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Optomechanics with cavity vacuum fluctuations: Self-alignment
and collective rotation mediated by Casimir torque
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We theoretically consider an ensemble of quantum dimers placed inside an optical cavity. We predict two
effects. First, an exchange of angular momentum between the dimers mediated by the emission and reabsorption
of the cavity photons leads to the alignment of dimers. Second, the optical angular momentum of the vacuum
state of the chiral cavity is transferred to the ensemble of dimers, which leads to the synchronous rotation of the
dimers at certain levels of light-matter coupling strength.
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I. INTRODUCTION

The rapidly emerging field of cavity quantum materials
[1] explores the routes to tailor the low-energy electronic
properties of cavity-embedded low-dimensional materials via
engineering of the cavity electromagnetic vacuum fluctua-
tions. The substantial developments in this field were dictated
by the tremendous progress in photonic technologies, which
allowed routine fabrication of microcavities with large quality
factors and extremely small mode volumes, and, therefore,
deeply subwavelength field localization. This in turn enabled
the regime of the ultrastrong light-matter coupling [2], in
which the characteristic energy of light-matter interaction
becomes comparable to the cavity photon energy leading to
the drastic increase in the role of the vacuum fluctuations.
Ultrastrong coupling combined with the collective effects of
light-matter coupling was predicted to induce various cavity-
mediated phase transitions [3–10] and to modify the chemical
reactions [11–14].

The mechanical degrees of freedom play a crucial role
in the physics of ultrastrong light-matter coupling for many
reasons. First of all, coupling of light to mechanical vibrations
in organic molecules can reach an ultrastrong regime even
in relatively low quality factor cavities [15–19]. Moreover,
recently, the ultrastrong coupling of microwave mechan-
ical vibrations in nanomechanical systems and light was
realized in microcavity systems [20,21]. In these setups, a
strong nonlinear optomechanical response already emerges
at the single-photon pump level. There were several the-
oretical predictions on the quantum-correlated mechanical
motion of atoms in the cavities under weak optical pump
[22–25]. Finally, as it is known from the seminal work on
the Casimir effect [26], electromagnetic vacuum fluctuations
per se produce mechanical force. It was recently shown that

this force may be utilized for the self-assembly of polarizable
nano-objects inside microcavities [27]. Cavity-induced me-
chanical forces between nano-objects can be regarded as the
momentum exchange carried by electromagnetic vacuum fluc-
tuations. As it is known, an electromagnetic field acting on a
single scatterer lacking cylindrical symmetry induces both op-
tical force and optical torque. This immediately suggests that
the exchange of vacuum electromagnetic fluctuations between
asymmetric objects can induce aligning or anti-aligning force.
This aligning torque is called Casimir torque, in analogy with
the Casimir force induced by vacuum electromagnetic field
fluctuations, and has been recently observed experimentally
[28]. Moreover, in the case when vacuum electromagnetic
fluctuations in a cavity carry nonvanishing angular momen-
tum, it can be transferred to the scatterer and lead to the
rotation of the scatterer. Nonvanishing optical angular mo-
mentum in the ground state may appear in chiral cavities with
broken time-reversal symmetry. If we consider a Fabry-Perot
cavity with the mirrors made of ferromagnetic material, the
optical modes with opposite circular polarizations will have
different frequencies with the energy splitting proportional
to magnetization. Ultrastrong light-matter coupling in chiral
optical cavities [29] is currently a rapidly developing area of
research where multiple novel effects have been proposed,
ranging from the cavity-induced anomalous Hall effect [30]
to the emergence of peculiar multiphoton correlated states
[31].

In this paper, we consider an array of quantum dimers
placed inside a chiral optical cavity, as shown in Fig. 1.
A dimer could be a biatomic molecule with vanishing
static dipole moment or a prolated nano-object [32]. Due
to the breaking of time-reversal symmetry, the vacuum state
of an electromagnetic field carries nonvanishing angular
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FIG. 1. The geometry of the system. An ensemble of dimers is
placed inside a chiral cavity. The orientation of each dimer is defined
by the angle ϕi. The dimers may exchange angular momentum via
emission and reabsorption of cavity photons. Due to the breaking
of time-reversal symmetry, cavity modes of opposite helicity have
different energies, which leads to nonvanishing optical angular mo-
mentum in the ground state.

momentum, which can be partially transferred to the ensemble
of dimers. Moreover, due to the lack of cylindrical symme-
try in the dimers, they can exchange angular momentum via
emission and reabsorption of cavity photons. In what follows,
we provide a quantitative theoretical description of these two
effects and show that it leads to the cavity-mediated alignment
of dimers and may induces synchronous rotation of the dimers
in the cavity.

II. MODEL

We consider an ensemble of N dimers in a cavity. Each
dimer is characterized by the resonant frequency � and light-
matter coupling strength g. We assume that all dimers are
located at a single plane parallel to the cavity mirrors. The
orientation of each dimer is defined by the angle ϕi. We also
allow the dimers to rotate in the plane of the cavity mirrors
with moment of inertia J . The full Hamiltonian of the system
written in the dipole gauge can be written as

Ĥdip = �

2

N∑
i=1

σ̂zi −
N∑

i=1

∂2
ϕi

2J
+ q2

2

+ 1

2

(
π + B[ez × q] − g

2
√

N

N∑
i=1

σ̂xi n

)2

, (1)

where q = (qx, qy) is the canonical coordinate of the electro-
magnetic field in the cavity and π is the conjugate momentum.
The second term in Eq. (1) corresponds to the energy of the
mechanical motion of the dimers. n = (cos ϕi, sin ϕi ) is the
unit vector defining the orientation of the individual dimer. In
the absence of light-matter coupling (g = 0), the second line
of Eq. (1) corresponds to the gauge-invariant Hamiltonian of
the electromagnetic field in the gyrotropic cavity [33] where
the parameter B is the time-reversal symmetry-breaking term,
which may arise due to, e.g., static magnetization in the cavity

mirrors. Light-matter coupling is written in the length gauge
within the dipole approximation [34]. The Hamiltonian in
Eq. (1) is normalized to the cavity energy ω. We also note
that the denominator

√
N in the term corresponding to light-

matter coupling originates from the approximation of constant
dimer density. Indeed, coupling strength depends on the mode
amplitude, which is inversely proportional to the square root
of the mode volume. Therefore, when we keep the density
of dimers constant, we need to increase the mode volume
proportionally to N , and hence coupling strength scales as
1/

√
N . At the same time, one could consider the regime of

the constant mode volume (at least for the finite N): in this
case, there will be no additional scaling factor N−1/2.

For finite N, one could solve the Schrödinger equation with
Hamiltonian (1) numerically. Indeed, the system comprises
a two-dimensional harmonic oscillator (cavity modes) cou-
pled to N compact continuous variables (angles of the
dimers) and to 2N internal dimer states. Overall, the sys-
tem comprises 2N -coupled (2 + N)-dimensional Schrödinger
equations. However, already for small N , one should resort to
the approximations such as the Born-Oppenheimer approxi-
mation.

As can be seen, the gyrotropy term in the Hamiltonian
proportional to B couples cavity modes with linear polar-
ization. It is known that in the presence of the gyrotropy,
the nondegenerate eigenmodes of the cavity are those with
specific circular polarization. We first apply a unitary trans-
formation (details are presented in Appendix A) in order to
diagonalize the cavity part of the Hamiltonian. The diagonal-
ized cavity Hamiltonian then reduces to ωr r̂†r̂ + ωl l̂† l̂ , where
r, l correspond to right- and left-circularly polarized modes,
r̂, l̂ are standard bosonic annihilation operators, and ωr,l =√

B2 + 1 ± B (see Appendix A). The operator of the net an-
gular momentum of the cavity modes, which is sometimes
referred to as photon spin angular momentum density [35],
is given by L̂ = r̂†r̂ − l̂† l̂ . The Hamiltonian is then written as

Ĥ = ĤMech + ĤDicke, (2)

where ĤMech = (2J )−1 ∑
i p̂2

ϕi
corresponds to the mechanic

kinetic energy of the dimers and

ĤDicke = �

2

N∑
i=1

σ̂zi + ωr r̂†r̂ + ωl l̂
† l̂

− ig/
√

8N√
ωr + ωl

N∑
i=1

σ̂xi [ωr r̂eiϕi − ωl l̂e
−iϕi ] + H.c.

+ g2

8

⎡
⎣1 + 1

N

N∑
i �= j

σ̂xi σ̂x j cos(ϕi − ϕ j )

⎤
⎦ (3)

describes the coupled cavity modes and internal degrees
of freedom of the dimers. In order to apply the Born-
Oppenheimer (BO) approximation, one omits the ĤMech at the
first step and finds the ground-state energy E0 of ĤDicke with
orientations of the dimers ϕi treated as parameters, and then
adds E0({ϕi}) as the potential to ĤMech to find the mechanical
state of the system. It is expected that the BO approximation
will be valid for heavy dimers J → ∞.
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FIG. 2. Dependence of the energy on the total angular mo-
mentum on magnetic field B (left panel) and light-matter coupling
strength g (right panel). g was set to 0.5 (left panel) and B was set to
1.5 (right panel). The moment of inertia, J , was set to 1 for all cases

We first note that the total angular momentum of the sys-
tem, L̂ = L̂ + ∑

i pϕi , is an integral of motion, [L̂, Ĥ ] = 0.
For the case of a single qubit, we have solved the Schrödinger
equation with the Hamiltonian (1) numerically. Due to the
conservation of the total angular momentum, in this case
the problem reduces to the two-coupled two-dimensional
Schrödinger equations. As can be seen in Fig. 2, the ground
state always corresponds to zero total angular momentum. To
qualitatively explain the vanishing total angular momentum,
one could use the adiabatic argument: indeed, in the absence
of light-matter coupling, g = 0, the system is equivalent to the
Fock-Darwin problem of a parabolic quantum dot in a mag-
netic field [36]. It is known that the ground state corresponds
to the zero total angular momentum. If we adiabatically switch
on the coupling, it is expected that the zero angular momen-
tum state will remain the ground state. In what follows, we
consider the L = 0 state.

Thus, the total mechanical angular momentum is equal
in amplitude and anti-aligned with the optical angular mo-
mentum. In Fig. 3(a), the dependence of the optical angular
momentum L on the coupling strength g and magnetic field
B is plotted for the case of a single dimer. The calculation
was performed via numerical solution of the Schrödinger
equation with total angular momentum L = 0. It should be
noted that for any fixed value of g, the asymptotic of the
angular momentum at B → ∞ is 1/B, and for any fixed value
of B asymptotics for g → ∞, it is e−g2

. The large g and B
asymptotic analysis is presented in Appendix C.

Since total angular momentum L is the the integral of
motion and it vanishes in the ground state, the uncertainties
of the mechanical and optical angular momenta are the same.
In Fig. 3(b), we plot the uncertainty of the optical angular
momentum as a function of the moment of inertia, J , for
the case of a single dimer. The numerical calculation was
again performed via the solution of the Schrödinger equation.
Small J excitations of the mechanical degrees of freedom
cost large energy (1/J) and thus the dimer localizes at the
lowest rotational eigenstate, which minimizes the uncertainty

FIG. 3. (a) Dependence of the optical angular momentum L of a
single dimer in the ground state on the magnetic field B and coupling
strength g. In the calculation, J = 1 × 106. (b) Dependence of the
uncertainty of the angular momentum on the moment of inertia, J .
The dashed horizontal line corresponds to the result obtained within
the Born-Oppenheimer approximation (BO). In the calculation,
g = 0.1, B = 0.1. The analytical result was computed with Eq. (5).

of the angular momentum. Since mechanical and optical mo-
menta are rigidly connected, the uncertainty of the optical
angular momentum also vanishes. In the opposite limit of
heavy dimers, J → ∞, the mechanical kinetic energy can be
neglected and the uncertainty is defined by the uncertainty
of the photon occupation numbers in the ground state of the
Dicke Hamiltonian. As can be seen in Fig. 3(b) for large J ,
the result of full numerical modeling coincides with the result
obtained within the BO approximation. In the case of small
light-matter coupling, one may obtain the perturbative result
of the optical angular momentum and its uncertainty beyond
the BO approximation (see the derivation in Appendix B),

L = g2�′

8

(
2ωrωl + �′(ωr + ωl )

(ωr + �′)2(ωl + �′)2

)
ωr − ωl

ωr + ωl
, (4)

�L = g√
8(ωr + ωl )

√
ω2

r

(�′ + ωr )2
+ ω2

l

(�′ + ωl )2
, (5)

where �′ = � + 1
2J . From Eq. (5), it can be seen that the

uncertainty of the angular momentum decreases with the
increase of total number of dimers, N . As can be seen in
Fig. 3(b), the analytical Eq. (5) approximates the numerical
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solution. In what follows, we will resort to the BO approxima-
tion since, for the experimentally relevant situations, J � 1.

We now consider the effective interdimer interaction orig-
inating from the coupling to the cavity modes. We focus on
the large-N limit describing the gas of dimers. It has been
shown in [34] that one may use the 1/N expansion for the
ground-state energy of the Dicke Hamiltonian. Specifically,
the leading correction to the ground-state energy is given by
the random phase approximation (RPA),

δERPA
0 =

∫ ∞

0

dω

2π
ln

⎧⎨
⎩det

⎡
⎣1 − g2

4N
Dph(iω)

N∑
j=1

	 j (iω)

⎤
⎦
⎫⎬
⎭,

(6)

where Dph is the bare photon propagator and 	 j is the polar-
ization bubble for the jth dimer (expressions for Dph and 	 j

are presented in Appendix D).
The integral in Eq. (8) can be taken analytically, yielding

δERPA
0 = 1

2

4∑
l=1

ωpol,l − 1

2
(ωr + ωl ) − �, (7)

where ωpol,l are the energies of the polaritonic modes in the
system which are found as the square roots xl of the zeros
of the following fourth-order polynomial presented in Ap-
pendix D. In the absence of a magnetic field, the roots can
be written compactly, yielding the following expression for
the energy correction:

δERPA
0 = � + 1

2

×
⎡
⎣
√

1 + g2�(1 + Z )

4(� + 1)2
+

√
1 + g2�(1 − Z )

4(� + 1)2
− 2

⎤
⎦,

(8)

where Z = | 1
N

∑N
j=1 e2iϕ j |. It can be seen from Eq. (8) that

the dependence of the ground-state energy on the dimer ori-
entation appears only in the term proportional to g4. The
perturbation expansion in g yields the following expression
for the orientation-dependent term:

δE0({ϕ})

= − g4�2

64N2

2ωrωl + �(ωr + ωl )

(ωr + ωl )(ωr + �)2(ωl + �)2

∑
i �= j

cos2(ϕi − ϕ j ),

(9)

which, for B = 0, coincides with the leading term in the ex-
pansion over g of Eq. (8). Within the BO approximation, one
needs to solve the Schrödinger equation with the Hamiltonian
ĤMech + δE0({ϕ}) to find the mechanical ground state of the
system. For the case of N = 2, this problem reduces to solving
a one-dimensional Schrödinger equation for the wave function
over relative orientation, which is defined by the relative an-
gle θ = ϕ1 − ϕ2. The Schrödinger equation is just a Mathieu
equation [37] and its ground solutions for different values of
g are shown in the insets of Fig. 4. As can be see in Fig. 4,
increasing g leads to the localization of the wave-function
profiles (shown in insets) and thus the uncertainty of the

FIG. 4. The dispersion of the difference of two angles,
θ = ϕ1 − ϕ2, as a function of coupling strength g. Here it is assumed
that � = 1, J = 1 × 107, B = 0.3. The subplots show mechanical
wave functions for the two values of g shown with red crosses
on the main plot. On the subplots, solid blue and dashed orange
lines show the confining potential obtained via numerical solution
of ĤDicke within the RPA approximation, respectively, the red dashed
line shows the position of the ground-state energy, and the solid black
lines depict the profile of the wave function.

relative orientation decreases. Uncertainty of the relative
angle is directly related to the correlation between the orien-
tations of the dimers: indeed, 〈n1n2〉 = 〈cos θ〉.

We note that the orientation-dependent energy correction in
the regime of finite density computed within RPA in Eq. (8)
does not scale with N and thus is not an extensive quantity and
cannot change the mechanical state of the dimers in the ther-
modynamic limit, N → ∞. Moreover, even if we consider the
case of finite volume, i.e., make substitution g → g

√
N , the

energy correction still scales only as
√

N and thus is subex-
tensive. This is in accordance with the previously obtained
results [34], stating that in the thermodynamic limit, N → ∞,
electron photon interaction with a single cavity mode cannot
alter the ground state of the electronic system for arbitrary
light-matter coupling strength. At the same time, for suffi-
ciently heavy dimers, J → ∞, the cavity-induced Casimir
torque can still induce the alignment of the dimers in the
cavity. It should be noted that for most of the experimentally
realizable systems, J � 1 ranging from around 100 for the
case of light molecules to 1 × 106 for the nano-objects.

It is worthwhile to estimate the feasibility of the discussed
effect. A dilute gas of cooled molecules seems to be an ap-
propriate platform. If we approximate the resonant frequency
by 1 eV, � = 1, B = 0 and light-matter coupling strength
g ≈ 0.5 × 10−3, then the height of the aligning potential for
two molecules will be around 1 × 10−13eV. In the regime
of finite mode volume, the height of the potential scales as
N , and thus, for N = 100, the value is 1 × 10−11eV, which
corresponds to the temperature of approximately 100 nK that
is routinely reached in cold-atom experiments. The average
distance between the molecules in this case will be of the order
of 200 nm and the corresponding collision frequency may
be estimated as approximately 10 s−1 [38], which is much
smaller than the estimated characteristic rotation frequency of
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the dimers, which is of the order of 1 × 103 s−1. The cavity-
induced alignment effect could be detected as a dependence
of the degree of linear polarization of the collective emission
from the molecular ensemble as a function of cavity mode
volume in a tunable cavity.

III. CONCLUSION

To conclude, we have shown that the collective light-matter
coupling of an ensemble of dimers in a two-mode cavity
leads to the emergence of the Casimir torque forcing to align
the dimers along a single direction. Moreover, in the case
of a chiral cavity, when there exists an energy splitting be-
tween the two circularly polarized modes, the light-matter
interaction induces a torque that leads to the coherent ro-
tation of the ensemble. In the future, it is worthwhile to
consider the torque emerging between two dissimilar group
of dimers, where, as has been recently shown, strong cor-
relations beyond the RPA approximation may arise [39]. It
is also worth noting that the effective Hamiltonian for the
mechanical motion is that of a fully connected quantum rotor
model, which has recently drawn considerable attention in the
context of quantum criticality [40]. Therefore, we believe that
the proposed effect could find its applications in quantum sim-
ulations of the correlated phases with cavity-embedded cold
atoms.
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APPENDIX A: DIAGONALIZATION OF THE EMPTY
CAVITY HAMILTONIAN. BOGOLIUBOV

TRANSFORMATION

In the main text of this paper, it is noticed that in order to
fully diagonalize a cavity Hamiltonian, we need to implement
the Bogoliubov transformation, taking into account all orders
of field B. So the exact transformation is

UB =

⎛
⎜⎜⎜⎝

u1 u1 −u2 −u2

iu1 −iu1 iu2 −iu2

−u2 −u2 u1 u1

−iu2 iu2 −iu1 iu1

⎞
⎟⎟⎟⎠, (A1)

where

u1 = 2 + ωr + ωl

4
√

ωr + ωl
, u2 = (ωr − ωl )2

4
√

ωr + ωl (2 + ωr + ωl )
. (A2)

Here we suppose ωr,l = √
1 + B2 ± B. Also note that ωr,l are

values that normalized to the frequency of incoming photons,
so these values are dimensionless.

APPENDIX B: PERTURBATION THEORY FOR THE CASE
OF WEAK LIGHT-MATTER COUPLING

In this Appendix, we consider a weak light-matter cou-
pling regime, where one can use the perturbation expansion
in coupling constant g. The weak interaction is described by
the relationship g � �. In this case, we can consider parts that
are proportional to the coupling strength g as some perturba-
tion potentials and exploit the results from the perturbation
theory. Note that this problem is solved without taking into
account the Born-Oppenheimer approximation. The Hamilto-
nian reads

Ĥ = Ĥ0 + gV̂1 + g2V̂2,

Ĥ0 =
N∑

i=1

p̂2
ϕi

2J
+ �

2

(
N∑

i=1

σ̂zi

)
+ ωr r̂†r̂ + ωl l̂

† l̂,
(B1)

where

V̂1 = − i√
8N (ωr + ωl )

N∑
i=1

σ̂xi (ωr r̂eiϕ̂i − ωl l̂e
−iϕ̂i ) + H.c., V̂2 = 1

8

⎡
⎣1 + 1

N

N∑
i �= j

cos(ϕ̂i − ϕ̂ j )σ̂xi σ̂x j

⎤
⎦. (B2)

The unperturbed part can be easily diagonalized as

En,m,M,k =
N∑

i=1

k2
i

2J
+ �M + ωrn + ωlm, �n,m,M,k =

{
N∏

i=1

eikiϕi

}
|n〉r |m〉l |M〉. (B3)

Here we denote |n〉r(l ) as the Fock state of the r(l ) mode, M is the total spin projection on the z axis and |M〉 is the eigenstate
of the operator

∑
i σ̂zi , ki ∈ Z is the eigenvalue for operator p̂i, and k = (k1, . . . , kN )T . The matrix elements of the perturbation
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operators read

〈n′, m′, k′|V̂1|n, m, k〉 = i√
8N (ωr + ωl )

(ωl
√

mδn′,nδm′,m−1 − ωr

√
n + 1δn′,n+1δm′,m)

N∑
i=1

σ̂xi e
−iϕiδk′

i ,ki+1

+ i√
8N (ωr + ωl )

(ωl

√
m + 1δm′,m+1δn′,n − ωr

√
nδn′,n−1δm′,m)

N∑
i=1

σ̂xi e
iϕiδk′

i ,ki−1,

〈n′, m′, k′|V̂2|n, m, k〉 = 1

8

⎡
⎣1 + 1

N

N∑
i �= j

cos(ϕi − ϕ j )σ̂xi σ̂x j

⎤
⎦δn,n′δm,m′δk′,k, (B4)

where δm′,m+1 is the Kronecker symbol. For the ground state of the perturbed system, we obtain the expansion

E0 = E0
0 + g2E2

2 + g3E3
0 + g4E4

0 + · · · , E0
0 = −�

2
N,

�0 = �
(0)
0 + g� (1)

0 + g2�
(2)
0 + g3�

(3)
0 + · · · , �

(0)
0 =

{
N∏

i=1

eikiϕiδki

}
|0〉r |0〉l

∣∣∣∣−N

2

〉
. (B5)

For the second correction, we have

E2
0 = 〈0|V̂2|0〉 +

∑
s1 �=0

∣∣〈s1|V̂1|0〉∣∣2

E0
0 − E0

s1

= �′

8

2ωrωl + �′(ωl + ωl )

(ωr + ωl )(ωr + �′)(ωl + �′)
, (B6)

where a state s1 = {n, m, M, k} is parameterized by the eigenvalues set and �′ = � + 1
2J . For the next correction, we obtain

E3
0 =

∑
s1 �=0

〈0|V̂2|s1〉〈s1|V̂1|0〉 + 〈0|V̂1|s1〉〈s1|V̂2|0〉
E0

0 − E0
s1

+
∑

s1,s2 �=0

〈0|V̂1|s1〉〈s1|V̂1|s2〉〈s2|V̂1|0〉(
E0

0 − E0
s1

)(
E0

0 − E0
s2

) = 0. (B7)

The most interesting part appears in the fourth part, i.e., the dependence on phases,

E4
0 =

∑
s1,s2,s3 �=0

〈0|V̂1|s1〉〈s1|V̂1|s2〉〈s2|V̂1|s3〉〈s3|V̂1|0〉(
E0

n − E0
s1

)(
E0

n − E0
s2

)(
E0

n − E0
s3

) − 〈0|V̂2|0〉
∑
s1 �=0

|〈s1|V̂1|0〉|2(
E0

0 − E0
s1

)2 −
∑
s1 �=0

|〈s1|V̂1|0〉|2(
E0

0 − E0
s1

)2

∑
s1 �=0

|〈s1|V̂1|0〉|2
E0

0 − E0
s1

+
∑
s1 �=0

〈0|V̂2|s1〉〈s1|V̂1|s2〉〈s2|V̂1|0〉 + 〈0|V̂1|s1〉〈s1|V̂2|s2〉〈s2|V̂1|0〉 + 〈0|V̂1|s1〉〈s1|V̂1|s2〉〈s2|V̂2|0〉(
E0

n − E0
s1

)(
E0

n − E0
s2

) +
∑
s1 �=0

|〈s1|V̂2|0〉|2
E0

0 − E0
s1

.

(B8)
From here, we obtain a part without phases (A) and with phases,

E4
0 = A − �′2

64N2

2ωrωl + �′(ωr + ωl )

(ωr + ωl )(ωr + �′)2(ωl + �′)2

∑
i �= j

cos2(ϕi − ϕ j ). (B9)

As we can see, the part with phases is nonpositive, which
means that the minimum is when all phases are equal, i.e.,
all qubits tends to rotate in-phase. Speaking of the angular
momentum of the system, we can find it in the second order
in expansion on g, i.e.,

L ≈ 〈
�

(0)
0 + g� (1)

0 |L̂|� (0)
0 + g� (1)

0

〉
= g2�′

8

(
2ωrωl + �′(ωr + ωl )

(ωr + �′)2(ωl + �′)2

)
ωr − ωl

ωr + ωl
, (B10)

and dispersion,

�L ≈ g√
8(ωr + ωl )

√
ω2

r

(�′ + ωr )2
+ ω2

l

(�′ + ωl )2
. (B11)

As can be seen, it is proportional to the difference between
two energies, ωr − ωl = 2B, i.e., the existence of the angular

momentum is the result of the presence of nonzero B in the
system. On the other hand, if there is tremendous field B in the
system, then the angular momentum decreases as L ≈ g2

16B . As
a result, the maximum angular momentum is reached some-
where in the middle. As can be seen from Fig. 5, even for not
very small coupling strength g = 0.5, the angular momentum
is still very low, i.e., less than 5 × 10−3.

APPENDIX C: PERTURBATION THEORY FOR THE CASE
OF STRONG LIGHT-MATTER COUPLING

In this Appendix, we consider the strong interaction � < g
in the presence of the weak field B � g. Such regime can be
realized in practice for relatively small detuning �. In this
situation, it is possible to consider the part that is proportional
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to the total z-spin projection as a perturbation. For simplicity,
we demonstrate the derivation for the N = 1 qubit in detail.
The Hamiltonian after transformation will be

ĤN=1 = ( p̂ϕ − L̂)2

2J
+ �

2
σ̂z + ωr r̂†r̂ + ωl l̂

† l̂

− ig√
8(ωr + ωl )

σ̂x[ωr (r̂ − r̂†) − ωl (l̂ − l̂†)] + g2

8
.

(C1)

Then we implement the Born-Oppenheimer approximation,
so we omit the part that corresponds to the mechanical motion
and we also make a rotation such that σ̂x → σ̂z, σ̂z → −σ̂x.
After that, we obtain

ĤN=1
Dicke = Ĥ0 + V̂ = ωr r̂†r̂ + ωl l̂

† l̂

− ig√
8(ωr + ωl )

σ̂z[ωr (r̂ − r̂†) − ωl (l̂ − l̂†)]

+ g2

8
− �

2
σ̂x, (C2)

where V̂ = −�
2 σ̂z. The unperturbed part can be easily diago-

nalized as

En,m = ωrn + ωlm,

�n,m = {| ↑〉|n〉−iq|m〉iq, | ↓〉|n〉iq|m〉−iq},
q = g√

8(ωr + ωl )
, (C3)

where |n〉r denotes the Fock state of the displaced oscillator
on r. As we can see, in an unperturbed system, every level is
twice degenerate. The existence of the perturbation removes
the degeneracy and then we obtain

En,m,± = ωrn + ωlm ∓ �

2
e−4q2

Ln(4q2)Lm(4q2),

�
(0)
n,m,± = 1√

2
(| ↑〉|n〉−iq|m〉iq ± | ↓〉|n〉iq|m〉−iq ), (C4)

FIG. 5. The angular momentum as a function of the field B. We
supposed here that the incoming photon is resonant with the ground-
state to excited-state transition of qubits, i.e., � = 1, and fixed the
coupling strength g = 0.5.

FIG. 6. Comparison of the analytically calculated angular mo-
mentum for the N = 1 qubit as a function of coupling strength
g and numerically calculated for the cases (a) B = 0.01 and (b)
B = 0.1, both for � = 1. As can be seen, the angular momentum is
proportional to B, even for big g. The biggest difference between the
analytical and numerical results occurs in the vicinity of the maximal
angular momentum.

where Ln(x) is the Lauguere polynomial. So the ground en-
ergy is

E0
0 = −�

2
e−4q2

,

�0
0 = 1√

2
(| ↑〉|0〉−iq|0〉iq + | ↓〉|0〉iq|0〉−iq ). (C5)

Before we go further, it is wise to make a comment. Use
of the perturbation theory in this way is only valid when
splitting the energy levels by perturbation is small compared
to the main levels, i.e., ωl � �e−4q2

. It can be deduced that if
q � 1, then g � √

ωr + ωl or simply g � B.
For our purposes, it is sufficient to consider only the first

order on �e−4q2
in the wave function to find the nonzero value

for the angular momentum. So we introduce the expansion for
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the ground state,

�0 = �
(0)
0 + �e−4q2

�
(1)
0 + · · · ,

�
(1)
0 = 1

4

∑
n �=m

(2q)n+m

√
n!m!(ωrn + ωlm)

× {
[1 + (−1)n+m]� (0)

n,m,+ − [1 − (−1)n+m]� (0)
n,m,−

}
.

(C6)

From here, we can find the angular momentum, up to the first
order of �e−4q2

,

L1 = 〈
�

(0)
0 + g� (1)

0 |L̂|� (0)
0 + g� (1)

0

〉 ≈ 4B�q2e−4q2
, (C7)

�L1 ≈
√

2(ωr + ωl )�qe−2q2
. (C8)

Again we see that the occurrence L is a consequence of the
existence of the field B in the system. Also, in the case of
a tremendous value of the coupling strength g and some fixed
field B, the angular momentum will decrease rapidly. This fact

is also a hint that the maximal possible value is somewhere in
the middle; see Fig. 6.

Such derivation can be realized for any number of qubits
in the system. Here we also represent the analytically counted
angular momentum for the system with N = 2 qubits,

L2 ≈ 4B�q2e−2q2
. (C9)

Furthermore, it is proved numerically that in systems with N
qubits, we will have LN ≈ 4B�q2e− 4

N q2
.

We now consider an intermediate regime, when the split-
ting of energy levels due to the spin V̂ = −�Ŝx and energy
levels of the l mode are very close to each other such that
some energy levels become degenerated. For example, in the
system with N = 1 qubit, it means ωl ≈ �e−4q2

; see Fig. 7.
We call this regime intermediate. Mathematically, it means
that we cannot use the perturbation theory as we did. Instead,
we need to honestly diagonalize the matrix in the vicinity of
level degeneracy.

Now we are going to provide a full derivation for the
system with a N = 1 qubit, taking into account an explicit
diagonalization of only the zero and the first excitation of the
d mode. So, in order to find the ground state, we should find
the minimal eigenvalue of the matrix,

H =

⎛
⎜⎜⎜⎜⎜⎝

0 −�
2 e−4q2

0 i�qe−4q2

−�
2 e−4q2

0 −i�qe−4q2
0

0 −i�qe−4q2
ωl −�

2 e−4q2
L1(4q2)

i�qe−4q2
0 −�

2 e−4q2
L1(4q2) ωl

⎞
⎟⎟⎟⎟⎟⎠. (C10)

Previously we omitted the excited levels of the l mode. Now we consider the case when the energy of the first excited state of
the l mode is small enough such that

ωl + �

2
e−4q2

L1(4q2) ≈ �

2
e−4q2 ↔ ωl = 2q2�e−4q2

. (C11)

This relation is in a good match with the results from the straightforward numerical modulation of the system; see Fig. 8(a).
After that, we can find the ground energy as E0 = −�

2 e−4q2√
1 + 4q2 and the state as

�0 = q√
1 + 4q2 +

√
1 + 4q2

×
{

−| ↑〉|0〉−iq|1〉iq + | ↓〉|0〉iq|1〉−iq + 1 +
√

1 + 4q2

2q
| ↑〉|0〉−iq|0〉iq + 1 +

√
1 + 4q2

2q
| ↓〉|0〉iq|0〉−iq

}
. (C12)

Using this state, we can derive the angular momentum,

L1 ≈ 〈�0|L̂|�0〉 = 2q2

1 +
√

1 + 4q2
. (C13)

As it can be seen, this estimation already gives huge values
such as L1 > 0.1. Please note that this formula cannot be used
for very small fields B because the angular momentum does
not vanish. Nevertheless, the numerical model predicts that
the real values of L are larger than this estimation and so
it is not sufficient to achieve the precise result taking into
account only the interaction of the zero and first excitations.
However, this procedure can be spread to the larger number
of excitations. Indeed, let the ground state be described by

mixing first n − 1 excitations and the ground state,

�0 ≈
n−1∑
j=0

C↑
j | ↑〉|0〉−iq| j〉iq + C↓

j | ↓〉|0〉iq| j〉−iq, (C14)

where C↑;↓
i are complex normalized coefficients, so |�0|2 = 1.

After some algebra, we can obtain

L1 ≈ 〈�0|L̂|�0〉

= −
n−1∑
j=1

{ j[|C↑
j |2 + |C↓

j |2] + 2q
√

j[C↑∗
j C↑

j+1 − C↓∗
j C↓

j−1]}.

(C15)
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FIG. 7. The left part (II) region, i.e., the splitting levels due to the
� part are small compared to the excitations of the l mode. The right
part is the resonance regime, i.e., they are of the same order.

Then, using this formula, we can calculate corrections to
the angular momentum; see Fig. 8(b). As can be seen, it is
sufficient to predict the real value of the angular momentum
considering the mixing of the first nine excitations and the
ground state.

Despite the fact that it is possible to find an intermediate
solution for any large (g, B) for the fixed �, there are several
restrictions on the occurrence of the intermediate regime in
the systems with small g, B. Indeed, the two main relation-
ships should be preserved in order to observe the intermediate
solution, i.e., the condition of appliance of the perturbation
theory and degeneracy of level splitting due to the spin pertur-
bation potential. Altogether, it leads to the more interpreted
condition, i.e., q � 1/2. So it can be rewritten as

g4

16
� 1 + B2,

� � 2eωl . (C16)

The first inequality means that the intermediate solution takes
place for any field B, but only for coupling strengths that are
greater than 2, i.e., g � 2. Finding such state in real systems
is the main problem because of the practical difficulties to
achieve such strength in real systems. The second inequal-
ity means that it is not possible for all small frequencies to
observe such regime. This happens mostly because of the
restriction on g.

For the system with N = 2 qubits, it is only possible to
analytically write the intermediate condition [see Fig. 8(a)],

ωl ≈ �e−2q2
. (C17)

Nevertheless, we can say that for the system with N qubits,
when all of them are in phase, i.e., ϕi = ϕ j for any i, j and
fixed field B, the angular moments are connected by the rela-
tionship LN = √

NL1. This relation is proven numerically for
several systems. Also it implies an interesting thing. We can
achieve the target angular momentum by decreasing field B
and increasing coupling strength g and the number of qubits,
N , in the system. This effect might be very useful in future
applications.

The intermediate state is also remarkable due to the fact
that the angular momentum attains its maximal value in this
state with two fixed parameters, i.e., �, B or �, g. In Fig. 9,
we numerically calculated the angular momentum for differ-
ent B, g with fixed � = 1 for N = 1 [Fig. 9(a)] and N = 2

FIG. 8. (a) The dependence between field B and coupling
strength g assuming the incoming photons are resonant with the
qubits, i.e., � = 1. Red lines correspond to the analytical resonance
relationships for N = 1 and N = 2, respectively, and blue lines cor-
respond to the numerical solution. (b) The maximal possible angular
momentum for the resonant photons, i.e., � = 1, as a dependence on
field B for the N = 1 system. The blue line corresponds to numerical
solution, the black line is the simplest analytical model (C13), and the
red lines are the solution of (C15) taking into account the interaction
between the first n − 1 excitations.

[Fig. 9(b)]. As can be seen, the maximal values on the verticals
or horizontals are achieved in the intermediate state.

APPENDIX D: GROUND-STATE ENERGY CORRECTION
WITHIN THE RANDOM PHASE APPROXIMATION

In this Appendix, we derive the ground-state energy cor-
rection due to the light-matter coupling in the limit of large
number of dimers, N → ∞. As has been shown in [34],
this energy correction is governed by the random phase
approximation. Specifically,

δERPA
0 =

∫ ∞

0

dω

2π
ln

⎧⎨
⎩det

⎡
⎣1 − g2

4N
Dph(iω)

N∑
j=1

	 j (iω)

⎤
⎦
⎫⎬
⎭,

(D1)
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FIG. 9. The numerical calculated angular momentum L for
(a) N = 1 and (b) N = 2 qubits. It is assumed that � = 1.

where Dph is the matrix of the bare photon propagator and
	 j is the polarizability matrix of the jth qubit. The photon
propagator can be obtained from the equations of motion for
the photon canonical coordinate and momentum [30]. In the
basis of the x and y polarized modes, the propagator reads

Dph(ω) = −ω2

(ω2 − 1)2 − 4B2ω2

(
ω2 − 1 −2iωB

2iωB ω2 − 1

)
, (D2)

where energies are normalized to the bare cavity resonant
frequency. We note that the chirality B mixes the linearly po-
larized components and thus leads to the nondiagonal terms.
In the basis of circularly polarized modes, the propagator
takes the diagonal form,

Dph(ω) = −
(

ω2

(ω−ωr )(ω+ωl ) 0

0 ω2

(ω+ωr )(ω−ωl )

)
. (D3)

The qubit polarizability is most readily written in the Carte-
sian basis. Polarizability 	 j of the jth qubit is a bare bubble
with two vertices corresponding to the coupling to the x and y
polarized modes. The strength of coupling is proportional to
the orientation of dimer n j . Thus, in the Cartesian basis, the
polarizability matrix can be written as

	 j (ω) = − 2�

ω2 − �2

(
cos2 ϕ j cos ϕ j sin ϕ j

cos ϕ j sin ϕ j sin2 ϕ j

)
. (D4)

In the basis of circularly polarized modes, the polarizability
matrix reads

	 j (ω) = − �

ω2 − �2

(
1 e−2iϕ j

e2iϕ j 1

)
. (D5)

The integral in Eq. (D1) can be taken analytically, yielding

δERPA
0 = 1

2

4∑
l=1

ωpol,l − 1

2
(ωr + ωl ) − �, (D6)

where ωpol,l are the energies of the polaritonic modes in the
system which are found as the square roots xl of the zeros of
the following fourth-order polynomial P(x),

P(x) =(x − �2)2
(
x − ω2

r

)(
x − ω2

l

)
− g2

2
�x(x − �2)(x − 1) + g4

16
(1 − |Z|2)�2x2,

(D7)

where Z = 1
N

∑N
j=1 ei2ϕ j . The roots of the polynomial can be

found in the absence of the magnetic field, ωr = ωl = 1, and
the result is presented in Eq. (9) in the main text.
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