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Two-port quantum model of finite-length transmission lines coupled to lumped circuits
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We show that, in the framework of quantum circuit electrodynamics in the Heisenberg picture, a finite-length
transmission line can be described as a two-port lumped element of Thévenin type. Each port consists of a resistor
connected in series to a controlled voltage source. The resistance of the resistors is equal to the characteristic
impedance of the line. The controlled voltage sources are governed by linear equations with delay that take
into account the reflections at the line ends. We apply this model to a transmission line capacitively coupled to
two lumped circuits and obtain the reduced system of Heisenberg equations that governs them. Then, we show
these equations can be reformulated as a pair of quantum Langevin-like equations that are coupled through the
controlled voltage sources. Finally, we apply our approach to an analytically solvable network. This approach
may be useful for the modeling of quantum links between superconducting circuits.
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I. INTRODUCTION

The transmission line paradigm (e.g., Ref. [1]) holds a
pivotal role in the domain of circuit quantum electrodynamics
(e.g., Refs. [2–5]). This paradigm finds application in the
modeling of one-dimensional resonators, wiring systems de-
signed for control and measurement, and modeling of losses
stemming from interactions with the surrounding environ-
ment. A substantial body of literature exists on methods for
the quantization of superconducting networks, encompassing
distributed circuits, transmission lines, and general impedance
environments coupled with lumped circuits. A comprehensive
summary of these methods is provided in Ref. [6].

Recent experimental studies have focused on systems
comprising transmon qubits connected by transmission lines
[7–13]. A primary objective of these studies is to develop a
network of quantum processors, a crucial step for distributed
quantum computers. This strategy shows promise in scaling
quantum computing [9]. Such systems have also been in-
strumental in examining phenomena such as the violation of
Bell’s inequality [14,15].

Finite-length transmission lines, which are pivotal in these
setups, may operate in various regimes. They can act as a
short-range link connecting lumped elements [16,17], can be
used in the implementation of LC resonators [16,17], and may
serve as long-range links [9].

A finite-length transmission line can be modeled by using
different approaches. In the discrete approach, the transmis-
sion line is represented as a cascade of discrete lumped
elements, i.e., inductors and capacitors (e.g., Refs. [18–21]).
In the mode expansion approach, the field operators associated
to the transmission line are expanded into a well-suited set of

modes (e.g., Refs. [3,6,22]). In the multiport impedance ma-
trix approach, the finite-length transmission line is described
as a two-port, then an equivalent lumped element two-port is
synthesized by using classical circuit theory techniques (e.g.,
Refs. [16,23,24]). The multiport impedance matrix approach
is general purpose and can be applied to any system composed
of N nonlinear lumped elements interacting via a general
time-dispersive linear distributed subsystem.

In this paper, we consider a finite-length transmission
line coupled to two lumped circuits. We propose a two-port
model of the transmission line in the Heisenberg picture,
which extends the one-port model, which is commonly used
in the literature for semi-infinite transmission lines (e.g.,
Refs. [4,25,26]). The two-port is composed of two resistors
and two controlled sources. The resistance of the resistors is
equal to the characteristic impedance of the line. The con-
trolled sources are governed by linear equations with delay
that take into account the reflections at the line ends. Using
this model, we derive the reduced system of Heisenberg equa-
tions that govern the entire network. Eventually, we recast the
reduced system into a quantum Langevin-like form. In the
Markovian limit, this formulation is consistent with the model
developed by Cirac et al. [27] to describe quantum transmis-
sion between atoms located at spatially separated nodes of
a quantum network, which was later heuristically applied to
describe transmon qubits connected by a transmission line
[14]. The Cirac et al. model builds upon the input formalism
developed by Gardiner [25,28].

The paper is organized as follows. In Sec. II, we first sum-
marize a possible quantization approach for a semi-infinite
transmission line linked to a lumped circuit via a single ca-
pacitor. Subsequently, in Sec. III we extend the approach
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FIG. 1. A semi-infinite transmission line coupled to a lumped
circuit B through the linear capacitor Cc.

to a finite-length transmission line capacitively coupled to
two lumped circuits and derive the Heisenberg equations of
motion. In Sec. IV, we derive an equivalent two-port model
of the line that generalizes the equivalent one-port model
for semi-infinite transmission lines. We introduce an equiv-
alent lumped network with delay, give the reduced system of
Heisenberg equations that governs the equivalent lumped cir-
cuit of the entire network, and reformulate them in a quantum
Langevin-like form. In Sec. V, we apply the proposed equiva-
lent model to study an analytically solvable network. Finally,
we summarize our findings and discuss their implications in
Sec. VI.

II. SEMI-INFINITE TRANSMISSION LINE

To streamline the presentation of the Heisenberg equa-
tions for a finite-length transmission line capacitively coupled
to two lumped circuits, we summarize the key findings con-
cerning a semi-infinite transmission line linked to a lumped
circuit, as shown in Fig. 1 [29]. We provide the Lagrangian
and Euler-Lagrange equations. Subsequently, we give the con-
jugate momenta and the Hamiltonian, and finally, we present
the Heisenberg equations of motion. The results align with
those that we would obtain by considering a discretized semi-
infinite line and then taking the continuum limit, as done in
Ref. [19].

Figure 1 shows a semi-infinite transmission line cou-
pled to the lumped circuit B via Cc. The lumped circuit
B contains linear capacitors and inductors, either linear or
nonlinear. At every node of B at least one capacitor and
one inductor meet. The entire network has (N + 2) nodes,
numbered 0 to N + 1. The coupling capacitor Cc is con-
nected to the nodes 0 and 1, and the transmission line is
connected to the nodes 0 and N + 1. We indicate the node
fluxes as �0(t ),�1(t ), . . . , �N (t ),�N+1(t ) where �N+1 = 0.
The voltage of the branch h connected to the nodes i and j is
(�̇i − �̇ j ), where the dot denotes the ordinary time derivative.

The fundamental electrical variables of the semi-infinite
transmission line are the current intensity i(t ; x) and the volt-
age v(t ; x), where 0 � x < ∞. The line inductance per unit
length is �, and capacitance per unit length is c. We introduce
the field φ(t ; x) = ∫ t

−∞ v(τ ; x)dτ , so v = φt and i = −φx/�

where φt ≡ ∂φ/∂t and φx ≡ ∂φ/∂x. We describe the coupling

between the transmission line and the lumped circuit through
the boundary conditions

v(t ; x = 0) = V0(t ), (1a)

i(t ; x = 0) = I0(t ), (1b)

where I0(t ) is the current intensity through the coupling ca-
pacitor Cc and V0(t ) is the voltage at the end x = 0 of the
line, according to the reference current direction shown in
Fig. 1. Since V0 = �̇0, the boundary condition 1a is satisfied
by imposing φ(t ; x = 0) = �0(t ). As we will see, the other
boundary condition arises directly from the Euler-Lagrange
equations of the system.

A. Lagrangian and Euler-Lagrange equations

The Lagrangian L of the entire network consists of three
distinct contributions: the contribution Lb of the lumped cir-
cuit B, the contribution Ltml of the transmission line, and the
contribution Lcpl describing the coupling between B and the
transmission line through the capacitor Cc,

L = Lb + Ltml + Lcpl. (2)

We introduce the N-dimensional column vector � =
|�1,�2, . . . , �N |ᵀ, which describes the degrees of freedom
of B. We denote by Crs the capacitance of the capacitor that
connects nodes r and s with r, s = 1, 2, . . . , N + 1, with Crs =
0 in cases where there is no capacitor between these nodes.
We introduce the (N + 1) × (N + 1) capacitance matrix [C],
whose nondiagonal elements are −Crs and the diagonal ele-
ments are equal to the opposite of the sum of values in the
corresponding row or column. Subsequently, we introduce the
matrix [Cb], which is derived from [C] by excluding both
the row and column corresponding to the (N + 1)th node
(the ground node). The contribution Lb to the Lagrangian is
given by

Lb = 1
2 �̇ᵀ[Cb]�̇ − Ub(�), (3)

where Ub = Ub(�) is the potential energy of the circuit com-
prising the sum of energies stored in the inductors, whether
linear or nonlinear. The degrees of freedom of the line are
�0(t ) and φ(t ; x) for 0 < x < ∞. The contribution Ltml is
given by (e.g., Ref. [30])

Ltml =
∫ ∞

0
dx Ltml(φt , φx ), (4)

where

Ltml = c

2
φ2

t − 1

2�
φ2

x (5)

is the Lagrangian density. The contribution Lcpl is given by

Lcpl = Cc

2
(�̇1 − �̇0)2. (6)

The system of Euler-Lagrange equations for � is

d

dt

∂

∂�̇
(Lb + Lcpl ) − ∂Lb

∂�
= 0. (7)

The Euler-Lagrange equation for φ with 0 < x < ∞ is

∂

∂t

∂Ltml

∂φt
+ ∂

∂x

∂Ltml

∂φx
= 0. (8)
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The Euler-Lagrange equations for �0 is

d

dt

∂Lcpl

∂�̇0
+ ∂Ltml

∂φx

∣∣∣∣
x=0

= 0. (9)

The degree of freedom �0 is shared by the coupling capacitor
and the transmission line and contributes to the first variation
of the action through both Lcpl and Ltml, [19,29]. In fact,
∂Ltml
∂φx

|x=0δ�0 gives the contribution of the variation of �0 to
the variation of the Lagrangian.

Using the expressions of Lb and Lcpl, from the Euler-
Lagrange equation (7) we obtain

[Cb]
d2�

dt2
+ ∂Ub

∂�
+ Cc

d2

dt2
(�1 − �0)1N = 0, (10)

where 1N is the N-dimensional column vector
|1, 0, . . . , 0, 0|ᵀ. Using the expressions of Ltml, from the
Euler-Lagrange equation (8) we obtain the wave equation for
the flux field for 0 < x < ∞,

∂2φ

∂t2
− v2

p

∂2φ

∂x2
= 0, (11)

where vp = 1/
√

�c. Using the expressions of Lcpl and Ltml,
from the Euler-Lagrange equation (9) we obtain

Cc
d2

dt2
(�1 − �0) + 1

�
φx(t ; x = 0) = 0. (12)

The system of Eqs. (10) returns the Kirchhoff current law at
the nodes 1, 2, . . . , N of the lumped circuit B. Since i(t ; x =
0) = −φx(t ; x = 0)/�, combining Eqs. (12) and the charac-
teristic equation of the capacitor Cc, we obtain the boundary
condition (1b).

B. Conjugate variables and Hamiltonian

The conjugate momentum to � is

Q = ∂

∂�̇
(Lb + Lcpl ) = [Cb]�̇ + Cc(�̇1 − �̇0)1N , (13)

according to Eq. (7). The conjugate momentum to φ is for
0 < x < ∞

q = ∂Ltml

∂φt
= c φt , (14)

according to Eq. (8). The conjugate momentum to �0 is

Q0 = ∂Lcpl

∂�̇0
= −Cc(�̇1 − �̇0), (15)

according to Eq. (9). Combining Eqs. (13) and (15) we obtain

�̇ = [Cb]−1(Q + Q01N ), (16)

and

�̇0 = pᵀQ + 1

Cp
Q0, (17)

where p is the N-dimensional column vector with elements
p j = ([Cb]−1)1, j for j = 1, 2, . . . , N (i.e., the elements of the
first row of [Cb]−1) and

1

Cp
= 1

Cc
+ p1. (18)

Since the matrix [Cb] is symmetric, we have [Cb]p = 1N .

The Hamiltonian of the entire network is the sum of the
energies stored within the circuit B, the coupling capacitor,
and the transmission line. In terms of the degrees of freedom
and their conjugate momenta introduced above, it is given by:

H = Hb + Html + Hcpl, (19)

where

Hb = 1

2
Qᵀ[Cb]−1Q + Uc(�), (20a)

Hcpl = pᵀQQ0 + 1

2Cp
Q2

0, (20b)

Html =
∫ ∞

0

(
1

2c
q2 + 1

2�
φ2

x

)
dx. (20c)

C. Heisenberg equations of motion

We now promote the conjugate variables (�, Q), (�0, Q0),
(φ, q), and H to operators. In the Heisenberg picture, the
equal-time commutation relations are

[�̂k (t ), Q̂k (t )] = ih̄ for k = 1, 2, . . . , N, (21a)

[�̂0(t ), Q̂0(t )] = ih̄, (21b)

[φ̂(t ; x′), q̂(t ; x)] = ih̄δ(x′ − x) for 0 < x < ∞, (21c)

while all remaining equal-time commutators vanish. The
Heisenberg equations for the conjugate operators (�̂, Q̂) are

˙̂� = 1

ih̄
[�̂, Ĥ ] = [Cb]−1(Q̂ + 1N Q̂0), (22a)

˙̂Q = 1

ih̄
[Q̂, Ĥ ] = −∂Ub

∂�̂
. (22b)

The Heisenberg equations for the conjugate operators
(�̂0, Q̂0) are

˙̂�0 = 1

ih̄
[�̂0, Ĥ ] = pᵀQ̂ + 1

Cp
Q̂0, (23a)

˙̂Q0 = 1

ih̄
[Q̂0, Ĥ ] = 1

�
φ̂x(t ; x = 0). (23b)

Lastly, the Heisenberg equations for the conjugate opera-
tors (φ̂, q̂), with 0 < x < ∞, are

φ̂t = 1

ih̄
[φ̂, Ĥ ] = 1

c
q̂, (24a)

q̂t = 1

ih̄
[q̂, Ĥ ] = 1

�
φ̂xx, (24b)

where φ̂xx ≡ ∂2φ̂/∂x2. We recall φ̂(t ; x = 0) = �̂0(t ). The
Heisenberg equations must be solved with the initial condi-
tion that, at the initial time, any operator in the Heisenberg
picture should be equal to the corresponding operator in the
Schrödinger picture, denoted as Ô(S).

Combining Eqs. (22a), (22b), and (23a), applying the rela-
tion [Cb]p = 1N , we obtain

[Cb]
d2�̂

dt2
+ ∂Ub

∂�̂
+ Cc

d2

dt2
(�̂1 − �̂0)1N = 0. (25)

From Eqs. (23a), (23b), and (22a) we also obtain

Cc
d2

dt2
(�̂1 − �̂0) + 1

�
φ̂x(t ; x = 0) = 0. (26)
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FIG. 2. A network composed of a finite length transmission line capacitively coupled to the lumped circuits B′ and B′′ through the linear
capacitors C′

c and C′′
c . The reference directions for the voltage v(t ; x) and the current intensity i(t ; x) are the same as those indicated in Fig. 1

for the semi-infinite line.

Lastly, from Eqs. (24a) and (24b) we obtain for 0 < x < ∞
∂2φ̂

∂t2
− v2

p

∂2φ̂

∂x2
= 0. (27)

The system of Eqs. (25)–(27) are the quantized version of the
system of Eqs. (10)–(12).

III. FINITE LENGTH TRANSMISSION LINE

We now consider a transmission line of length d that is
capacitively coupled to the lumped circuits B′ and B′′ through
the capacitors C′

c and C′′
c , as shown in Fig. 2. Building on

the results obtained for the semi-infinite line, we can readily
derive the Lagrangian and Hamiltonian formulations, as well
as the quantization and Heisenberg equations of motion for
the observables of the entire system.

The lumped circuits B′ and B′′ have the same characteris-
tics as the lumped circuit B considered in the previous section.
In particular, B′ has (N ′ + 1) nodes and B′′ has (N ′′ + 1)
nodes. The capacitor C′

c is connected to the nodes 0′ and
N ′ + 1, while the capacitor C′′

c is connected to the nodes 0′′
and N ′′ + 1. The transmission line is connected to the nodes
0′ and N ′ + 1 on the left, and to the nodes 0′′ and N ′′ + 1
on the right. As in the case of the semi-infinite line, we
apply the node method (e.g., Ref. [4]). We indicate the flux
associated with the node i′ by �′

i(t ) ∀i′ ∈ [1, N ′ + 1], and the
flux associated to the node i′′ by �′′

i (t ) ∀i′′ ∈ [1, N ′′ + 1]. We
set �′

N ′+1 = 0 and �′′
N ′′+1 = 0. We denote the set of node

fluxes of B′ by the N ′-dimensional column vector �′ and
the set of node fluxes of B′′ by the N ′′-dimensional column
vector �′′. The lumped circuit B′ is characterized by the
(N ′ × N ′) capacitance matrix [C′

b] and the potential energies
U ′

b = U ′
b(�′); the lumped circuit B′′ is characterized by the

(N ′′ × N ′′) capacitance matrix [C′′
b] and the potential energies

U ′′
b = U ′′

b (�′′).
The electrical variables of the transmission line are defined

over the interval 0 � x � d . We describe the coupling of the
line with the two lumped circuits by the boundary conditions

v(t ; x = 0) = V ′
0 (t ), v(t ; x = d ) = V ′′

0 (t ), (28a)

i(t ; x = 0) = I ′
0(t ), i(t ; x = d ) = −I ′′

0 (t ), (28b)

where I ′
0(t ) is the current intensity through the coupling ca-

pacitor C′
c, I ′′

0 (t ) is the current intensity through the coupling
capacitor C′′

c , V ′
0 (t ) is the voltage at the left end of the line,

V ′′
0 (t ) is the voltage at the right end of the line, according

to the reference versus shown in Fig. 2. Since V ′
0 = �̇′

0 and

V ′′
0 = �̇′′

0, the boundary conditions for the voltages are satis-
fied by imposing

φ(t ; x = 0) = �′
0(t ), φ(t ; x = d ) = �′′

0 (t ). (29)

As for the semi-infinite transmission line, the other boundary
conditions are naturally imposed through the formulation of
the problem.

A. Lagrangian

The degrees of freedom of the whole system are �′(t ),
�′

0(t ), φ(t ; x) for 0 < x < d , �′′
0 (t ), and �′′(t ). The La-

grangian is

L = L′
b + L′′

b + Ltml + L′
cpl + L′′

cpl, (30)

where L′
b and L′′

b give the contribution of B′ and B′′, Ltml gives
the contribution of the line, L′

cpl and L′′
cpl take into account the

capacitive coupling between the line and the lumped circuits
B′ and B′′. The expressions of L′

b and L′′
b are of the same

type as those given by Eq. (3), L′
b = 1

2 �̇′ᵀ[C′
b]�̇′ − U ′

b(�′)
and L′′

b = 1
2 �̇′′ᵀ[C′′

b]�̇′′ − U ′′
b (�′′). The expressions of L′

cpl

and L′′
cpl are of the same type as those given by Eq. (6), L′

cpl =
C′

c
2 (�̇′

1 − �̇′
0)2 and L′′

cpl = C′′
c

2 (�̇′′
1 − �̇′′

0 )2. The expression of

the contribution of the line is Ltml = ∫ d
0 dx Ltml(φt , φx ) where

the Lagrangian density Ltml is given by (5).
The Euler-Lagrange equations for �′ and �′′ share the

same form as those presented in (10); however, it is necessary
to note that the reference directions for I ′′

0 and i(t ; x = d ) are
different. The Euler-Lagrange equation for φ(t ; x) is given by
(11) where 0 < x < d . The Euler-Lagrange equations for �′

0
and �′′

0 are of the same type as those given by (12).

B. Conjugate variables and Hamiltonian

We denote by Q′(t ) and Q′′(t ) the conjugate momenta
to �′(t ) and �′′(t ), and by Q′

0(t ) and Q′′
0 (t ) the con-

jugate momenta to �′
0(t ) and �′′

0 (t ). The expressions of
Q′(t ) and Q′′(t ) are of the same type as those given by
(13), Q′ = [C′

b]�̇′ + C′
c(�̇′

1 − �̇′
0)1N ′ , and Q′′ = [C′′

b]�̇′′ +
C′′

c (�̇′′
1 − �̇′′

0 )1N ′′ ; the vector 1N ′ is the N ′-dimensional col-
umn vector |1, 0, . . . , 0, 0|ᵀ, and the vector 1N ′′ is defined
in an analogously way. The expression q(t ; x) of the conju-
gate momenta to φ(t ; x) is given by (14) where 0 < x < d .
Lastly, the expressions of Q′′

0 (t ) and Q′′
0 (t ) are of the same
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type as those given by (15), Q′
0 = −C′

c(�̇′
1 − �̇′

0) and Q′′
0 =

−C′′
c (�̇′′

1 − �̇′′
0 ).

The Hamiltonian of the entire network is

H = H ′
b + H ′′

b + Html + H ′
cpl + H ′′

cpl, (31)

where H ′
b and H ′′

b account for the contribution of the lumped
circuits B′ and B′′, Html takes into account the contribution
of the line, H ′

cpl and H ′′
cpl take into account the interac-

tion between the line and the lumped circuits B′ and B′′.
The expressions of H ′

b and H ′′
b follow the same form as

expressed in Eq. (20a), H ′
b = 1

2 Q′ᵀ[C′
b]−1Q′ + U ′

c (�′) and
H ′′

b = 1
2 Q′′ᵀ[C′′

b]−1Q′′ + U ′′
c (�′′). The expression of Html is

given by Html = ∫ d
0 dx( 1

2c q2 + 1
2�

φ2
x ). Lastly, the expressions

of H ′
cpl and H ′′

cpl are of the same type as those given by

(20b), H ′
cpl = (p′ᵀQ′)Q′

0 + 1
2C′

p
Q′2

0 and H ′′
cpl = (p′′ᵀQ′′)Q′′

0 +
1

2C′′
p
Q′′2

0 . The vector p′ is the N ′- dimensional column vector

with elements p′
j = ([Cb]−1)1, j for j = 1, 2, . . . , N ′, and the

vector p′′ is defined analogously. The capacitances C′
p and C′′

p
are defined as C′

p = C′
c/(1 + C′

c p′
1) and C′′

p = C′′
c /(1 + C′′

c p′′
1)

where p′
1 and p′′

1 are the first elements of the vectors p′ and p′′,
respectively.

C. Heisenberg equations

We now promote the conjugate variables (�′, Q′),
(�′

0, Q′
0), (φ, q) for 0 < x < d , (�′′, Q′′), (�′′

0, Q0) and the
Hamiltonian H to operators. In the Heisenberg picture, the
equal-time commutation relations are of the same type as
those given by (21a)–(21c), while all remaining equal-time
commutators vanish. The Heisenberg equations for these
operators are of the same type as those obtained for the
semi-infinite transmission line in Sec. II C. The Heisenberg
equations for the conjugate operators (�̂′, Q̂′) and the conju-
gate operators (�̂′′, Q̂′′) are

˙̂�′ = [C′
b]−1Q̂′ + p′Q̂′

0, (32a)

˙̂Q′ = −∂U ′
b

∂�̂′ , (32b)

and

˙̂�′′ = [C′′
b]−1Q̂′′ + p′′Q̂′′

0, (33a)

˙̂Q′′ = −∂U ′′
b

∂�̂′′ . (33b)

The Heisenberg equations for the conjugate operators
(�̂′

0, Q̂′
0) and the conjugate operators (�̂′′

0, Q̂′′
0 ) are

˙̂�′
0 = p′ᵀQ̂′ + 1

C′
p

Q̂′
0, (34a)

˙̂Q′
0 = 1

�
φ̂x(t ; x = 0), (34b)

and

˙̂�′′
0 = p′′ᵀQ̂′′ + 1

C′′
p

Q̂′′
0, (35a)

˙̂Q′′
0 = −1

�
φ̂x(t ; x = d ). (35b)

Lastly, the Heisenberg equations for and the conjugate opera-
tors (φ̂, q̂) are for 0 < x < d:

φ̂t = 1

c
q̂, (36a)

q̂t = 1

�
φ̂xx, (36b)

where φ̂xx ≡ ∂2φ̂/∂x2. In addition, we need to enforce the
boundary conditions (29) for the operators, ensuring that
φ̂(t ; x = 0) matches �̂′

0(t ), and φ̂(t ; x = d ) matches �̂′′
0 (t ).

The Heisenberg equations must be solved with the require-
ment that at t = 0 the operators in the Heisenberg picture are
equal to their counterparts in the Schrödinger picture.

IV. TWO-PORT CHARACTERIZATION
OF THE TRANSMISSION LINE

In the Heisenberg picture, a finite-length transmission line
can be represented as a two-port element with electrical ob-
servables (V̂ ′

0, Î ′
0) on the left port and (V̂ ′′

0 , Î ′′
0 ) on the right port.

In this way, we can greatly simplify the system of Heisenberg
equations (32a)–(36b), which govern the entire network.

To characterize the line as two-port, we begin by solving
Eqs. (36a) and (36b) with the boundary conditions φ̂(t ; x =
0) = �̂′

0(t ) and φ̂(t ; x = d ) = �̂′′
0 (t ). Subsequently, we ex-

press the current intensity operators at the ends of the line Î ′
0

and Î ′′
0 as functions of the voltage operators V̂ ′

0 and V̂ ′′
0 , as well

as the initial conditions.

A. Solution of the operator wave equation

By combining Eqs. (36a) and (36b), we obtain φ̂tt = v2
p φ̂xx

for 0 < x < d where φ̂tt ≡ ∂2φ̂/∂t2. Its general solution can
be expressed as

φ̂(t ; x) = φ̂→

(
t − x

vp
+ T

)
+ φ̂←

(
t + x

vp

)
, (37)

where the unknown field operators φ̂→ = φ̂→(t ) and φ̂← =
φ̂←(t ) are defined in the time interval (0,+∞), and T = d/vp

is the one-way transit time. The operators φ̂→ and φ̂← depend
both on the initial conditions for the conjugate observables of
the line and on the boundary conditions, which describe the
interaction of the line with the lumped circuits.

From Eq. (36a) we obtain for the charge density field
operator

q̂(t ; x) = c

[
v̂→

(
t − x

vp
+ T

)
+ v̂←

(
t + x

vp

)]
, (38)

where we have introduced the operators v̂→(t ) and v̂←(t )
defined as v̂→ ≡ ˙̂φ→ and v̂← ≡ ˙̂φ←. The voltage and current
intensity field operators along the line are given by q̂ = cv̂ and
î = −φ̂x/�, thus from (37) and (38) we obtain

v̂(t ; x) = v̂→

(
t − x

vp
+ T

)
+ v̂←

(
t + x

vp

)
, (39a)

î(t ; x) = 1

Zc

[
v̂→

(
t − x

vp
+ T

)
− v̂←

(
t + x

vp

)]
, (39b)

where Zc = √
�/c is the characteristic impedance of the

line. The operator v̂→(t ) is the forward voltage wave
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operator of the line at the end x = d; the operator v̂←(t ) is
the backward voltage wave operator of the line at the left end
x = 0. The observables of the transmission line are entirely
determined by v̂→ and v̂←, thus, they specify the state of the
transmission line.

The initial conditions for the flux and charge density field
operators are for 0 < x < d

φ̂(t = 0; x) = φ̂(S)(x), (40a)

q̂(t = 0; x) = q̂(S)(x), (40b)

where φ̂(S)(x) and q̂(S)(x) are the flux field operator and the
charge density field operator in the Schrödinger picture. By
imposing (40), we have for 0 < x < d

φ̂(S)
x (x) = 1

vp

[
− ˙̂φ→

(
T − x

vp

)
+ ˙̂φ←

(
x

vp

)]
, (41a)

q̂(S)(x) = c

[
˙̂φ→

(
T − x

vp

)
+ ˙̂φ←

(
x

vp

)]
. (41b)

These equations determine the forward and backward voltage
operators in the time interval (0, T ). Indeed, we obtain for
0 < t < T

v̂→(t ) = v̂(0)
→ (t ), (42a)

v̂←(t ) = v̂(0)
← (t ), (42b)

where

v̂(0)
→ (t ) = 1

2c

{
q̂(S)[vp(T − t )] − 1

Zc
φ̂(S)

x [vp(T − t )]

}
, (43a)

v̂(0)
← (t ) = 1

2c

[
q̂(S)(vpt ) + 1

Zc
φ̂(S)

x (vpt )

]
. (43b)

B. Equivalent two-port

We now derive the characteristic relations of the two-port
that describe the transmission line by applying the boundary
conditions (28). Specifying expressions (39a) and (39b) at the
line end x = 0 we obtain

V̂ ′
0 (t ) = v̂→(t + T ) + v̂←(t ), (44a)

ZcÎ ′
0(t ) = v̂→(t + T ) − v̂←(t ), (44b)

whereas specifying them at the line end x = d , we obtain

V̂ ′′
0 (t ) = v̂→(t ) + v̂←(t + T ), (45a)

−ZcÎ ′′
0 (t ) = v̂→(t ) − v̂←(t + T ). (45b)

Subtracting Eqs. (44a) and (44b) termwise and by adding
Eqs. (45a) and (45b) termwise, we have for 0 < t < ∞

V̂ ′
0 (t ) − ZcÎ ′

0(t ) = 2v̂←(t ), (46a)

V̂ ′′
0 (t ) − ZcÎ ′′

0 (t ) = 2v̂→(t ). (46b)

If v̂→(t ) and v̂←(t ) were known in any t , these equa-
tions would completely determine the terminal behavior of the
line. From Eqs. (44a) and (45a) we obtain the equations that
govern v̂→(t ) and v̂←(t ) for 0 < t < ∞

v̂→(t + T ) = V̂ ′
0 (t ) − v̂←(t ), (47a)

v̂←(t + T ) = V̂ ′′
0 (t ) − v̂→(t ). (47b)

Î ′0

Zc

−+2v̂←

−

+

V̂ ′
0

−

+

V̂ ′′
0

Zc

−+ 2v̂→

Î ′′0

FIG. 3. Equivalent two-port of Thévenin type of finite-length
transmission lines in the Heisenberg picture. The equations v̂→(t +
T ) = V̂ ′

0 (t ) − v̂←(t ) and v̂←(t + T ) = V̂ ′′
0 (t ) − v̂→(t ) control the

two voltage sources for 0 < t < ∞.

The set of equations (46a)–(47b) describes the terminal
properties of the line, as well as its state. Equations (47a)
and (47b) govern the evolution of the state variables of the
line. They must be solved with the initial conditions (42) for
0 < t < T .

Equations (46a) and (46b) suggest that the transmission
line can be described by the lumped equivalent two-port of
Thévenin type shown in Fig. 3 (e.g., Ref. [1]). Each port
of the finite-length transmission line behaves as a resistor
of resistance Zc connected in series to a voltage source. It
is a generalization of the lumped equivalent one-port for
a semi-infinite transmission line, which is commonly used
in the literature (e.g., Ref. [4]). However, unlike the semi-
infinite case, for finite-length transmission lines, the voltage
sources are not independent: they are controlled by the state
equations (47a) and (47b), which are linear algebraic equa-
tions with one delay. A semi-infinite transmission line is
equivalent to a resistor of resistance Zc connected in series
to an independent source with voltage v̂(0)

→ or v̂(0)
← , which are

completely determined by the initial conditions.
The equivalent two-port of Thévenin type can be converted

in the equivalent two-port of Norton type where each port
consists of a resistor with resistance Zc connected in parallel
to a controlled current.

C. Equivalent lumped network and reduced equations of motion

The network consisting of a finite-length transmission line
capacitively coupled to two lumped circuits B′ and B′′ can be
described by the equivalent lumped network with delay shown
in Fig. 4. The left lumped circuit is governed by the system
of reduced Heisenberg equations

˙̂�′ = [A′]Q̂′ + C′
pp′V̂ ′

0, (48a)

˙̂Q′ = −f ′(�̂′), (48b)

˙̂V ′
0 + 1

τ ′ V̂
′

0 = −p′ᵀf ′(�̂′) + 2

τ ′ v̂←(t ), (48c)

v̂←(t + T ) = V̂ ′′
0 (t ) − v̂→(t ), (48d)

where [A′] = [C′
b]−1 − [B′], [B′] = C′

pp′p′ᵀ, f ′(�̂′) = ∂U ′
b

∂�̂′ ,
and τ ′ = ZcC′

p. The right lumped circuit is governed by the
system of reduced Heisenberg equations

˙̂�′′ = [A′′]Q̂′′ + C′′
pp′′V̂ ′′

0 , (49a)

˙̂Q′′ = −f ′′(�̂′′), (49b)
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C ′
c

I ′0

Zc

−+2v←

Φ̂′
1

Φ̂′
N ′+1 = 0

Φ̂′
0 Φ̂′′

0

−

+

V ′
0

−

+

V ′′
0

Zc

−+ 2v→

C ′′
c

I ′′0 Φ̂′′
1

Φ̂′′
N ′′+1 = 0

B′′B′

FIG. 4. Equivalent lumped network with delay for the finite-length transmission line capacitively coupled to the lumped circuits B′ and B′′

shown in Fig. 2.

˙̂V ′′
0 + 1

τ ′′ V̂
′′

0 = −p′′ᵀf ′′(�̂′′) + 2

τ ′′ v̂→, (49c)

v̂→(t + T ) = V̂ ′
0 (t ) − v̂←(t ), (49d)

where [A′′] = [C′′
b]−1 − [B′′], [B′′] = C′′

pp′′p′′ᵀ, f ′′(�̂′′) =
∂U ′′

b

∂�̂′′ , and τ ′′ = ZcC′′
p . The operator V̂ ′

0 in the Schrödinger

picture is given by V̂ ′(S)
0 = p′ᵀQ̂′(S) + 1

C′
p
Q̂′(S)

0 ; the expression

of V̂ ′′(S)
0 is analogous. The system of Eqs. (48a)–(48d) and

(49a)–(49d) are coupled through the Eqs. (48d) and (49d),
which govern the controlled voltage sources.

The control laws of the voltage sources are linear algebraic
equations with one delay. In the time interval [iT, (i + 1)T ]
with i � 1, the state operators v̂→(t ) and v̂←(t ) depend, re-
spectively, only on the pair v̂←(t − T ), V̂ ′

0 (t − T ) and the pair
v̂→(t − T ), V̂ ′′

0 (t − T ) [for 0 < t < T , v̂→(t ) and v̂←(t ) are
given by the initial conditions (42)]. This characteristic en-
ables us to treat the controlled sources as independent voltage
sources if the problem is solved iteratively. Therefore, we can
analyze systems consisting of transmission lines and lumped
circuits iteratively, where at each step of the iteration we have
to solve a reduced equivalent circuit composed only of lumped
elements.

The operators �̂
′(S)

, Q̂′(S), V̂ ′(S)
0 , �̂

′′(S)
, Q̂′′(S), V̂ ′′(S)

0 , v̂←(t ),
and v̂→(t ) supplied by the two controlled voltage sources
for 0 < t < T determine the time evolution of the observ-
ables. Once the generic observable is determined at time
t , its statistics can be evaluated from the knowledge of
the initial state of the transmission line and the lumped
circuits.

D. Input-output formalism

The system of Eqs. (48) and (49) can be put in a quan-
tum Langevin-like form by using the input-output formalism
introduced for a semi-infinite transmission line coupled to a
lumped circuit (e.g., Refs. [4,25]). The operator v̂←(t ) is equal
to the backward voltage wave operator at x = 0. It acts as
the input operator for the lumped circuit B′ connected to the
left end of the line. Analogously, the operator v̂→(t ), which
is equal to the forward voltage wave operator at x = d , acts
as the input operator for the lumped circuit B′′ connected
to the right end. Therefore, we introduce the input operators
v̂′

in(t ) and v̂′′
in(t ) defined as v̂′

in(t ) ≡ v̂←(t ) and v̂′′
in(t ) ≡ v̂→(t ).

Within this formalism, the forward voltage wave operator at

x = 0 acts as the outgoing voltage operator from the lumped
circuit B′, v̂′

out(t ); analogously, the backward voltage wave
operator at x = d acts as the outgoing operator from the
lumped circuit B′′, v̂′′

out(t ). From these definitions we have the
following:

v̂′
out(t ) = V̂ ′

0 (t ) − v̂′
in(t ), (50a)

v̂′′
out(t ) = V̂ ′′

0 (t ) − v̂′′
in(t ). (50b)

Unlike the semi-infinite transmission line, both input op-
erators are determined by the initial conditions of the
transmission line only for 0 < t < T : for t > T they are
unknown and their evolution is governed by the system of
equations (47a) and (47b). It is immediate that for t > T

v̂′
in(t ) = v̂′′

out(t − T ), (51a)

v̂′′
in(t ) = v̂′

out(t − T ). (51b)

From Eqs. (48b), (48c), (49b), and (49c) we obtain

V̂ ′
0 = p′ᵀg′ ∗ ˙̂Q′ + 2

τ ′ g
′ ∗ v̂′

in + V̂ ′(S)
0 g′, (52a)

V̂ ′′
0 = p′′ᵀg′′ ∗ ˙̂Q′′ + 2

τ ′′ g
′′ ∗ v̂′′

in + V̂ ′′(S)
0 g′′, (52b)

where g′(t ) = u(t )e−t/τ ′
, g′′(t ) = u(t )e−t/τ ′′

, and the symbol ∗
denotes the time convolution product over the interval [0, t].
Therefore, the system of Eqs. (48) and (49) can be further
reduced to

˙̂�′ = 1

ih̄
[�̂′, Ĥ ′

cir] + [B′]g′ ∗ ˙̂Q′ + C′
pp′

(
2

τ ′ g
′ ∗ v̂′

in + g′V̂ ′(S)
0

)
,

(53a)

˙̂Q′ = 1

ih̄
[Q̂′, Ĥ ′

cir], (53b)

and

˙̂�′′ = 1

ih̄
[�̂′′, Ĥ ′′

cir] + [B′′]g′′ ∗ ˙̂Q′′

+C′′
pp′′

(
2

τ ′′ g
′′ ∗ v̂′′

in + g′′V̂ ′′(S)
0

)
, (54a)

˙̂Q′′ = 1

ih̄
[Q̂′′, Ĥ ′′

cir], (54b)

where Ĥ ′
cir = 1

2 Q̂′ᵀ[A′]Q̂′ + U ′
c (�̂′) and Ĥ ′′

cir = 1
2 Q̂′′ᵀ[A′′]

Q̂′′ + U ′′
c (�̂′′).
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The system of Eqs. (53a) and (53b) are the equations of
the lumped circuit B′ in the quantum Langevin-like form, and
the system of Eqs. (54a) and (54b) are the equations of the
lumped circuit B′′ (e.g., Ref. [25]). These equations coincide
with the those governing a circuit connected to a semi-infinite
line, but unlike what happens for a semi-infinite line, the input
operators v̂′

in and v̂′′
in are unknown for t > T . The Eqs. (53a)

and (53b) and the Eqs. (54a) and (54b) are coupled through the
Eqs. (50) and (51), which account for the multireflection at the
line ends. However, the overall system is closed, differently
from the case of a semi-infinite transmission line.

When 1/τ ′ and 1/τ ′′ are significantly higher than the
highest characteristic frequencies of the system, the memory
functions g′(t ) and g′′(t ) go to zero on time scales that are
much lower than the times over which ˙̂Q′ and ˙̂Q′′ change.
Then, we can replace g′(t ) with τ ′δ(t ) and g′′(t ) with τ ′′δ(t )
where δ(t ) is the Dirac delta function (first Markov approx-
imation). Furthermore, for t not close to 0 we can drop
g′(t )V̂ ′(S)

0 and g′′(t )V̂ ′′(S)
0 . In this approximation, Eqs. (52)

reduce to

V̂ ′
0 = τ ′p′ᵀ ˙̂Q′ + 2v̂′

in, (55a)

V̂ ′′
0 = τ ′′p′′ᵀ ˙̂Q′′ + 2v̂′′

in, (55b)

Eq. (53a) reduces to

˙̂�′ = 1

ih̄
[�̂′, Ĥ ′

cir] + τ ′[B′] ˙̂Q′ + 2C′
pp′v̂′

in, (56)

and Eq. (54a) reduces to

˙̂�′′ = 1

ih̄
[�̂′′, Ĥ ′′

cir] + τ ′′[B′] ˙̂Q′′ + 2C′′
pp′′v̂′′

in. (57)

Equations (56) and (57) are, respectively, the equations of
motion of the lumped circuits B′ and B′′ in quantum
Langevin-like form, in the Markovian approximation. Equa-
tions (56) and (57) are consistent with the ones found in
Refs. [14,27].

V. AN APPLICATION

In this section, we examine the network depicted in Fig. 2,
when the lumped circuit B′ is made of a linear capaci-
tor C′

r connected in parallel to an inductor with energy U ′
b,

and the lumped circuit B′′ is made of a linear capacitor
C′′

r connected in parallel to an inductor with energy U ′′
b .

FIG. 5. A finite-length transmission line capacitively coupled to
two linear LC circuits.

Eliminating the observables Q̂′
1 and Q̂′′

1, the system of
Eqs. (48) reduces to

¨̂�′
1 + 1

(C′
r + C′

c)
f ′(�̂′

1) = C′
p

C′
r

˙̂V ′
0, (58a)

˙̂V ′
0 + 1

τ ′ V̂
′

0 = − 1

C′
r

f ′(�̂′
1) + 2

τ ′ v̂←, (58b)

v̂←(t + T ) = V̂ ′′
0 (t ) − v̂→(t ), (58c)

and the system of Eqs. (49) reduces to

¨̂�′′
1 + 1

(C′′
r + C′′

c )
f ′′(�̂′′

1 ) = C′′
p

C′′
r

˙̂V ′′
0 , (59a)

˙̂V ′′
0 + 1

τ ′′ V̂
′′

0 = − 1

C′′
r

f ′′(�̂′′
1 ) + 2

τ ′′ v̂→, (59b)

v̂→(t + T ) = V̂ ′
0 (t ) − v̂←(t ), (59c)

where C′
p = C′

cC
′
r/(C′

c + C′
r ), C′′

p = C′′
c C′′

r /(C′′
c + C′′

r ), f ′(�̂′
1)

= ∂U ′
b

∂�̂′
1
, and f ′′(�̂′′

1 ) = ∂U ′′
b

∂�̂′′
1
. The operator V̂ ′

0 in the Schrödinger

picture is given by V̂ ′(S)
0 = 1

C′
r
Q̂1

′(S) + 1
C′

p
Q̂′(S)

0 ; the expression

of V̂ ′′(S)
0 is analogous.

In the case shown in Fig. 5 where the inductors are linear,
and therefore U ′ = 1

2L′
r
(�̂′

1)2 and U ′′ = 1
2L′′

r
(�̂′′

1 )2, the system
of equations (58) and (59) can be solved analytically by apply-
ing the Laplace transform. In the Laplace domain, we obtain:

M(s)Û(s) = F̂(s), (60)

where Û(s) = |�̂′ L
1 (s), V̂ ′ L

0 (s), �̂′′ L
1 (s), V̂ ′′L

0 (s)|ᵀ, �̂′L
1 (s),

V̂ ′L
0 (s), �̂′′L

1 (s), and V̂ ′′L
0 (s) are, respectively, the Laplace

transforms of �̂′
1(t ), V̂ ′

0 (t ), �̂′′
1 (t ), and V̂ ′′

0 (t ); the matrix M(s)
is given by

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
s2 + 1

L′
r (C′

c+C′
r )

] −s
C′

p

C′
r

0 0

1
L′

rC
′
r

[
s + 1

τ ′ coth (sT )
]

0 − 1
τ ′

1
sinh (sT )

0 0
[
s2 + 1

L′′
r (C′′

c +C′′
r )

] −s
C′′

p

C′′
r

0 − 1
τ ′′

1
sinh (sT )

1
L′′

r C′′
r

[
s + 1

τ ′′ coth (sT )
]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (61)
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FIG. 6. Selected entries of the impulse response matrix h(t ) of a finite-length transmission line capacitively coupled to two identical LC
circuits with parameters g′ = 0.3 α′ = 2, and γ ′ = 2π × 0.1. Each impulse response is normalized to its maximum absolute value.

the entries of the known operator F̂(s) = |F̂ ′
1 (s),

F̂ ′
2 (s), F̂ ′′

1 (s), F̂ ′′
2 (s)|ᵀ are given by

F̂ ′
1 (s) = ˙̂�′

1(0) + s�̂′
1(0) − C′

p

C′
r

V̂ ′
0 (0), (62a)

F̂ ′
2 (s) = V̂ ′

0 (0) − 1

τ ′
V̂ (0)

→ (s) − esT V̂ (0)
← (s)

sinh(sT )
, (62b)

and

F̂ ′′
1 (s) = ˙̂�′′

1 (0) + s�̂′′
1 (0) − C′′

p

C′′
r

V̂ ′′
0 (0), (63a)

F̂ ′′
2 (s) = V̂ ′′

0 (0) + 1

τ ′′
esT V̂ (0)

→ (s) − V̂ (0)
← (s)

sinh(sT )
, (63b)

where

V̂ (0)
→ (s) =

∫ T

0
v̂(0)

→ (t )est dt, (64a)

V̂ (0)
← (s) =

∫ T

0
v̂(0)

← (t )est dt, (64b)

take into account the contributions of the initial conditions
v̂→(t ) = v̂(0)

→ (t ) and v̂←(t ) = v̂(0)
← (t ) for 0 < t < T .

From Eq. (60) we obtain û(t ) = h(t ) ∗ f̂ (t ) where û(t ) =
|�̂′

1(t ), V̂ ′
0 (t ), �̂′′

1 (t ), V̂ ′′
0 (t )|ᵀ, f̂ (t ) is the inverse Laplace trans-

form of F̂(s), and the impulse response matrix h(t ) is the
inverse Laplace transform of H(s) = M−1(s). Once V̂ ′

0 (t ) and
V̂ ′′

0 (t ) have been evaluated, we can compute v̂←(t ) and v̂→(t )
for T < t using Eqs. (47a) and (47b) with the initial condi-
tions v̂→(t ) = v̂(0)

→ (t ) and v̂←(t ) = v̂(0)
← (t ) for 0 < t < T .

The poles of H(s) correspond to the zeros of the deter-
minant of the matrix M(s), whose expression is given in
Appendix A: they are associated with the natural modes of the
network. Unlike the semi-infinite transmission line scenario
discussed in Ref. [29], the matrix H(s) has an infinite number
of discrete poles, all located on the imaginary axis of the
complex plane. This discreteness arises due to the finite length
of the line, and the infinity is a consequence of multireflections
at the line ends. The real part of the poles is equal to zero
because the entire network is a closed conservative system.

The matrix h(t ) is the classical matrix impulse response
of the network. The terms h11(t ) and h13(t ) are, respectively,
the responses of the flux �′

1(t ) when the inductor L′
r and

the inductor L′′
r are instantaneously charged by an impulsive

voltage source with unitary amplitude; h21(t ) and h22(t ) are
the response of V ′

0 (t ) when the inductor L′
r is instantaneously

charged by an impulsive voltage source with unitary ampli-
tude, and the backward voltage wave at x = 0 is a Dirac pulse
with amplitude equal to 0.5.

We now investigate the scenario in which the transmission
line is connected to two identical LC circuits, with equal val-
ues for the inductances, i.e., L′

r = L′′
r , and capacitances, i.e.,

C′
r = C′′

r , through two identical capacitors (C′
c = C′′

c ). In Ap-
pendix A, we study the natural frequency of this network. The
entries of h(t ) are numerically evaluated using the IFFT algo-
rithm. In Figs. 6–8, we show the time evolution of the entries
of the first two rows of h(t ) for γ ′ = 0.1 × 2π , γ ′ = 1 × 2π ,
and γ ′ = 10 × 2π , where γ ′ = T/T ′

r and T ′
r = 2π/

√
L′

rC
′
r ;

we have fixed g′ = 0.3 and α′ = 2, where g′ = C′
c/(C′

r + C′
c),

α′ = Z ′
c/Z ′

r and Z ′
r = √

L′
r/C′

r . Due to the left-right symmetry
of the network, by reversing the temporal patterns of the
elements in the first and second rows, you obtain the temporal
patterns of the elements in the third and fourth rows.

In each time interval [iT, (i + 1)T ] with i = 0, 1, . . . the
LC circuit on the left-hand side (right-hand side) of the net-
work behaves as if it were effectively capacitively coupled
to a semi-infinite line with characteristic impedance Zc: the
backward voltage (input) operator at x = 0 (the forward volt-
age operator at x = d) is determined either by the initial
conditions of the transmission line or by the reflections at
x = d (at x = 0) due to the interaction with the other LC
circuit. The time evolution of the circuit on the left-hand side
depends on several characteristic times: the oscillation period
T ′

r of the LC circuit, the decay time of the oscillation that
we would have if the LC circuit were capacitively coupled
to a semi-infinite line, and the delay time of the line T . Fig-
ures 6(a) and 6(c) show, respectively, h11(t ) and h13(t ) versus
t/T ′

r for γ ′ = 0.1 × 2π . In this scenario, the delay time T
is one-tenth the LC oscillation period T ′

r . The effects of the
delay are negligible, and the two LC circuits behave as they
interact almost instantaneously. In particular, h11(t ) and h13(t )
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FIG. 7. Selected entries of the impulse response matrix h(t ) of a finite-length transmission line capacitively coupled to two identical LC
circuits with parameters g′ = 0.3 α′ = 2, and γ ′ = 2π × 1. Each impulse response is normalized to its maximum absolute value.

show a beating between the fundamental frequency, which is
almost equal to ω′

r = 1/
√

L′
rC

′
r , and the envelope frequency

(ω2 − ω1)/2, where ω1 and ω2 are the natural frequencies
of the first two modes of the network (see Appendix A).
Figures 7(a) and 7(c) show the same impulse responses for
γ ′ = 1 × 2π . In this case, the delay time is equal to the oscil-
lation period of each LC circuit. Despite the increase in delay
T , its effects remain of little importance. In this case, h11(t )
and h13(t ) show a beating due to the interference between the
second and third modes (see Appendix A). Moreover, a low-
frequency modulation arises due to the fundamental mode.
Figures 8(a) and 8(c) show the same impulse responses for
γ ′ = 10 × 2π . In this case, the delay time T is ten times the
LC oscillation period T ′

r , and it is also greater than the decay
time. As a consequence, the effects of the delay are important.
Effectively, the LC circuit on the left behaves as if it were
capacitively connected to a semi-infinite transmission line for
0 < t/T ′

r < 10 with a backward voltage wave at x = 0 equal
to zero, as shown in Fig. 8(a). At t/T ′

r = 20 the backward
voltage wave due to the reflection at x = d of the forward
voltage wave generated at x = 0 starts to drive the LC circuit
on the left, and so on. Figure 8(c) shows a similar behavior.
Similar considerations apply to the LC circuit on the right.

Finally, we briefly discuss the behavior of the other entries
in the impulse response matrix. For γ ′ = 0.1 × 2π and γ ′ =
1 × 2π , the behavior of h12(t ), h14(t ), h21(t ), h22(t ), h23(t ),
and h24(t ) reflect the influence of high-frequency modes.
For γ ′ = 10 × 2π the impact of the line delay becomes
pronounced, though the contribution of higher-order modes
appears less evident.

VI. CONCLUSIONS

We have introduced an equivalent two-port model to an-
alyze finite-length transmission lines within quantum circuit
electrodynamics. This model, framed in the Heisenberg pic-
ture, consists of a series of a resistor and a controlled source
with delay at each port. We apply this model to a transmission
line capacitively coupled to two lumped circuits, and derive
a reduced system of Heisenberg equations that governs the
lumped circuits. We then recast the reduced equations of each
lumped circuit in a quantum Langevin-like form. These equa-
tions are coupled due to multireflection at the line ends, and
together describe the evolution of a closed system. Due to the
time delay T , introduced by the transmission line, the dynamic
of the lumped circuit on the first port influences the evolution
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FIG. 8. Selected entries of the impulse response matrix h(t ) of a finite-length transmission line capacitively coupled to two identical LC
circuits with parameters g′ = 0.3 α′ = 2, and γ ′ = 2π × 10. Each impulse response is normalized to its maximum absolute value.
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of the lumped circuit connected to the second port after a time
T , and vice versa.

We demonstrated the applicability of our model by solv-
ing the reduced system of Heisenberg equations in a linear
scenario admitting an analytical solution, which consists of
a finite-length transmission line capacitively coupled to two
LC circuits. Now, we briefly discuss the application of this
model to nonlinear circuits. Consider two nonlinear lumped
circuits coupled by a transmission line, each comprising a
parallel configuration of a capacitor and a nonlinear inductor.
This configuration holds significant relevance for current re-
search in quantum circuit electrodynamics [7–13]. The overall
system is described by Eqs. (58)–(59). The nonlinear induc-
tors can be, for example, two Josephson junctions with U ′

b =
−E ′

J cos(2π�̂′
1/�0) and U ′′

b = −E ′′
J cos(2π�̂′′

1/�0), where
�0 is the flux quantum. In this case, Eqs. (58)–(59) have to be
solved numerically as outlined below. The time derivatives of
the operators �̂′, �̂′′, V̂ ′

0 , and V̂ ′′
0 can be discretized by finite

differences or finite elements [31,32]. The operators can be
represented as matrices by selecting a suitable basis for the
state space. The resulting discrete equations for the matrix
entries form a system of nonlinear equations. This system can
be vectorized and solved using standard methods for nonlinear
equations, such as the Newton’s method. The main computa-
tional challenge arises from the potentially large dimension
of the state space of the overall system, which is given by
the tensor product of the state space of the transmission line,
which enters through the initial conditions (42) on the line op-
erators, and the state space of two lumped parts of the system.
This issue is even more pronounced when the line is described

by using alternative approaches, where the degrees of free-
dom of the line are represented either in terms of modes or
through several lumped LC elements, because in these cases
the accuracy of the description of the propagation along the
line depends on the dimension of the discretized state space
of the line. This problem is particularly critical in scenarios
where the transmission line length exceeds the operational
wavelength. In contrast, our formulation enables a reduction
in computational time, for a specified accuracy level, by ana-
lytically incorporating the contribution of the line.

In conclusion, our model not only simplifies the study of
finite-length transmission lines in quantum circuits but also
paves the way for exploring more complex coupling configu-
rations. It holds potential for broader applications, including
scenarios involving multiconductor transmission lines and
various combinations of capacitive and inductive coupling
between the lines and the lumped circuits. This flexibility and
generality make our approach a valuable tool for advancing
research in quantum circuit electrodynamics.
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APPENDIX: NATURAL FREQUENCIES

The expression of the determinant of the matrix M(s) given
by (61) is

p(s) = −
[(

s

ω′
r

)2

+ (1 − g′)

][(
s

ω′′
r

)2

+ (1 − g′′)

]{[
s

ω′
r

+ 1

α′g′ coth

(
s

ω′
r

γ ′
)][

s

ω′′
r

+ 1

α′′g′′ coth

(
s

ω′′
r

γ ′′
)]

− 1

α′g′
1

α′′g′′
1

sinh
(

s
ω′

r
γ ′) 1

sinh
(

s
ω′′

r
γ ′′)

}
−

[(
s

ω′
r

)2

+ (1 − g′)

][
s

ω′
r

+ 1

α′g′ coth

(
s

ω′
r

γ ′
)]

g′′ s

ω′′
r

−
[(

s

ω′′
r

)2

+ (1 − g′′)

][
s

ω′′
r

+ 1

α′′g′′ coth

(
s

ω′′
r

γ ′′
)]

g′ s

ω′
r

− g′g′′ s2

ω′
rω

′′
r

, (A1)

where ω′
r = 1/

√
L′

rC
′
r , g′ = C′

c/(C′
r + C′

c), α′ = Z ′
c/Z ′

r , Z ′
r =√

L′
r/C′

r , T ′
r = 2π/ω′

r , γ ′ = T/T ′
r , and ω′′

r = 1/
√

L′′
r C′′

r , g′′ =
C′′

c /(C′′
r + C′′

c ), α′′ = Z ′′
c /Z ′′

r , Z ′′
r = √

L′′
r /C′′

r , T ′′
r = 2π/ω′′

r ,
γ ′′ = T/T ′′

r . The zeros of p(s) correspond to the poles of the
matrix H(s) = M−1(s), and are associated with the natural
modes of the network. The set of poles of H(s) is discrete.
They are all located on the imaginary axis because the system
is conservative [s = 0 is a zero of p(s)]. By substituting s = iω
into the expression of p(s) we obtain a real function of the real
variable ω, which is a transcendental function. The values of ω

for which p(iω) = 0 are the natural frequencies of the modes
supported by the network and, consequently, its resonance
frequencies. They can be evaluated numerically by using a
root-finding algorithm.

We analyze the scenario in which the two LC circuits at the
ends of the line and the two coupling capacitors are equal. In

this case, the resonance frequencies can be evaluated by the
graphical method. Equation p(iω) = 0 reduces to

G(ω̃; g′, α′) = tan
(
ω̃γ ′), (A2)

where

G = −2
ω̃2−(1−g′ )

ω̃α′g′(ω̃2−1)[
ω̃2−(1−g′ )

ω̃α′g′(ω̃2−1)

]2
− 1

, (A3)

and ω̃ = ω/ω′
r . The set of solutions of Eq. (A2) is discrete

and infinite. We denote them by {ω̃n}, where the integer n
runs from −∞ to +∞. Both the functions G(ω̃; g′, α′) and
tan(ω̃γ ′) are odd in the variable ω̃, hence ω̃−n = −ω̃n for
any n > 0, and ω̃0 = 0. Therefore, the unknowns reduce to

043706-11



CARLO FORESTIERE AND GIOVANNI MIANO PHYSICAL REVIEW A 109, 043706 (2024)

FIG. 9. The intersections between the blue and the orange curves
give the normalized natural frequencies of the modes of a finite-
length transmission line connected to two equal LC circuits (L′

r = L′′
r

and C′
r = C′′

r ) through two equal capacitors (C′
c = C′′

c ), for g′ = 0.3,
α′ = 2 and (a) γ ′ = 0.1 × 2π , (b) γ ′ = 1 × 2π , (c) γ ′ = 10 × 2π .

ω̃1, ω̃2, . . . , ω̃n, . . ., which are ordered in such a way ω̃n <

ω̃n+1 for n = 1, 2, . . .. In Fig. 9, we look for the intersections

of the two functions G(ω̃; g′, α′) and tan(ω̃γ ′) for ω̃ belong-
ing to the interval (0.1,10). We assume g′ = 0.3, α′ = 2, and
different values of γ ′, namely 0.1 × 2π in Fig. 9(a), 2π in
Fig. 9(b), and 10 × 2π in Fig. 9(c). The abscissas of the
points where the two curves intersect are the positive solutions
of Eq. (A2) in the interval (0.1,10). The number of positive
solutions on the left of ω̃ = 1 is finite, while on the right it
is infinite. In particular, we have ω̃n → nπ/γ ′ as n → +∞
because G → 0 for ω̃ → ∞: these are the normalized natural
frequencies of the transmission line when it is connected to
two short circuits or to two open circuits. As the length of the
line increases, the positive solutions shift to the left and some
of them cross the value ω̃ = 1. As a consequence, the number
of solutions belonging to the interval (0,1) also increases. Fur-
thermore, the distance between contiguous solutions reduces.
As γ ′ → ∞ the set of solutions approaches a continuum that
spans the interval (0,∞). In particular, we note that for γ ′ =
0.1 × 2π we have ω̃1 < 1 and ω̃2 > 1 with (ω̃2 + ω̃1)/2 ≈ 1
and (ω̃2 − ω̃1)/2 � 1. For γ ′ = 1 × 2π , we have ω̃2 < 1 and
ω̃3 > 1 with (ω̃3 + ω̃2)/2 ≈ 1 and (ω̃3 − ω̃2)/2 � 1, while
ω̃1 is included between 0.3 and 0.4. Eventually, for γ ′ =
10 × 2π , we have 18 positive solutions less than 1. We carried
out several numerical experiments and we concluded that the
qualitative properties of the solutions of Eq. (A2) are almost
unaffected when the parameters g′ and α′ vary.
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