕN1−N3 = �ϕN2−N3 , �ϕN1−N4 =
�ϕN2−N4 , �ϕN1+N3 = �ϕN2+N3 , �ϕN1+N4 = �ϕN2+N4 when
G1 = G2 = G. The phase sensitivities of FBNI with photon
number combinations N1 + N4 (N2 + N4) and N1 + N2 are
below those of the other combinations, as shown in Figs. 6(a)–
6(d). Although the yellow dotted curves [N1 + N4 (N2 + N4)]

approach the dark green solid curves (N1 + N2), a closer
inspection of the zoomed-in plot in Fig. 6(d) reveals that
the yellow dotted curves remain above the dark green solid
curves. When G = 3 as shown in Fig. 6(d), the phase sensi-
tivity obtained by detecting the photon number combination
N1 + N4 (N2 + N4) is about 8.36 dB below the SNL, whereas
the phase sensitivity acquired from the photon number com-
bination N1 + N2 is about 8.41 dB below the SNL. Therefore,
for the phase sensitivity of FBNI obtained by joint measure-
ment of two output ports, the optimal combination of photon
numbers is N1 + N2.

Then, the phase sensitivities obtained from various
combinations of photon numbers at any three output
ports of the FBNI are calculated. The phase sensitiv-
ities of FBNI from photon number combinations N1 −
N3 + N4, N2 − N3 + N4, N1 + N2 − N3, N1 + N3 − N4, N2 +
N3 − N4, N1 − N2 − N4, N1 − N2 + N4, N1 + N2 + N3, N1 −
N3 − N4, N2 − N3 − N4, N1 − N2 − N3, N1 − N2 + N3, N1 +
N3 + N4, N2 + N3 + N4, N1 + N2 − N4, N1 + N2 + N4 can be
given by

�ϕN1−N3+N4 = �ϕN2−N3+N4 =
√

(2G − 1)2{κG[1 + G(3 + 2ε − 4G)](cos ϕ + 1)2 + 3ε(2G − 1)2(cos ϕ + 1) + 1}
2G[1 + G(3 + 2ε − 4G)]| sin ϕ|√Ns

,

�ϕN1+N2−N3 =
√

(2G − 1)2[κε2(cos ϕ + 1)2 − 2ε2(cos ϕ + 1) + 1]

2ε2| sin ϕ|√Ns
,

�ϕN1+N3−N4 = �ϕN2+N3−N4 =
√

(2G−1)2{κG(G−1)(3+2ε)(cos ϕ+1)2 + 11ε(2G−1)2(cos ϕ+1)+1}
ε(3+2ε)| sin ϕ|√Ns

,
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FIG. 7. The phase sensitivities of FBNI with various combinations of photon numbers at any three output ports and the corresponding
SNL versus ϕ in the lossless case with the same internal photon number and G1 = G2 = G. When (a) G = 1.5, (c) G = 2, (e) G = 2.5, and
(g) G = 3, the phase sensitivities of FBNI with photon number combinations N1 − N3 + N4 (N2 − N3 + N4), N1 + N2 − N3, N1 + N3 − N4

(N2 + N3 − N4), N1 − N2 − N4 (N1 − N2 + N4), and N1 + N2 + N3 are denoted by brown dot, light blue dotted, red dash-dotted, dark purple
dashed, and pink solid curves, respectively. When (b) G = 1.5, (d) G = 2, (f) G = 2.5, and (h) G = 3, the phase sensitivities of FBNI with
photon number combinations N1 − N3 − N4 (N2 − N3 − N4), N1 − N2 − N3 (N1 − N2 + N3), N1 + N3 + N4 (N2 + N3 + N4), N1 + N2 − N4, and
N1 + N2 + N4 are denoted by dark blue dot, orange dash-dotted, yellow solid, dark green dashed, and light purple dotted curves, respectively.
The corresponding SNLs are denoted by gray straight lines.

�ϕN1−N2−N4 = �ϕN1−N2+N4 =
√

(2G−1)2{2ε3(2G−1)2(cos ϕ+1)2+[G(G−1) + 6G2(G−1)2](cos ϕ+1)}
ε2| sin ϕ|√Ns

,

�ϕN1+N2+N3 =
√

(2G − 1)2{6εκ[1 + 3G(G − 1)](cos ϕ + 1)2 + 4ε[4 + 15G(G − 1)](cos ϕ + 1) + 1}
4ε[1 + 3G(G − 1)]| sin ϕ|√Ns

,

�ϕN1−N3−N4 = �ϕN2−N3−N4 =
√

4ε2(2G − 1)4(cos ϕ + 1)2 + 3ε(2G − 1)2(cos ϕ + 1) + 1

ε(2G − 1)| sin ϕ|√Ns
,

�ϕN1−N2−N3 = �ϕN1−N2+N3 =
√

(2G − 1)2{εκ (1 + ε)(cos ϕ + 1)2 + 4ε[2 + 7G(G − 1)](cos ϕ + 1) + 1}
2ε(1 + ε)| sin ϕ|√Ns

,

�ϕN1+N3+N4 = �ϕN2+N3+N4 =
√

36ε2(2G − 1)4(cos ϕ + 1)2 + 11ε(2G − 1)2(cos ϕ + 1) + 1

3ε(2G − 1)| sin ϕ|√Ns
,

�ϕN1+N2−N4 =
√

(2G − 1)2{2ε2(2G − 1)2(1 + ε)(cos ϕ + 1)2 + [G(G − 1) + 6G2(G − 1)2](cos ϕ + 1)}
ε(1 + ε)| sin ϕ|√Ns

,

�ϕN1+N2+N4 =
√

(2G − 1)2[3εκ (1 + 3ε)(cos ϕ + 1)2 + 2(ε + 3ε2)(cos ϕ + 1)]

2ε(1 + 3ε)| sin ϕ|√Ns
. (A8)

There are multiple combinations of any three output ports.
To reduce the overlapping of traces, the phase sensitivities
for the same intensity gain are depicted in separate
subplots, arranged vertically. As shown in Fig. 7, the phase

sensitivities of FBNI with various photon number
combinations N1 − N3 + N4 (N2 − N3 + N4), N1 + N2 − N3,
N1 + N3 − N4 (N2 + N3 − N4), N1 − N2 − N4 (N1 − N2 +
N4), N1 + N2 + N3, N1 − N3 − N4 (N2 − N3 − N4), N1 −
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FIG. 8. The phase sensitivities of FBNI with various combinations of photon numbers at four output ports and the corresponding SNL
versus ϕ in the lossless case with the same internal photon number and G1 = G2 = G. When (a) G = 1.5, (b) G = 2, (c) G = 2.5, and
(d) G = 3, the phase sensitivities of FBNI with photon number combinations N1 − N2 − N3 + N4 (N1 − N2 + N3 − N4), N1 − N2 − N3 − N4

(N1 − N2 + N3 + N4), N1 + N2 + N3 − N4, N1 + N2 − N3 + N4, and N1 + N2 + N3 + N4 are denoted by orange dash-dotted, dark blue dashed,
yellow dot, pink solid, and light blue dotted curves, respectively. The corresponding SNLs are denoted by gray straight lines.

N2 − N3 (N1 − N2 + N3), N1 + N3 + N4 (N2 + N3 + N4),
N1 + N2 − N4, and N1 + N2 + N4 versus ϕ are depicted by
brown dot, light blue dotted, red dash-dotted, dark purple
dashed, pink solid, dark blue dot, orange dash-dotted,
yellow solid, dark green dashed, and light purple dotted
curves, respectively. The corresponding SNLs are denoted
by gray straight lines. Similar to the case of two-port
combinations, N1 and N2 can also be swapped in the case
of three-port combinations. This is also the reason why
�ϕN1−N2−N4

= �ϕN1−N2+N4 , �ϕN1−N2−N3 = �ϕN1−N2+N3 . In
Figs. 7(a), 7(c), 7(e), and 7(g), the optimal phase sensitivities
are derived from photon number combination N1 + N2 + N3

(pink solid curves). As shown in Fig. 7(g), the phase
sensitivities of FBNI with photon number combination
N1 + N2 + N3 can beat the SNL 4.56 dB at optimal phase
points when G = 3. In Figs. 7(b), 7(d), 7(f), and 7(h), the
phase sensitivities of FBNI derived from the photon number
combination N1 + N2 + N4 (light purple dotted curves)

show a clear superiority over those obtained from other
combinations. As shown in Fig. 7(h), when G = 3, the best
phase sensitivity in light purple dotted curve (N1 + N2 + N4)
is approximately 9.26 dB below the gray straight line (SNL).
For the same intensity gain G = 3, the best phase sensitivity
achieved from photon number combination N1 + N2 + N4

(9.26 dB below the SNL) is significantly better than that
achieved from photon number combination N1 + N2 + N3

(4.56 dB below the SNL). Hence, for the phase sensitivity of
FBNI obtained by a joint measurement of three output ports,
the optimal combination of photon numbers is N1 + N2 + N4.

In addition, the phase sensitivities obtained from various
combinations of photon numbers at four output ports of the
FBNI are also calculated. The phase sensitivities of FBNI
with photon number combinations N1 − N2 − N3 + N4, N1 −
N2 + N3 − N4, N1 − N2 − N3 − N4, N1 − N2 + N3 + N4,
N1 + N2 + N3 − N4, N1 + N2 − N3 + N4, N1 + N2 + N3 + N4

can be given by

�ϕN1−N2−N3+N4 = �ϕN1−N2+N3−N4 =
√

(2G − 1)2[κ (cos ϕ + 1) + 1]

2ε| sin ϕ|√Ns
,

�ϕN1−N2−N3−N4 = �ϕN1−N2+N3+N4 = κ (cos ϕ + 1) + 2

4ε(2G − 1)| sin ϕ|√Ns
,

�ϕN1+N2+N3−N4 =
√

(2G − 1)2[4εκ (1 + ε)(cos ϕ + 1)2 + 2κ (cos ϕ + 1) + 1]

4ε(1 + ε)| sin ϕ|√Ns
,

�ϕN1+N2−N3+N4 =
√

(2G − 1)2[4ε2κ (cos ϕ + 1)2 + 1]

4ε2| sin ϕ|√Ns
,

�ϕN1+N2+N3+N4 = κ (cos ϕ + 1) + 1

4ε(2G − 1)| sin ϕ|√Ns
. (A9)

As shown in Fig. 8, the phase sensitivities of FBNI with
photon number combinations N1 − N2 − N3 + N4 (N1 − N2 +
N3 − N4), N1 − N2 − N3 − N4 (N1 − N2 + N3 + N4), N1 +
N2 + N3 − N4, N1 + N2 − N3 + N4, and N1 + N2 + N3 + N4

versus ϕ are depicted by orange dash-dotted, dark blue
dashed, yellow dot, pink solid, and light blue dotted curves,
respectively. The corresponding SNLs are denoted by gray
straight lines. For the photon number combination N1 + N2 −
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N3 − N4, the corresponding numerator
√

Ns
(2G−1)2 and denom-

inator 0 are both independent of the phase ϕ, making it
impossible to obtain phase sensitivity. Figures 8(a)–8(d) il-
lustrate that the phase sensitivities of FBNI, obtained from the
photon number combinations N1 + N2 − N3 + N4 (pink solid
curves) and N1 + N2 + N3 + N4 (light blue dotted curves),
are better than those from other combinations for any value

of G. Specifically, when G = 3 as shown in Fig. 8(d),
the best phase sensitivities of FBNI with photon number
combinations N1 + N2 − N3 + N4 and N1 + N2 + N3 + N4 are
approximately 5.26 dB and 5.40 dB below the SNL, respec-
tively. In other words, for the phase sensitivities of FBNI
obtained by joint measurement of four output ports, the op-
timal combination of photon numbers is N1 + N2 + N3 + N4.

APPENDIX B: EFFECT OF LOSSES ON FBNI

In order to characterize the effect of losses on the phase sensitivity of FBNI, we regard the output field after losses as a
combination of the input field and vacuum field on a beam splitter [41]. Therefore, the input-output relations of FBNI can be
expressed as

b̂′
FBNI = [

√
1 − η1A2eiθ1 +

√
1 − η2B2ei(φ1−φ2+θ2 ) +

√
1 − η3C

2ei(2φ1−θ3 ) +
√

1 − η4D2ei(φ1+φ2−θ4 )]âin1

+ [
√

1 − η1ABeiθ1 +
√

1 − η2ABei(φ1−φ2+θ2 ) +
√

1 − η3CDei(2φ1−θ3 ) +
√

1 − η4CDei(φ1+φ2−θ4 )]âin2

+ [
√

1 − η1ACeiθ1 +
√

1 − η2BDei(φ1−φ2+θ2 ) +
√

1 − η3ACei(2φ1−θ3 ) +
√

1 − η4BDei(φ1+φ2−θ4 )]â†
in3

+ [
√

1 − η1ADeiθ1 +
√

1 − η2BCei(φ1−φ2+θ2 ) +
√

1 − η3BCei(2φ1−θ3 ) +
√

1 − η4ADei(φ1+φ2−θ4 )]â†
in4

+ A
√

η1eiθ1 ν̂1 + B
√

η2ei(φ1−φ2+θ2 )ν̂2 + C
√

η3ei(2φ1−θ3 )ν̂
†
3 + D

√
η4ei(φ1+φ2−θ4 )ν̂

†
4 , (B1)

where ηl (l=1, 2, 3, and 4) denotes the loss ratio of FBNI on each arm and the annihilation operator ν̂l denotes the corresponding
vacuum field. For simplicity, we consider the loss ratios of FBNI as η, namely, η1 = η2 = η3 = η4 = η. Then, the phase
sensitivity of FBNI in the case of considering the losses can be given by

�ϕ′
FBNI =

√
(2G − 1)2

{
8ε(1 − η)(1 + 3ε)[6 + 3G3η2(18G3 − 60G2 + 77G − 47) + 4G(σ − 7) + 8G2(8 − 5σ )] cos2 ϕ

2 + 2 − η + 2ε[η + 3 + 3Gη(6G − 5)]
}

8 sin2 ϕ

2 ε(1 + 3ε)2Ns
,

(B2)

where ε = 2G(G − 1), and σ = (1 − η)(η + 1). At the optimal phase point ϕ = π , Eq. (B2) can be represented by

�ϕ′
FBNI =

√
(2G − 1)2{2 − η + 2ε[η + 3 + 3Gη(6G − 5)]}

8ε(1 + 3ε)2Ns
. (B3)
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