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Entangled atomic ensemble and an yttrium-iron-garnet sphere in coupled microwave cavities
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We present a scheme to generate distant bipartite and tripartite entanglement between an atomic ensemble
and an yttrium iron garnet (YIG) sphere in coupled microwave cavities. We consider an atomic ensemble in
a single-mode microwave cavity which is coupled with a second single-mode cavity having a YIG sphere.
Our system, therefore, has five excitation modes, namely, cavity-1 photons, an atomic ensemble, cavity-2
photons, a magnon and a phonon mode in the YIG sphere. We show that significant bipartite entanglement
exists between indirectly coupled subsystems in the cavities which is robust against temperature. Moreover,
we present suitable parameters for a significant tripartite entanglement of the ensemble, magnon, and phonon
modes. We also demonstrate the existence of tripartite entanglement between the magnon and phonon modes
of the YIG sphere with indirectly coupled cavity photons. Interestingly, this distant tripartite entanglement is
of the same order as that previously found for a single-cavity system. We show that cavity-cavity coupling
strength affects both the degree and transfer of quantum entanglement between various subsystems. Therefore,
an appropriate cavity-cavity coupling optimizes the distant entanglement by increasing the entanglement strength
and its robustness against temperature.
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I. INTRODUCTION

Quantum entanglement is recognized as the most fascinat-
ing aspect of quantum formalism [1]. It has applications in
quantum information processing, quantum networking, quan-
tum dense coding, quantum-enhanced metrology, and so on
[2–5]. Therefore, its realization through physical resources
used in information processing and communication protocols
necessitates a scale above the subatomic level for the ease
of experimental implementation [6]. That is why there is
growing attention to the exploration of quantum-mechanical
effects at the macroscopic level. The advancement in micro-
and nanofabrication in recent years provided novel platforms
to study macroscopic entanglement. Cavity optomechanics is
one such system that received a lot of attention during the
past decade [7,8]. Among other applications [9,10], cavity op-
tomechanics enables quantum state transfer between different
modes of electromagnetic fields [11,12], which has a central
role in quantum information-processing networks. Moreover,
a possible platform for quantum information processing is
offered by atomic ensembles. They can serve as valuable
memory nodes for quantum communication networks due to
their longer coherence duration and collective amplification
effect [13]. Another promising physical platform is yttrium
iron garnet (YIG), a ferrimagnetic material, due to its high
spin density and low decay rates of collective spin excitations
(i.e., the Kittel mode [14]), resulting in strong coupling be-
tween the Kittel mode and cavity photons [15–18].

*Corresponding author: m.irfanphy@gmail.com

Since the initial experiments, many hybrid quantum sys-
tems based on quantum magnonics have been studied for
their possible applications in quantum technologies [19–22].
Magnon-cavity QED is a relatively newer field and a potential
candidate for studying new features of strong-coupling QED.
The observation of bistability and the single superconducting
qubit coupling to the Kittel mode are interesting developments
in this field [23,24]. Li et al. illustrated how to create tripartite
entanglement in a system of microwave cavity photons entan-
gled to the magnon and phonon modes of a YIG sphere in a
magnomechanical cavity [25]. This study was followed by an
investigation of magnon-magnon entanglement between two
YIG spheres in cavity magnomechanics [26]. Later, Wu et al.
investigated magnon-magnon entanglement between two YIG
spheres in cavity optomagnonics [27]. Likewise, Ning and Yin
theoretically demonstrated the entanglement of a magnon and
superconducting qubit utilizing a two-mode squeezed-vacuum
microwave field in coupled cavities [28]. Wang et al. explored
nonreciprocal transmission and entanglement in a two-cavity
magnomechanical system [29]. That work was succeeded by
the study of long-range generation of magnon-magnon entan-
gled states via qubits [30].

Potential schemes for distant entanglement between dis-
parate systems are increasingly being considered to test the
fundamental limits of quantum theory and possible applica-
tions in quantum networks [31]. In an interesting study, Joshi
et al. theoretically examined whether two spatially distant
cavities connected by an optical fiber may produce quan-
tum entanglement between mechanical and optical modes
[32]. Likewise, many researchers theoretically explored other
schemes for transferring entanglement at a distance which
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includes an array of three optomechanical cavities for the
study of the entanglement between different mechanical and
optical modes [33] and a doubly resonant cavity with a gain
medium of cascading three-level atoms placed in it to in-
vestigate entanglement transfer from two-mode fields to the
two movable mirrors [34]. In a double-cavity optomechanical
system, Liao et al. quantified the entanglement of macro-
scopic mechanical resonators by the concurrence [35]. That
work was followed by a study on entanglement transfer from
the intercavity photon-photon entanglement to an intracavity
photon-phonon via two macroscopic mechanical resonators
[36]. Recently, Bai et al. proposed a scheme for a two-cavity
coupled optomechanical system with an atomic ensemble
and a movable mirror in distinct cavities, through which
they showed ensemble-mirror entanglement and entanglement
transfer between different subsystems [37].

In the past, several cavity optomechanical systems were
studied for entanglement with an atomic medium [37–40].
Recently, it was shown that an atomic ensemble can be en-
tangled with magnon modes within a single cavity [41,42].
However, to the best of our knowledge, distant entanglement
of an atomic ensemble and YIG sphere in microwave cavities
has not been reported yet. In this paper, we present a method
for entangling an atomic ensemble to mechanical and Kittel
modes in a YIG sphere placed within coupled microwave cav-
ities. In our study, we consider an atomic ensemble containing
N ∼ 107 [43,44] atoms and a YIG sphere with a typical diam-
eter of 250 µm [45], a promising platform for studying distant
macroscopic entanglement. We show that significant bipartite
and tripartite entanglement exists between the magnon and
phonon modes of the YIG sphere placed in cavity 2 and the
atomic ensemble and cavity-1 photons. It is interesting to find
that a YIG sphere can be entangled to an indirectly coupled
cavity field. We illustrate that this distant entanglement can
be controlled by varying the cavity-cavity coupling strength.
Since atomic ensembles can serve as efficient memory nodes
for quantum communication networks, we therefore believe
that the considered hybrid system has useful applications in
quantum technologies.

II. SYSTEM MODEL AND HAMILTONIAN

We consider a hybrid coupled-cavity magnomechanical
system which consists of two single-mode cavities with res-
onance frequency ωk (k = 1, 2) encasing an atomic ensemble
and a YIG sphere as shown in Fig. 1. This coupled system has
five excitation modes, namely, microwave electromagnetic
modes in cavities 1 and 2, magnon and phonon modes in the
YIG sphere, and atomic excitation in cavity 1.

In cavity 2, a YIG sphere is placed close to the maximum
magnetic field of the cavity mode and is simultaneously acted
upon by a bias magnetic field, thus establishing the photon-
magnon coupling. The external bias magnetic field excites the
magnon modes. The magnetic field of the cavity mode inter-
acts with the Kittle mode via the magnetic dipole interaction,
in which spins evenly precess in the ferrimagnetic sphere. The
bias field B and the gyromagnetic ratio � control the magnon
frequency, i.e., ωn = �B. Varying magnetization in the YIG
sphere results in magnetostriction, leading to the interplay of
energy between the magnon and phonon modes in it.

FIG. 1. Schematic representation of two single-mode cavities
coupled to each other with coupling strength J incorporating an
atomic ensemble of N two-level atoms characterized by intrinsic
frequency ωe placed in cavity 1 and a YIG sphere placed in cavity
2. An external laser field drives the cavity at frequency ωl with
strength �l . Correspondingly, a microwave magnetic field at fre-
quency ωl with strength �n drives the magnon modes of the YIG
sphere, enhancing the magnomechanical coupling. The YIG sphere
is concurrently influenced by the cavity’s magnetic field, the bias
magnetic field, and the drive magnetic field, all orthogonal to each
other at the site of the YIG sphere. The decay rates of the cavity
modes a1 and a2, atomic ensemble e, magnon mode n, and phonon
mode d associated with the YIG sphere are given by κa, γe, κn, and
γd , respectively.

In cavity 1, an ensemble of N two-level atoms with transi-
tion frequency ωe interacts with the cavity field. The atoms
constituting the ensemble are individually characterized by
the spin-1/2 Pauli matrices σ+, σ−, and σz. Collective spin
operators of the atomic polarization for the atomic ensemble
are described as S+,−,z = ∑N

i=1 σ
(i)
+,−,z, and they follow the

commutation relations [S+, S−] = Sz and [Sz, S±] = ±2S±
[37]. The operators S± and Sz may be represented in terms
of the bosonic annihilation and creation operators e and e† by
using the Holstein-Primakoff transformation [46–48]: S+ =
e†

√
N − e†e � √

Ne†, S− = √
N − e†ee � √

Ne, Sz = e†e −
N/2, where e and e† follow the commutation relation [e, e†] =
1. This transformation is valid only when the population of
atoms in the ground state is large compared to the atoms in
the excited state, so that Sz � 〈Sz〉 � −N [43].

To simplify our analysis, we consider the frequencies of
both the drive laser field and the drive magnetic field to be
ωl . The Hamiltonian describing the system under the rotating-
wave approximation in a frame rotating with the frequency of
the drive fields ωl is given by

H/h̄ =
2∑

k=1

�ka†
kak + �ee†e + �nn†n + ωd

2
(x2 + y2)

+ gnd n†nx + J (a†
1a2 + a1a†

2) + Gae(ea†
1 + e†a1)

+ gna(a2n† + a†
2n) + i�l (a

†
1 − a1) + i�n(n† − n).

(1)
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In Eq. (1), the energy associated with the cavity (1 and
2), atomic excitation, and magnon modes is represented in
the first three terms, where ak (a†

k ), e (e†), and n (n†) are
the annihilation (creation) operators of the cavity, collec-
tive atomic excitation, and magnon mode, respectively. Here,
�k (k = 1, 2), �e, and �n are the detunings of the cavity
mode’s frequency ωk (k = 1, 2), the intrinsic frequency of
two-level atoms in the atomic ensemble ωe, and the magnon
mode’s frequency ωn with respect to the drive field’s fre-
quency ωl , i.e., �k = ωk − ωl (k = 1, 2), �e = ωe − ωl , and
�n = ωn − ωl . The rotating-wave approximation holds when
ωk (k = 1, 2), ωn, ωe � gna, κa, κn, γe (which is satisfied in
cavity magnomechanics by experimentally feasible param-
eters) [49]. The fourth term in Eq. (1) is the energy of
the mechanical mode (phonon mode) of frequency ωd with
dimensionless position x and momentum y operators satisfy-
ing [x, y] = i. The next four terms describe the interaction
of all coupled subsystems in the cavity system encompass-
ing coupling of the magnon and phonon, cavities 1 and 2,
collective atomic excitation and cavity 1, and cavity 2 and
magnon modes with strengths gnd , J , Gae, and gna, respec-
tively. The magnomechanical coupling strength gnd , resulting
from magnetostrictive interaction, is typically weak; how-
ever, it can be enhanced by the drive microwave field having
frequency ωl applied at the site of the YIG. The coupling
rate of the collective atomic excitation with cavity mode
Gae = g

√
N , where g is the atom-cavity coupling strength,

defined as g = ν
√

ω1/2h̄ε0V , with ν being the dipole mo-
ment of atomic transition, V being the volume of the cavity,
and ε0 being the permittivity of free space. Regarding the
eighth term (magnon-photon coupling), when the coherent
energy exchange rate between light and matter is faster than
their decay rates, the coupling strength between the magnon
and photon reaches the strong-coupling regime, i.e., gna >

κa, κn [14,15,17,18,49]. The second-to-last term describes a
microwave field driving cavity 1 with Rabi frequency �l =√

2Pκa/h̄ωl , which depends on the input power P of the drive
field and the decay rate κa of the cavity. Similarly, we also
consider a magnon-mode drive field [last term in Eq. (1)] with
Rabi frequency �n =

√
5

4 �
√

NsB0, with � being the gyromag-
netic ratio, Ns being the total number of spins, and B0 being
the applied field’s amplitude. In the case of a YIG sphere,

�/2π = 28 GHz/T, and Ns = ρVs, with volume Vs and spin
density ρ = 4.22 × 1027 m−3 of the sphere [25]. We assume
low-lying excitations while deriving �n, i.e., 〈n†n〉 � 2Nsς ,
where ς = 5

2 is the spin number of the ground-state Fe3+

ion in YIG [25]. At a temperature T , the equilibrium mean
thermal photon [ak (k = 1, 2)], magnon (n), and phonon (d)
numbers are given by Zh(ωh) = [exp(h̄ωh/kBT ) − 1]−1 (h =
ak, n, d ), where kB is the Boltzmann constant.

Since, we are interested in studying steady-state quantum
entanglement in the linear regime, we use standard input-
output theory resulting in quantum Langevin equations in
which the effect of the input noise operator is added for each
excitation mode:

ȧ1 = −(κa + i�1)a1 − iGaee − iJa2 +
√

2κaain
1 + �l ,

ȧ2 = −(κa + i�2)a2 − iJa1 − ignan +
√

2κaain
2 ,

ė = −(γe + i�e)e − iGaea1 +
√

2γeein,

ṅ = −(i�n + κn)n − ignaa2 − ignd nx + �n +
√

2κnnin,

ẋ = ωd y, ẏ = −ωd x − γd y − gnd n†n + ξ, (2)

with zero-mean input noise operators ain
k , ein, nin, and ξ

for the kth cavity, atomic-excitation, magnon, and phonon
modes, respectively. The parameters γe and γd are the atomic
decay rate and the mechanical damping rate, respectively. The
input noise operators under Markovian approximation,
which is valid for a large mechanical quality factor,
Q = ωd/γd � 1, are characterized by the following nonvan-
ishing correlation functions that are δ correlated in the time
domain [50]: 〈ain

1 (τ )ain†
1 (τ ′)〉 = [Za1 (ωa1 ) + 1]δ(τ − τ ′),

〈ain†
1 (τ )ain

1 (τ ′)〉 = Za1 (ωa1 )δ(τ − τ ′), 〈ain
2 (τ )ain†

2 (τ ′t )〉 =
[Za2 (ωa2 ) + 1]δ(τ − τ ′), 〈ain†

2 (τ )ain
2 (τ ′)〉 = Za2 (ωa2 )δ(τ −

τ ′), 〈ein(τ )ein†(τ ′)〉 = δ(τ − τ ′), 〈nin (τ )nin †(τ ′)〉 =
[Zn(ωn) + 1]δ(τ − τ ′), 〈nin †(τ )nin(τ ′)〉 = Zn(ωn)δ(τ − τ ′),
and 〈ξ (τ )ξ (τ ′) + ξ (τ ′)ξ (τ )〉/2 � γd [2Zd (ωd ) + 1]δ(τ − τ ′),
where τ and τ ′ denote two distinct times. It is important to
note that the δ-correlated mechanical noise approximation
is valid only for a large mechanical quality factor. For the
case of a low-quality factor, we have to solve for the exact
correlation function of the noise operators.

From the quantum Langevin equations (2), we obtain the
expressions for the steady-state values of the cavity, ensemble,
magnon, and phonon mode operators:

〈a1〉 = �l (κa + i�2)(κn + i�̃n)(γe + i�e) + g2
na�l (γe + i�e) − gna�nJ (γe + i�e)

S
,

〈a2〉 = −iJ (κn + i�̃n)〈a1〉 − igna�n

(κa + i�2)
(
κn + i�̃n

) + g2
na

, 〈e〉 = −iGae〈a1〉
(γe + i�e)

, 〈n〉 = �n − igna〈a2〉
i�̃n + κn

,

〈x〉 = −
(

gnd

ωd

)
|〈n〉|2, 〈y〉 = 0, (3)

where

S = (κa + i�1)(γe + i�e)
[
(κa + i�2)(κn + i�̃n) + g2

na

] − G2
ae

[
(κa + i�2) (κn + i�̃n) + g2

na

] + J2(γe + i�e)(κn + i�̃n)

and the effective magnon detuning �̃n = �n + gnd〈x〉. The ef-
fective magnomechanical coupling rate is Gnd = i

√
2gnd〈n〉.

To analyze the steady-state entanglement of the system,
we linearize the dynamics of the coupled cavity system. We
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assume that the cavity is intensely driven with a very high
input power, resulting in significant steady-state amplitudes
for the intracavity fields and magnon modes, respectively,
i.e., |〈ak〉| � 1 (k = 1, 2) [51] and |〈n〉| � 1 [25]. For a
proper choice of the drive field’s reference phase, 〈ak〉 may
be treated as real [51]. Moreover, the bosonic description of
atomic polarization may be used only when the single-atom
excitation probability is noticeably below 1. The conditions
for large steady-state amplitudes of intracavity fields and a
low excitation limit of atoms in the ensemble are simulta-
neously satisfied only when g2/(�2

e + γ 2
e ) � |〈a1〉|−2 � 1.

This necessitates a weak atom-cavity coupling [43]. Hence,
in the strong-driving limit, we can neglect the second-order
fluctuation terms, such that the operator P (P = ak, e, n, x, y)
can be written as P = 〈P〉 + δP, where 〈P〉 represents the
steady-state part and δP represents the zero-mean fluctuation
associated with P. In the opposite limit where the quantum
effects of a single or few excitations are important [52,53]
or in studying a fully nonlinear Hamiltonian [54], the stan-
dard quantum master equation may be used to study the

dynamics of the system. Similarly, coupling with a nonequi-
librium environment also requires exact quantum Langevin
equations [55]. Next, we define quadrature fluctuations
[δU1(t ), δW1(t ), δU2(t ), δW2(t ), δu1(t ), δw1(t ), δx(t ), δy(t ),
δu2(t ), δw2(t )], with δU1 = (δa1 + δa†

1)/
√

2, δW1 = i(δa†
1 −

δa1)/
√

2, δU2 = (δa2 + δa†
2)/

√
2, δW2 = i(δa†

2 − δa2)/
√

2,
δu1 = (δn + δn†)/

√
2, δw1 = i(δn† − δn)/

√
2, δu2 = (δe +

δe†)/
√

2, and δw2 = i(δe† − δe)/
√

2, to work out a set of
linearized quantum Langevin equations

ṙ(t ) = Ar(t ) + o(t ), (4)

with r(t ) being the fluctuation operator in the
form of quadrature fluctuations, where r(t )T =
[δU1(t ), δW1(t ), δU2(t ), δW2(t ), δu1(t ), δw1(t ), δx(t ), δy(t ),
δu2(t ), δw2(t )]; o(t ) denotes the noise operators,
represented as o(t )T = [

√
2κa U in

1 (t ),
√

2κa W in
1 (t ),√

2κaU in
2 (t ),

√
2κaW in

2 (t ),
√

2κnuin
1 (t ),

√
2κnw

in
1 (t ), 0,

ξ (t ),
√

2γeuin
2 (t ),

√
2γew

in
2 (t )]; and A is the drift matrix:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−κa �1 0 J 0 0 0 0 0 Gae

−�1 −κa −J 0 0 0 0 0 −Gae 0
0 J −κa �2 0 gna 0 0 0 0

−J 0 −�2 −κa −gna 0 0 0 0 0
0 0 0 gna −κn �̃n −Gnd 0 0 0
0 0 −gna 0 −�̃n −κn 0 0 0 0
0 0 0 0 0 0 0 ωd 0 0
0 0 0 0 0 Gnd −ωd −γd 0 0
0 Gae 0 0 0 0 0 0 −γe �e

−Gae 0 0 0 0 0 0 0 −�e −γe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

The linearized quantum Langevin equations [see Eq. (4)]
correspond to an effective linearized Hamiltonian, which en-
sures the Gaussian state of the system when it is stable.
Thus, the linearized dynamics of the system along with the
Gaussian nature of the noises leads to the continuous-variable
five-mode Gaussian state of the steady states corresponding to
its quantum fluctuations. The Routh-Hurwitz criterion is used
to work out the stability conditions for our linearized system
[56]. The system becomes stable and attains its steady state
only when the real parts of all the eigenvalues of the drift ma-
trix A are negative. The steady-state covariance matrix (CM),
which describes the variance within each subsystem and the
covariance across several subsystems, is generated from the
following Lyapunov equation when the stability requirements
are met [57]:

AV + VAT = −D, (6)

where D = diag [κa(2 Za + 1), κa(2 Za + 1), κa(2 Za + 1),
κa(2 Za + 1), κn(2Zn + 1), κn(2Zn + 1), 0, γd (2 Zd +
1), γe, γe]T is the diffusion matrix for the corresponding
decays originating from the noise correlations.

To quantify bipartite entanglement among different subsys-
tems of the coupled two-cavity system, we use logarithmic
negativity EN [58,59]. We have a five-mode Gaussian state
characterized by a covariance matrix V which can be

expressed in the form of a block matrix:

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

Va1 Va1a2 Va1n Va1d Va1e

VT
a1a2

Va2 Va2n Va2d Va2e

VT
a1n VT

a2n Vn Vnd Vne

VT
a1d VT

a2d VT
nd Vd Vde

VT
a1e VT

a2e VT
ne VT

de Ve

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

where each block is a 2 × 2 matrix. Here, diagonal blocks
represent the variance within each subsystem (cavity-1 pho-
ton, cavity-2 photon, magnon, phonon, and ensemble). The
correlations between any two distinct degrees of freedom of
the entire magnomechanical system are represented by the
off-diagonal blocks, which are covariances across distinct
subsystems [37]. Following Simon’s criterion [60] to judge
the nonseparability of the transposed modes in the transposed
submatrix derived from the covariance matrix V , we compute
the logarithmic negativity numerically. The covariance matrix
V (10 × 10) is reduced to a submatrix Vl (4 × 4) in order to
evaluate the covariance between the subsystems. For instance,
the submatrix representing the covariance of cavity-1 and
cavity-2 subsystems is determined by the first four rows and
columns of V . We can represent Vl of cavity-1 and cavity-2
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subsystems in the following way [37]:

Vl =
(

Va1 Va1a2

VT
a1a2

Va2

)
, (8)

where a1 indexes the cavity-1 subsystem and a2 indexes the
cavity-2 subsystem. Similarly, the covariance of other subsys-
tems can be determined by considering their corresponding
rows and columns in V . Then, the transposed covariance sub-
matrix Ṽl is obtained by partial transposition of Vl employing
Ṽl = T1|2VlT1|2, where T1|2 = diag(1,−1, 1, 1) realizes par-
tial transposition at the level of covariance matrices [60].
Then, we compute the minimum symplectic eigenvalue f̃−
of the transposed CM Ṽl using f̃− = min eig |i�2Ṽl |, with
�2 = ⊕2

j=1iσy and σy being the y-Pauli matrix [25]. If the
smallest eigenvalue is less than 1/2, the inseparability of the
transposed modes is ensured; i.e., the modes are entangled.
EN is evaluated as [59]

EN ≡ max[0,− ln 2 f̃−]. (9)

Similarly, the residual contangle Rmin
τ [61], which is a

continuous-variable analog of the tangle for discrete-variable
tripartite entanglement [62], is used for the quantification of
tripartite entanglement, which is defined as [61]

Rmin
τ ≡ min

[
Ro|nd

τ ,Rn|od
τ ,Rd|on

τ

]
, (10)

where n stands for the magnon mode and d stands for the
phonon mode, o = a1 for cavity-magnon-phonon tripartite en-
tanglement, and o = e for magnon-phonon-ensemble tripartite
entanglement. In Eq. (10) Rk|lm

τ is evaluated using Rk|lm
τ ≡

Ck|lm − Ck|l − Ck|m (k, l, m = o, n, d ), Ck|lm is the square one-
mode–vs–two-mode logarithmic negativity Ek|lm, and Ck|l is
the contangle of subsystems of k and l [25], defined as the
square logarithmic negativity Ek|l [59]. To compute Ek|lm
following the definition of logarithmic negativity given in
Eq. (9), �2 = ⊕2

j=1iσy is replaced by �3 = ⊕3
j=1iσy, and the

transposed covariance matrix Ṽ is obtained by carrying out
the partial transposition of the covariance matrix V , i.e., Ṽ =
Tk|lmVTk|lm, where the partial transposition matrices [25] are
T1|23 = diag(1,−1, 1, 1, 1, 1), T2|13 = diag(1, 1, 1,−1, 1, 1),
and T3|12 = diag(1, 1, 1, 1, 1,−1).

III. RESULTS AND DISCUSSION

In this section, we present the results of our numerical sim-
ulations. We have adopted the following experimentally fea-
sible parameters for the system involving microwave cavities
and a YIG sphere in our simulations [25]: ωk/2π = ωn/2π =
10 GHz (k = 1, 2), ωd/2π = 10 MHz, γd/2π = 102 Hz,
κa/2π = κn/2π = 1 MHz, gna/2π = 3.2 MHz, Gnd/2π =
4.8 MHz, and temperature T = 10 mK. Correspondingly, the
atom-cavity coupling and atomic decay rate are considered
to be of the order of megahertz, i.e., Gae/2π = 6 MHz and
γe/2π = 1 MHz. Further, the hopping rate J between the cav-
ities is also of the order of megahertz. It can be seen that for
the above-chosen parameters, our system is well within the
low-excitation regime of an atomic ensemble, satisfying the
condition g2/(�2

e + γ 2
e ) � 1.

First, we discuss the results of bipartite entangle-
ment. We have five different modes in the coupled-cavity

TABLE I. Notation adopted for the representation of bipartite
entanglement.

Bipartite subsystem Symbol for entanglement

Cavity-1–magnon Ea1n
N

Cavity-1–phonon Ea1d
N

Cavity-2–magnon Ea2n
N

Cavity-2–phonon Ea2d
N

Magnon-ensemble Ene
N

Phonon-ensemble Ede
N

Magnon-phonon End
N

system; therefore, entanglement can exist in any combination
of two modes. Interestingly, we observe promising results
for macroscopic distant entanglement, i.e., the entanglement
of the atomic ensemble and cavity-1 photons with phonon
and magnon modes of the YIG sphere placed in cavity 2.
We also illustrate entanglement transfer from the phonon-
ensemble (de) and magnon-ensemble (ne) subsystems to
cavity-1 photon-phonon (a1d) and cavity-1 photon-magnon
(a1n) subsystems when detuning parameters and cavity-cavity
coupling strength are changed. In Table I, we summarize the
symbols we adopt in our simulations to represent the bipartite
entanglement of different combinations of subsystems.

In Fig. 2, we present four different distant bipartite entan-
glements as a function of dimensionless detuning of cavity
1 (�1/ωd ) and cavity 2 (�2/ωd ). We consider magnon
detuning �̃n to be 0.9ωd (near resonant with a blue side-
band), while coupling between the two cavities is J = 0.8ωd .
Figures 2(a) and 2(b) illustrate ensemble-phonon (Ede

N ) and
ensemble-magnon (Ene

N ) entanglement for ensemble detuning
�e as −ωd (resonant with a red sideband). Although the
ensemble and YIG sphere are placed in separate cavities,
we find strong entanglement for both Ede

N and Ene
N . Ede

N at-
tains its maximum value around �2 ≈ −1.5ωd and �2 ≈ 0,
corresponding to �1 ≈ −2ωd and �1 ≈ −0.5ωd . It can be
seen that Ene

N manifests primarily around �2 ≈ −ωd in the
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FIG. 2. Density plots of bipartite entanglements (a) Ede
N , (b) Ene

N ,
(c) Ea1d

N , and (d) Ea1n
N versus normalized cavity-1 detuning �1/ωd

and cavity-2 detuning �2/ωd . In (a) and (b) �e = −ωd , whereas in
(c) and (d) �e = ωd . In all cases, �̃n = 0.9 ωd , and J = 0.8 ωd .
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FIG. 3. Density plot of Ede
N versus normalized cavity detun-

ing �a/ωd and (a) and (b) magnon detuning �̃n/ωd at �e =
−ωd and (c) and (d) ensemble detuning �e/ωd at �̃n = 0.9ωd .
In (a) and (c) �a/ωd = �1/ωd = �2/ωd . However, �a/ωd =
−�1/ωd = �2/ωd in (b) and (d). The cavity-cavity coupling
strength is taken to be J = ωd .

entire range of �1/ωd . However, maximum Ene
N exists around

�1 ≈ −2.5ωd . Similarly, we present cavity-1 photon-phonon
(Ea1d

N ) and cavity-1 photon-magnon (Ea1n
N ) entanglement in

Figs. 2(c) and 2(d) for �e = ωd . Both systems exhibit strong
entanglement around �1 ≈ −ωd and �1 ≈ 0. If we follow the
�1 = �2 line on the plane formed by �1 and �2, we observe
that there are two distinct detuning regions for maximal EN

in the density plots showing Ea1d
N and Ea1n

N compared to the
single joint region along the �1 = −�2 line.

For further analysis, we consider two cases. In the first
case, cavities 1 and 2 have the same detuning frequency with
respect to the frequency of the drive field, i.e., �1 = �2 = �a

(symmetric detuning). If the first cavity is red detuned or blue
detuned, the second cavity is also red detuned or blue detuned.
In the second case, cavities 1 and 2 have opposite detuning
frequencies with respect to the frequency of the drive field,
i.e., �1 = −�2 = −�a (nonsymmetric detuning). If the first
cavity is red detuned, the second is blue detuned and vice
versa.

Next, we present phonon-ensemble entanglement Ede
N as

a function of normalized cavity detuning �a/ωd against di-
mensionless magnon detuning �̃n/ωd in Figs. 3(a) and 3(b)
and ensemble detuning �e/ωd in Figs. 3(c) and 3(d). In
the left column, we have symmetric cavity-field detuning,
while in the right column, the detuning is nonsymmetric.
Figures 3(a) and 3(b) show that significant entanglement is
present for the complete range of effective magnon detuning.
We consider 0.6 � �̃n/ωd � 1.4, where we get stronger en-
tanglement. While Ede

N is significant for the broad range of
�̃n, it strongly depends on the choice of cavity-field detuning.
There are two distinct regions of cavity detuning where we
find maximum entanglement. One region is around cavity
resonance for both the symmetric and nonsymmetric choices
of detuning, while the other region depends on the choice.
For the symmetric case, strong entanglement is also present
around �a ≈ −1.75ωd . However, for the nonsymmetric case,
the second region is around �a ≈ −ωd . The bottom row in
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FIG. 4. Density plot of Ene
N versus normalized cavity detun-

ing �a/ωd and (a) and (b) magnon detuning �̃n/ωd at �e =
−ωd and (c) and (d) ensemble detuning �e/ωd at �̃n = 0.9ωd .
In (a) and (c) �a/ωd = �1/ωd = �2/ωd . However, �a/ωd =
−�1/ωd = �2/ωd in (b) and (d). The cavity-cavity coupling
strength is taken to be J = 0.8ωd .

Fig. 3 shows that Ede
N is maximum around �e ≈ −ωd , while

the choices of cavity detuning are approximately the same as
discussed above for the previous case.

Figure 4 shows magnon-ensemble entanglement Ene
N as a

function of normalized cavity detuning against dimensionless
magnon detuning (top row) and ensemble detuning (bottom
row). Ene

N is optimal around �a ≈ −0.5ωd . Figures 4(a) and
4(b) show that Ene

N is significant for the whole range of
�̃n, while it is maximum around �e ≈ −ωd , as shown in
Figs. 4(c) and 4(d). In both cases, we note that entanglement
exists for a wider parameter space in symmetric detuning
compared to the nonsymmetric-detuning choice. Similar to
Ede

N , Ene
N is also significant around �e ≈ −ωd and �̃n ≈

0.9ωd . As a result, we conclude that the bipartite entanglement
of modes involving the atomic ensemble and YIG sphere is
most remarkable when the magnon is near resonant with the
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FIG. 5. Density plot of Ea1d
N and Ea1n

N versus normalized cavity
detuning �a/ωd and ensemble detuning �e/ωd at J = 0.8ωd and
�̃n = 0.9ωd . In (a) and (c) �a/ωd = �1/ωd = �2/ωd . However,
�a/ωd = −�1/ωd = �2/ωd in (b) and (d).

043708-6



ENTANGLED ATOMIC ENSEMBLE AND AN … PHYSICAL REVIEW A 109, 043708 (2024)

0.0

0.4

0.8

1.2

1.6

2.0

J
/
ω

d

(a)E
a1d
N (b)E

a1d
N

−4 −2 0 2 4

Δa/ωd

0.0

0.4

0.8

1.2

1.6

2.0

J
/
ω

d

(c)E
a1n
N

−4 −2 0 2 4

Δa/ωd

(d)E
a1n
N

0.00

0.05

0.09

0.14

0.00

0.04

0.07

0.11

0.00

0.05

0.10

0.15

0.00

0.03

0.05

0.08

FIG. 6. Density plot of Ea1d
N and Ea1n

N versus normalized cav-
ity detuning �a/ωd and coupling strength J/ωd at �̃n = 0.9ωd

and �e = ωd . In (a) and (c) �a/ωd = �1/ωd = �2/ωd . However,
�a/ωd = −�1/ωd = �2/ωd in (b) and (d).

anti-Stokes band, while the ensemble is resonant with the
Stokes band.

Figure 5 shows cavity-1 photon-phonon entanglement Ea1d
N

and cavity-1 photon-magnon entanglement Ea1n
N as a function

of normalized cavity detuning and ensemble detuning. The
left column shows symmetric detuning, whereas the right col-
umn shows nonsymmetric detuning. For the symmetric case,
we have significant Ea1d

N and Ea1n
N around �a ≈ −2ωd and

�a ≈ 0 for a wide range of �e [see Figs. 5(a) and 5(c)]. For
the second case [see Figs. 5(b) and 5(d)], Ea1d

N and Ea1n
N are

significant around the resonance frequency of both cavities.
In contrast to Ede

N and Ene
N , both Ea1d

N and Ea1n
N are prominent

when the atomic ensemble is resonant with the anti-Stokes
sideband, i.e., at �e ≈ ωd , and almost negligible at �e = −ωd

(the Stokes sideband), as depicted in Fig. 5.
We illustrate the dependence of cavity-1 photon-phonon

entanglement Ea1d
N and cavity-1 photon-magnon entanglement

Ea1n
N on cavity-cavity coupling strength J and cavity detuning

�a in Fig. 6, where we choose �̃n = 0.9ωd and �e = ωd . As
expected, the bipartite entanglement of these subsystems is
nonexistent in the absence of cavity-cavity coupling. For the
symmetric cavity detuning [see Figs. 6(a) and 6(c)], entangle-
ment first increases with increasing J around �a ≈ −0.5ωd ;
however, beyond a certain value, any further increase in J
shifts the detuning region for optimal entanglement to the
right and left of �a ≈ −0.5ωd . However, for the nonsym-
metric detuning [see Figs. 6(b) and 6(d)] the trend is quite
different. Here, Ea1d

N and Ea1n
N increase with increasing cou-

pling strength J until a particular value. We note that the
dependence on J varies when different values of �e and �̃n

are considered. For the given parameters, Ea1d
N first increases

as a function of J , reaching a local maximum at J ≈ 0.65ωd

at resonance, followed by a downtrend from J ≈ 0.65ωd to
J ≈ 0.9ωd , after which it increases again up to J ≈ 1.12ωd

and decreases afterwards. On the other hand, Ea1n
N attains

its maximum value from J ≈ 0.5ωd to J ≈ 0.75ωd ; then it
decreases gradually to J ≈ 1.25ωd and dies out thereafter. It is
important to note that there is a downtrend in Ea1d

N around J =
0.9ωd , which gives a significant value for Ea1n

N . The reason lies

TABLE II. Optimized parameters for Ea1n
N , Ea1d

N , Ene
N , and Ede

N

used in Fig. 8.

Subsystem �1 �2 �̃n �e J

Ea1n
N −1.41ωd −0.68ωd 0.65ωd −1.63ωd 0.35ωd

Ea1d
N −0.04ωd 0.85ωd 0.77ωd 0.99ωd 1.28ωd

Ene
N 0.76ωd −0.52ωd 0.77ωd −0.63ωd 0.8ωd

Ede
N 0.28ωd −0.84ωd 0.6ωd −1.07ωd 1.06ωd

in the entanglement transfer between the different subsystems,
which is further elaborated in the following analysis.

To study entanglement transfer, we set −�1 = �2 = �a in
our simulations. The role of J in the degree and dynamics of
entanglement transfer between different subsystems is further
elaborated in Fig. 7. At smaller values of cavity-cavity cou-
pling J , the cavity-2 modes are significantly entangled (see
End

N , Ea2d
N , and Ea2n

N ) around �2 = −ωd . When the coupling
is increased, the cavity-1 photon and cavity-2 photon interact
with each other, resulting in a redistribution of cavity photon
excitations which translates to the other excitation modes. For
instance, at �2 = −ωd , End

N and Ea2d
N decrease with increasing

cavity-cavity coupling, while most of the other bipartite en-
tanglements increase (see the Appendix for details). Not only
does this transfer decrease with increasing J , but there is also a
corresponding decrease in the strength of Ea2d

N and Ea2n
N . This

decrease accounts for the corresponding increase in Ede
N , Ene

N ,
and Ea1d

N . Another interesting feature is that at smaller J , max-
imum entanglement of Ea2d

N , Ea2n
N , Ede

N , and Ene
N subsystems

lies around the detuning region when cavity 1 is resonant with
the anti-Stokes sideband while cavity 2 is resonant with the
Stokes sideband. However, the peaks of EN curves represent-
ing their entanglement gradually shift from �a ≈ −ωd toward
�a ≈ 0 as we move from J = 0.4ωd to J = 1.4ωd and the
region for the existence of entanglement also broadens. Since
we consider �e = −ωd in Fig. 7, Ea1d

N and Ea1n
N entanglement

is quite weak in this parametric domain. Nonetheless, it is
apparent that Ea1d

N and Ea1n
N entanglement also increases with

increasing J , reaching a peak value followed by a decreasing
trend (see the Appendix for details).

Next, we present the results of our numerical simula-
tions, demonstrating the critical temperature Tc for Ede

N , Ene
N ,

Ea1d
N , and Ea1n

N in Fig. 8. Entangled magnon-ensemble and
phonon-ensemble subsystems exhibit the most robust entan-
glement against temperature, which can last up to 200 mK.
On the other hand, cavity-1 photon-magnon entanglement can
survive temperatures up to 180 mK. However, the cavity-1
photon-phonon subsystem can sustain entanglement to a tem-
perature as high as 170 mK. Each curve in Fig. 8 is plotted for
an optimized set of parameter values given in Table II.

It is important to determine how the strength of cavity-
cavity coupling J impacts the robustness of distant entangle-
ment against temperature. In Fig. 9, we present density plots
of Ede

N , Ene
N , Ea1d

N , and Ea1n
N as a function of temperature T

and cavity-cavity coupling J . We infer from Fig. 9 that Tc for
the existence of entanglement varies with J . The maximum
value of J corresponding to maximal Ede

N [see Fig. 9(a)], Ene
N

[see Fig. 9(b)], Ea1d
N [see Fig. 9(c)], and Ea1n

N [see Fig. 9(d)] is
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FIG. 7. Line plots illustrating the effect of the cavity-cavity coupling rate J against cavity detuning �a/ωd = −�1/ωd = �2/ωd on
bipartite entanglement of the cavity-2 photon-magnon (a2n), phonon-ensemble (de), magnon-ensemble (ne), magnon-phonon (nd), cavity-2
photon-phonon (a2d), cavity-1 photon-phonon (a1d), and cavity-1 photon-magnon (a1n) modes varied in regular intervals from J = 0.4ωd to
J = 1.4ωd in (a)–(f) at �̃n = 0.9ωd and �e = −ωd .

1.06ωd , 0.8ωd , 1.28ωd , and 0.35ωd , respectively. We observe
that Tc is maximum, corresponding to J for which the degree
of entanglement is maximal at T = 0. Hence, we can say
Tc can be increased through a proper choice of parameters.
Apart from the bipartite entanglement of different subsystems
in coupled magnomechanical system, we show that genuine
tripartite entanglement can also be realized for indirectly
coupled subsystems. The same magnomechanical system
without cavity 1 was recently considered by Li et al. [25],
and they showed that the tripartite magnon-phonon-photon
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FIG. 8. Line plots for Ede
N , Ene

N , Ea1d
N , and Ea1n

N as a function of
temperature considered at the optimized values of cavity detunings
�1 and �2, effective magnon detuning �̃n, ensemble detuning �e,
and cavity-cavity coupling rate J shown in Table II.

entanglement exists when �̃n � 0.9ωd (anti-Stokes sideband)
and �a � −ωd (Stokes sideband). In the coupled mag-
nomechanical system, we consider magnon-phonon-ensemble
(nde) and cavity-1 photon-phonon-magnon (a1dn) tripartite
subsystems and plot the minimum of the residual contan-
gle in Fig. 10 as a function of normalized detuning �a/ωd .
Both these entanglements nde and a1dn exist for a signif-
icant range of cavity-field detuning with maximum values
near the resonant frequency. Interestingly, cavity-1 photon-
phonon-magnon entanglement has approximately the same
degree of entanglement as found in the single-cavity case [25].

In the coupled cavity scheme, future investigations may
incorporate the inclusion of cross-Kerr nonlinearity [63,64],
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FIG. 9. Density plots of (a) Ede
N , (b) Ene

N (c) Ea1d
N , and (d) Ea1n

N

as a function of temperature T and normalized coupling rate J/ωd .
Other parameters are optimized as shown in Table II.
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FIG. 10. Tripartite entanglement of the cavity-1 photon-magnon-
phonon (a1dn) and ensemble-magnon-phonon (nde) modes as a
function of �a/ωd = −�1/ωd = �2/ωd at �e = 2ωd and �̃n =
0.25ωd for a1dn and �e = −0.5ωd and �̃n = 0.65ωd for nde tri-
partite subsystems. The cavity-cavity coupling strength is J = ωd .

the exploration of entanglement dynamics in the ultrastrong-
coupling regime [65], a study of Einstein-Podolsky-Rosen
steering [66], and the introduction of an optical parametric
amplifier to widen the parametric regime for entanglement
[67]. Furthermore, the noise-induced decoherence can be
curtailed by purification and entanglement concentration in
a practical long-distance quantum communication network
[68,69].

IV. CONCLUSION

We proposed a scheme to realize distant entanglement be-
tween various excitation modes of the YIG sphere, atomic
ensemble, and microwave modes of two coupled cavities
housing an atomic ensemble and a YIG sphere. We showed
that ensemble-phonon and ensemble-magnon distant bipartite
entanglements not only exist but can persist up to a temper-
ature of 200 mK with the proper choice of experimentally
feasible parameters. Similarly, the entanglement of magnon
and phonon modes with cavity-1 photons is also robust up to
a temperature of about 170 mK. Most importantly, we demon-
strated that two types of tripartite entanglement between
different distant modes are possible in the proposed system.
They include magnon-phonon-ensemble and cavity-1 photon-
phonon-magnon entanglements. Interestingly, the strength
of cavity-1 photon-phonon-magnon tripartite entanglement
is comparable to the originally proposed photon-phonon-
magnon tripartite entanglement of the same cavity modes.
Hence, we conclude that both the bipartite and tripartite entan-
glements between indirectly coupled systems are substantial
in our proposed setup. Moreover, cavity-cavity coupling
strength plays a key role in the degree of entanglement as well
as the range of parameters in which it subsists. We believe
that the parametric regimes identified in our proposed system
may prove useful for the experimental realization of distant
entanglement, which is significant for processing continuous-
variable quantum information in quantum memory protocols.

0.0 0.5 1.0 1.5 2.0

J/ωd

0.00

0.05

0.10

0.15

0.20

E
N

nd

a2n

a2d

a1d

a1n

ne

de

FIG. 11. Line plot of EN against the cavity-cavity coupling rate
J . The rest of the conditions and parameters are the same as in Fig. 7
with �a = −ωd .

APPENDIX: ENTANGLEMENT TRANSFER

Here, we further discuss the entanglement transfer phe-
nomenon studied in Fig. 7. In Fig. 11, we plot bipartite
entanglements as a function of cavity-cavity coupling J at
�a = −ωd . It can be seen that when J = 0, we have entan-
glement between only three modes of cavity 2 since cavity 1
is decoupled. When cavity-cavity coupling is turned on, the
cavity fields interact with each other. As a result, the pop-
ulations of various modes change, leading to the transfer of
entanglement between different modes. Figure 11 shows that
initially, End

N and Ea2n
N decrease with an increase in Ea2d

N , Ea1d
N ,

Ene
N , and Ede

N . A further increase in J leads to a decreasing
trend in Ea2d

N . On the other hand, cavity-1 photon-magnon
(Ea1n

N ) entanglement increases as a function of J around �a ≈
ωd , reaching a maximum followed by a decaying trend, as
shown in Fig. 12(b). Similarly, Fig. 12(a) illustrates a similar
trend for the cavity-1 photon-phonon entanglement, reaching
a peak value near resonance, followed by the decaying trend.
Besides the increase in entanglement amplitude, the domain
of entanglement in the detuning space also increases.
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FIG. 12. Density plots illustrating the effect of the cavity-cavity
coupling rate J and cavity detuning �a on bipartite entanglement
of (a) the cavity-1 photon-phonon (a1d) and (b) cavity-1 photon-
magnon (a1n) modes. The rest of the conditions and parameters are
the same as in Fig. 7.
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