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Heating and cooling processes via phaseonium-driven dynamics of cascade systems
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The search for strategies to harness the temperature of quantum systems is one of the main goals of quantum
thermodynamics. Here we study the dynamics of a system made of a pair of quantum harmonic oscillators,
represented by single-mode cavity fields, interacting with a thermally excited beam of phaseonium atoms, which
act as ancillas. The two cavities are arranged in a cascade configuration, so that the second cavity interacts with
phaseonium atoms only after their interaction with the first one. We provide exact closed dynamics of the first
cavity for arbitrarily long interaction times. We highlight the role played by the characteristic coherence phase
of phaseonium atoms in determining the steady states of the cavity fields as well as that of the ancillas. Also,
we show how the second cavity follows a non-Markovian evolution due to interactions with the “used” ancillary
atoms, which enable information exchange with the first cavity. Adjusting the parameters of the phaseonium
atoms, we can determine the final stable temperature reached by the cavities. In this way, the cavities can be
heated up as well as cooled down. These results provide useful insights into the use of different types of ancillas
for thermodynamic cycles in cavity QED scenarios.
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I. INTRODUCTION

Since the introduction of the phaseonium by Scully in
[1], this new “state of matter” gave birth to interesting ap-
plications, from the early adoptions as a mean for lasing
without inversion, refractive index enhancement, and corre-
lated spontaneous emission lasers [2], to its later use in a
single-heat-bath quantum Carnot engine [3]. Its optical prop-
erties were reviewed and developed later on [4,5], while
applications have been proposed for its optomechanical prop-
erties [6] and for its role as quantum fuel [7]. Phaseonium
is a three-level λ system with two almost-degenerate ground
states in a coherent superposition. As simple as it is, the
characteristic quantum property of coherence often leads to
unexpected and interesting consequences, giving the phaseo-
nium its appeal.

Here, we study the phaseonium as a thermal bath coupled
to a multipartite system, within the framework of collision
models (CMs) [8,9]. As a paradigmatic continuous-variable
system, we consider the one composed of two harmonic oscil-
lators, which are physically represented by two single-mode
cavities. We follow phaseonium atoms as they interact with
the two subsystems (cavities) one after another, in what is
called cascade configuration [10–17]. We give the exact time
evolution of the system and see how the atoms of the bath
mediate a one-way information flow between the subsystems
that lasts until thermalization. Consequently, while we can
trace out the reduced dynamics of the first cavity alone, as
it does not “see” the second one, the last cavity follows a
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non-Markovian reduced dynamics. Although collision models
usually end up taking the continuous-time limit of the model,
we purposely leave the description of the dynamics to be
discrete.

The interaction time between phaseonium and system at
discrete time steps plays the role of a control parameter for
the overall dynamics, and the effects of gauging it are thus
investigated. Accounting for this, we follow the arguments
of Ref. [18] to provide the finite-time quantum map for the
system without approximations. As a result, the two cavi-
ties reach a thermal state at the same temperature. We point
out that this thermalization process, described by a finite-
difference master equation, is controlled by the coherence
phase of the phaseonium bath atoms.

The system under study in this work represents an inter-
esting open quantum toy model from the point of view of
quantum thermodynamics. In fact, it is minimal in showing
the properties of coherences in an environment and correla-
tions internal to the system undergoing a transformation. The
exploitation of quantum resources such as coherence is key
to reach quantum advantage in thermodynamic tasks, and it
is at the heart of quantum thermal engines [19–22] with en-
hanced efficiency or coefficient of performance [3,7,23–26],
and fast-charging quantum batteries [27–31]. As explained
in Ref. [32], only “internal coherences” between degenerate
levels of the environment contribute to heat flow. Therefore,
the phaseonium represents the minimum viable system to
study the thermodynamic effects of quantum coherences in
the environment. On the other hand, one major challenge
in the exploitation of quantum thermodynamic systems such
as batteries lies in scalability [22,33,34]. The starting point
to scalability is the simplest bipartite system in a cascaded
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configuration. This is enough to study the effects of intrasys-
tem correlations [15]. Collectively, we give a description of
this minimal system, characterizing the effects of quantum co-
herences and intrasystem correlations in the thermodynamic
context of thermalization. This will provide the foundations
upon which to add complexity, generalizing the results to
include more subsystems, adding more complex interactions
that get closer to real-world implementations.

The paper is structured as follows. In Sec. II, we present
a brief review of the theoretical framework of CMs to tackle
open quantum systems’ dynamics. In Sec. III, we describe an
optical cavity and the phaseonium atoms with their operators
and free-evolution Hamiltonians, as well as their interaction,
which constitute the foundation of this work. In Sec. IV, we
carve out, from the cavity-phaseonium interaction, the Kraus
operators that form the dynamical map for the cavity evo-
lution, giving the stationary conditions and the expressions
for long-time stationary states for both cavity and ancillas.
In Sec. V, we describe the cascade system and its dynamical
map with appropriate Kraus operators. A detailed graphical
analysis of the thermalization process of the cavities is given
in Sec. VI, by following the evolution of their temperatures
at each collision step. As a remarkable application, we high-
light that the system can be heated up or cooled down to a
stable chosen temperature, setting suitable parameters for the
incoming phaseonium atoms. To assess the robustness of this
process, we also take into account the effects due to stochastic
noise in the interaction time or the coherence phase. Finally,
in Sec. VII, we discuss the results in a broader context, from
both experimental and theoretical prospects.

II. QUANTUM COLLISION MODELS

In this section, we briefly recall the collision model
approach [8] to open quantum systems’ dynamics [35]. Gen-
erally speaking, the dynamics of a quantum system S is said
to be open when the system is coupled to a bath B whose
time evolution cannot be investigated or is inaccessible. In
the simplest collision model, the bath B is taken as a large
discrete collection of elementary systems—called ancillas—
that interact one at a time with the system, where each of these
collisions is described by unitary two-body interactions. Such
a collision model decomposes the complex system-bath dy-
namics into simple contributions. An intuitive implementation
of collision models is, for example, the micromaser [36,37].

The initial joint state of the bath B, made up of identical
ancillas ηk (k = 1, 2, . . . , N), and the system S are assumed to
be a product state χ0 = ρ0 ⊗ η1 ⊗ η2 ⊗ · · · ⊗ ηN . One by one,
ancillas collide with the system for a short time �t at discrete
time steps labeled by the same k as that of the colliding ancilla.
The dynamics is thus discrete. Let us denote with ĤS and Ĥη

the free Hamiltonians of S and the kth ancilla ηk , respectively,
which define the total Hamiltonian Ĥ0 = ĤS + Ĥη. Indicating
the system-ancilla interaction with V̂k , the dynamics of each
kth collision is ruled by the unitary evolution operator,

Ûk = e−i�t (ĤS+Ĥη+V̂k ). (1)

Three assumptions are now required to ensure a Markovian
behavior of the model (i.e., governed by a master equation in
Lindblad form):

(i) ancillas do not interact with each other,
(ii) ancillas are initially uncorrelated,
(iii) each ancilla interacts with S only once for a time �t .
At each step, the whole state evolves according to

χk=Ûkχk−1Û
†
k , starting from χ1=Û1χ0Û

†
1 . The correspond-

ing state of the system at each step, ρk , is obtained by tracing
out the ancillas’ degrees of freedom. Using the partial trace
Tr j over the degrees of freedom of the jth ancilla, one finds,
recursively,

ρk = TrB{χk}=Trk{Ûk · · · Tr1{Û1ρ0 ⊗ η1Û
†
1 } · · · ⊗ ηkÛ

†
k }.

This suggests defining the quantum collision map E as

ρk = E[ρk−1] = Trk{Ûk (ρk−1 ⊗ ηk )Û †
k }, (2)

which shows that the state of S at step n only depends on that
at the previous step n − 1: the dynamics has no memory of
its past history, as is expected for Markovian dynamics (see,
for instance, Ref. [38] for a review of Markovian and non-
Markovian processes with memory effects).

The steady state ρ∗ of the system is obtained by the fixed
point of the dynamical map, which is the state such that
E[ρ∗] = ρ∗. If the fixed point is unique, the collision map is
ergodic. Moreover, if any initial state ρ0 eventually tends to
the same steady state ρ∗, the map is said to be mixing [39–41].

III. SYSTEM AND PHASEONIUM BATH

We begin our discussion by introducing the main actors:
the open system we want to look at and the environment in
which it is positioned. Figure 1 depicts the model of interest
for a cascade two-cavity system interacting with a beam of
phaseonium atoms, which will be analyzed in Sec. V.

Here, we start considering a single-mode optical cavity as
system S. The cavity behaves like a single-mode harmonic
oscillator whose Hamiltonian is [35]

ĤS = h̄ωc
(
â†â + 1

2

)
, (3)

where â† and â are, respectively, the creation and annihilation
operators stemming from the canonical quadrature operators
position q̂ = 1

2 (â† + â) and momentum p̂ = i
2 (â† − â), satis-

fying the usual commutation relation [ p̂, q̂] = i.
The cavity is coupled to the environment via short-time

interactions with ancilla systems pumped in the cavity itself.
Every ancilla ηk is a three-level λ system. Its states are denoted
by |e〉, |g1〉, and |g2〉, where |e〉 represents the excited state
while |e〉, |g1〉 are two ground states. In this basis, a thermal
ancilla can be represented by the density operator

ηth =
⎛⎝α2 0 0

0 1
2β2 0

0 0 1
2β2

⎞⎠, (4)

with the condition |α|2 = 1 − |β|2 to have a unitary trace.
From such a thermal state, one can create coherences

between ground levels, obtaining the coherent ancilla state
which defines the so-called phaseonium [42]. Note that a little
energy shift ε is created in the process. As seen in [43], we
can assume that this shift is negligible and the ground-states
energy remains degenerate, writing the phaseonium density
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FIG. 1. Standard collision model for a phaseonium bath interacting with a multipartite system. The system of interest is a cascade of
two single-mode cavity fields S1, S2, which is described by a density operator ρ. The environment is made up of N three-level atoms in λ

configuration, called phaseonium atoms, all prepared equally. These atoms play the role of ancillas and are described by a density operator ηk

(k = 0, . . . , N). Ancillas travel at speed v and enter the cavities at a rate r. They interact with each cavity field for a time �t . The speed and
rate of the phaseonium atoms are selected such that there is, at most, one ancilla in each cavity at a time.

matrix as

ηk =

⎛⎜⎜⎝
α2 0 0

0 β2

2 + ε
β2

2 e−iφ

0 β2

2 eiφ β2

2 − ε

⎞⎟⎟⎠ ≈

⎛⎜⎜⎝
α2 0 0

0 β2

2
β2

2 e−iφ

0 β2

2 eiφ β2

2

⎞⎟⎟⎠.

(5)

One can thus write a simple free Hamiltonian Hη for the
phaseonium as

Ĥη = h̄ωη

2
(σ̂+

1 σ̂−
1 + σ̂+

2 σ̂−
2 ), (6)

with ladder operators σ̂±
i acting on the different ground levels

of the ancilla,

σ̂+
1 = |e〉〈g1|, σ̂−

1 = |g1〉〈e|,
σ̂+

2 = |e〉〈g2|, σ̂−
2 = |g2〉〈e|. (7)

Notice that the operators σ̂±
i (i = 1, 2) refer to the ground

state |gi〉. We choose a resonant coupling with ωc = ωη ≡ ω

and use the interaction picture to leave the free evolution
of both cavity and bath out of the analysis. So, indicating
with  the coupling strength, the total system-environment
Hamiltonian at the kth collision is given by the interaction
term

V̂k = h̄[â(σ̂+
1 + σ̂+

2 ) + â†(σ̂−
1 + σ̂−

2 )]. (8)

IV. CAVITY-PHASEONIUM EVOLUTION

The time-evolution operator Ûk = exp(iV̂k�t ), with an
arbitrary-long interaction time �t , can be written in the basis
of ancilla states |e〉, |g1〉, and |g2〉 as (see Appendix A)

e−iθVk =

⎛⎜⎝ Ĉ −iS† −iS†

−iŜ 1
2 (Ĉ′ + I) 1

2 (Ĉ′ − I)

−iŜ 1
2 (Ĉ′ − I) 1

2 (Ĉ′ + I)

⎞⎟⎠, (9)

where θ is the accumulated Rabi phase h̄�t , while Ĉ, Ĉ′,
and Ŝ are the photonic operators,

Ĉ = cos(θ
√

2ââ†), (10a)

Ĉ′ = cos(θ
√

2â†â), (10b)

Ŝ = â† sin(θ
√

2ââ†)√
2ââ†

. (10c)

Thanks to this representation, we are now able to write the
map acting on the cavity at each step in its Kraus decomposi-
tion, which is

ρk+1 = E[ρk] = Trk
{
e−iθVk+1 ρkηk+1 eiθVk+1

} =
4∑

i=0

ÊiρkÊ†
i ,

(11)
with the operators Êi given by

Ê0 =
√

1 − γα

2
− γβ

2
I, Ê1 =

√
γα

2
Ĉ, (12a)

Ê2 = √
γα Ŝ, Ê3 =

√
γβ

2
Ĉ′, Ê4 = √

γβ Ŝ†, (12b)

where γα = 2α2 and γβ = β2(1 + cos φ). It is important to
observe that the Kraus operators specified in Eq. (12) have a
specific structure that precludes the generation of coherences.
Exploiting the relations ĈĈ+2Ŝ†Ŝ = Ĉ′Ĉ′+2ŜŜ† = I, it is
possible to write a finite-difference master equation for the
cavity alone at each interaction step, as

�ρk =
4∑

i=0

ÊiρkÊ†
i − ρk =

4∑
i=1

D[Êi]ρk, (13)

in which we adopt the usual definition for dissipator
D[ô]ρ=ôρô†−1/2{ô†ô, ρ}.

A. Cavity steady state

Thanks to Eq. (13), the stationary state ρ∗ of the system
can be found solving the equation

�ρ∗ = 0. (14)

The solution of the above equation (see Appendix C for de-
tails) can be expressed by the diagonal density matrix

ρ∗ =
∞∑
n

(γα/γβ )n

Z
|n〉〈n|, (15)

where 1/Z = ρ∗
00 is the first element of the density matrix. We

can then make a parallel with a standard Gibbs state [44] and
set (γα/γβ )n = exp(−nh̄ω/KBTφ ), where KB is the Boltzmann
constant, which defines an effective temperature Tφ ,

exp

(
− h̄ω

KBTφ

)
= γα

γβ

⇒ KBTφ = −h̄ω/ ln

(
γα

γβ

)
. (16)

Since γα/γβ = 2|α|2/[|β|2(1 + cos φ)], we emphasize that
this effective temperature Tφ fundamentally depends on the
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FIG. 2. Range of steady-state temperatures of one cavity in con-
tact with a phaseonium bath, as a function of excited-state population
α and ground-state coherences φ of phaseonium atoms. Temperature
is symmetric in φ, so it is shown in the range 0 � α � 1, 0 � φ � π .
Temperature is given in units of KB/(h̄ω).

coherence phase φ and on the excited-state population α of
the phaseonium. Thus, for every initial state of the cavity in
contact with the phaseonium beam, the system will end up in
a thermal Gibbs state,

ρ∗ =
∞∑
n

exp(−En/KBTφ )

Z
|n〉〈n|. (17)

The above state is independent of the collision duration �t ,
meaning that this is also the steady state of the continuous-
limit master equation, as shown in Appendix B.

The range of temperatures spanned by ancilla parameters
α and φ is shown in Fig. 2. Seeing that temperature is positive
defined, our Gibbs state representation works as long as we
have low-excited ancilla probability such that γα/γβ < 1. Two
special cases emerge: (i) when |α|2 = 0, the system depletes
itself and ends up in a vacuum thermal state (the atoms only
absorb photons from the cavity radiation field); (ii) when
|α|2=|β|2 cos2(φ/2), that is, γα/γβ = 1, Eq. (16) does not
hold, leading to an infinite temperature. Thus, for γα/γβ � 1,
this description is no longer accurate and we can conclude
that under these conditions, the hypothesis of Eq. (14) of the
existence of a stationary state is no longer valid. Also, the
value φ = π is to be excluded since it makes the ratio γα/γβ

undefined.
Since we have not specified the initial state of the system,

we can infer that this fixed point state ρ∗ of the collision map
is unique and reached, whatever the initial state of the system.

The final thermalization temperature Tφ of the cavity is,
in general, different from the temperature T of the starting
thermal ancillas ηth defined in Eq. (4), before the ground-state
coherences are created. Indeed, there is an energetic cost in
creating quantum coherences. This energy difference can be
expressed by

h̄ω

KBTφ

− h̄ω

KBT
= ln[1 + cos(φ)]. (18)

Assuming that between the system and the phaseonium atoms
there is only heat exchange, it is possible to define an apparent

temperature T even if the atoms are not in a thermal state
[32,45]. This apparent temperature is defined as

KBT = h̄ω

[
ln

(
TrS{(σ̂+

1 + σ̂+
2 )(σ̂−

1 + σ̂−
2 )ηk}

TrS{(σ̂−
1 + σ̂−

2 )(σ̂+
1 + σ̂+

2 )ηk}
)]−1

, (19)

where σ̂±
i are the atomic operators of the three-level ancillas

defined in Eq. (7). Remarkably, it can be shown that this
coincides with the expression of the stationary effective tem-
perature of the system Tφ given in Eq. (16).

B. Ancilla steady state

Thanks to the above result, we can also retrieve the an-
cilla’s stationary state once the cavity has thermalized. Using
Eqs. (17) and (9), and performing the partial trace over the
system degrees of freedom, we obtain

ηst = TrS{Ûkρ
∗ηkÛk} =

⎛⎜⎜⎝
|α|2 0 0

0 |β|2
2

|β|2
2 �†

0 |β|2
2 �

|β|2
2

⎞⎟⎟⎠, (20)

with modified coherences given by

� = cos(φ) − i sin(φ)Tr{Ĉ′ρ∗}. (21)

We stress that this evolved ancilla carries the same steady-
state system temperature, given only by the real part of
coherences, as in Fig. 2. Ancillas can thus be exploited again
to let another cavity thermalize at the same temperature. We
shall investigate this situation in the following sections. We
explore the possibility to have ancilla decohere due to interac-
tions with the external environment passing from one cavity
to the other in Appendix D.

V. CASCADE CAVITY-PHASEONIUM EVOLUTION

We now take a system of two identical single-mode cav-
ities, S1, S2, subject to the same collision interaction with a
beam of phaseonium atoms (see Fig. 1). They are arranged in
a way that every ancilla atom first interacts with the subsystem
S1, modifying it, and successively with the second subsystem
S2. This is called a cascade quantum system [11].

We must consider the total evolution of the bipartite system
S made of the two cavities S1 and S2. This translates into the
subsequent application of unitary interaction operators Ûj,k

( j = 1, 2 corresponds to the cavity Sj) to the overall density
operator of both the system and ancilla. Indicating with ρk

and ηk , respectively, the density operators of the two-cavity
system S and of the ancilla atom at the kth interaction step, by
extending Eq. (2), we have

ρk = E[ρk−1] = Trk{Û2,kÛ1,kρk−1 ⊗ ηkÛ
†
1,kÛ

†
2,k}. (22)

The crucial property of such dynamics relies on the fact that
cavity S1 “does not see” the following cavity S2, so its evo-
lution is again described by Eq. (11). S1 interacts only with
ancillas in their initial state ηk . After that interaction, however,
the ancilla state is modified. The dynamics of subsystem S2

thus depends on that of subsystem S1. By the action of com-
mon ancilla atoms, the two subsystems get correlated. This
is explained by the fact that the common phaseonium ancilla
atoms mediate the interaction between the cavity subsystems.
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If we trace out S1 from Eq. (22), we get the state of the cavity
S2 alone as

ρ2,k = TrS1{Trk{Û2,kÛ1,k (ρk−1 ⊗ ηk )Û †
1,kÛ

†
2,k}}

= Trk{Û2,kTrS1{Û1,k (ρk−1 ⊗ ηk )Û †
1,k}Û †

2,k}. (23)

Cavity S2 does not follow a completely positive trace preserv-
ing (CPTP) map and its dynamics is non-Markovian.

Following an analogous analysis of that of Sec. IV, it can
be shown that the map of the two-cavity system S is repre-
sented by the Kraus operators,

Ê0 =
√

1 − γα

2
− γβ

2
I, (24a)

Ê1 =
√

γα

2
(Ĉ⊗Ĉ−2Ŝ⊗Ŝ†), (24b)

Ê2 = √
γα (Ŝ⊗Ĉ′+Ĉ⊗Ŝ), (24c)

Ê3 = √
γβ (Ŝ†⊗Ĉ+Ĉ′⊗Ŝ†), (24d)

Ê4 =
√

γβ

2
(Ĉ′⊗C′−2Ŝ†⊗Ŝ). (24e)

With these operators, we can finally determine the finite-
difference master equation for the evolution of the two-cavity
system S,

�ρk =
4∑

i=1

D[Êi]ρk . (25)

VI. APPLICATION

Having found the master equation of Eq. (25), we can
follow the evolution of the two cavity fields while interacting
with the beam of the phaseonium atoms. As we have seen,
this is a thermalization process. In this section, we provide an
application of this controlled process which leads to heating
and cooling the cavities.

Let us summarize, in a simple protocol, how to exploit the
model we developed so far:

(1) Choose a temperature T ∗ and pick a pair of parameters
{α∗, φ∗} from Fig. 2 corresponding to that temperature, or use
Eq. (16) to find them.

(2) Prepare an ensemble of three-level λ thermal atoms
characterized by an excited-state population α∗.

(3) Split the degenerate ground doublet of those atoms by
creating a certain amount of coherence characterized by the
phase φ∗—now you have an ensemble of phaseonium atoms.

(4) Inject a beam of phaseonium atoms one at a time, inside
the two cavities, placed in a cascade configuration, so that the
atoms interact with each cavity for a time �t∗.

(5) After some time, the temperature of each cavity will be
the initially chosen temperature T ∗.

Recall that in general, this temperature will be different
from that of the initially prepared thermal ancillas at step (2),
due to the energetic cost of creating quantum coherences in
the atomic state.

With this protocol in mind, we show in the following some
results about the exploitation of phaseonium atoms to drive the
dynamics of the two cavity fields towards the desired target
states.
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FIG. 3. Behavior of temperature of the first cavity (left column)
and second cavity (right column) taking different values for the colli-
sion time. The initial state of both subsystems is taken to be a thermal
state at T = 1. Each plot shows the thermalization process obtained
involving ancillas with a different amount of coherences (but the
same α = 0.25). More precisely, for the hot curves, φ = 1.5855,
and for the cold curves, φ = 2.4043, which correspond to stationary
temperatures for the cavities T = 1.5 and T = 0.5, respectively.
We observe that as the collision time increases, the thermalization
process becomes faster for small �t , does not change for �t ∼ 0.6
and becomes slower for �t > 1.2. Interaction times are given in units
of 1/, while temperature is shown in units of KB/(h̄ω).

A. Heating and cooling the cavities

First, we demonstrate how general the protocol is: choos-
ing any temperature T ∗, one can always find a pair of
phaseonium parameters to heat up as well as cool down the
cavities towards that temperature.

In Fig. 3, we show that for a fixed excited-state popula-
tion α, gauging the coherence phase φ, we can control the
evolution of the system to make it get hotter or colder. In
particular, it is seen how starting from a thermal state at
T = 1.0 for both cavities, we can appropriately choose the
values of the phase φ such that the two subsystems thermalize
either to a temperature T = 1.5 or to T = 0.5. We notice how
cavity S1 is always the first to thermalize: this is clear, given
the unidirectionality of the cascade two-cavity system. The
second cavity S2 eventually reaches the same stable tempera-
ture of S1. Regarding the speed of the thermalization process,
it depends on all three parameters, α, φ, and �t . Having
already prepared our phaseonium atoms, we can then easily
change the interaction time to speed up or slow down the
process.

As displayed in the three rows of Fig. 3, the behavior of
the thermalization as a function of the number of collisions
depends on the atom-cavity interaction time �t , but in each
row this dependence is different: for interaction times (given
in units of 1/ throughout) of the order of 0.10, the process
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speeds up by increasing �t (panels in the top row); for in-
teraction times of the order of 1.25, the process slows down
by increasing �t (panels in the bottom row); for intermediate
interaction times, the change in speed is negligible (panels in
the central row). This nonlinear behavior can be understood by
looking at the expression of the time evolution of the photon
number operator �〈n̂〉k = 〈n̂〉k − 〈n̂〉k−1. The bigger this is,
the faster a cavity will gain or lose photons to the ancillas,
reaching a steady state faster. The master equation is given in
Eq. (E4) of Appendix E, where we find the master equation for
a generic operator. Considering this rate of photon gain or
photon loss to the ancillas, we see that its magnitude is peri-
odical in θ via a complex sum of squared sines. Heuristically,
we can think that when an ancilla stays inside the cavity for a
long enough time, a photon emitted (absorbed) by the ancilla
can also be reabsorbed (emitted back) by the same ancilla to
the cavity, and vice versa if a longer time passes.

B. Robustness of the model

Here we address the real-world scenario where our pa-
rameters, particularly φ and �t , are affected by stochastic
noise, so they are not constant but belong to some stochastic
distribution. In fact, suppose a velocity selector is placed
in front of the phaseonium beam. As illustrated in Fig. 1,
the time each atom spends in a cavity gives the interaction
time �t , and so it depends on the selected velocity of the
phaseonium atoms. We can consider the selector to be flawed
and characterized by an absolute error on selected speeds,
and those to be Gaussian distributed. Interaction times will
then follow the same distribution, with a variable �t ≡ �tk
changing at each interaction step k. Similarly, in the creation
of the phaseonium atoms of Eq. (5), the coherence phase φ of
each atom can be considered as a stochastic Gaussian variable
φ ≡ φk , centered on the target coherence phase φ∗. We then
expect a thermalization process for both cavities that takes
them to a stochastic temperature T ∗ ± �T ∗. We will confront
this temperature T ∗ with the expected temperature Tφ∗ given
by the mean value of the prepared atom coherences.

Thanks to the Markovianity of our approach, where every
interaction is independent of the others and the stroboscopic
evolution is calculated step by step, it is well suited to tackle
the problem of stochastic parameters: we can always apply
Eq. (25) to each evolution step k, using, each time, the corre-
sponding �tk and φk .

The effect of the noisy interaction times is not expected to
significantly affect the thermalization process since the final
temperature of Eq. (16) does not depend on this parameter:
no matter the interaction time, every collision will take the
system closer to the final stable temperature. This can be seen
from the simulations in Fig. 4, which show two thermaliza-
tion processes for the two cavities from initial temperature
T = 1.0 to temperatures Tφ∗ = 1.5 and Tφ∗ = 0.5, where φk

is fixed to φ∗. The reference cases with constant �tk are
represented by a dotted line. For the stochastic �tk cases, we
report, with a continuous line, the mean values across different
simulations, surrounded by a halo representing the standard
deviation.

The case with stochastic coherence phases φk and fixed
interaction time �tk = �t is different, shown in Figs. 5 and 6

FIG. 4. Behavior of the temperature of the first cavity S1 (left
panel) and second cavity S2 (right panel) using interaction times
extracted at every step k from a Gaussian distribution, �tk = (0.4 ±
0.2), where the standard deviation is used as the error on the mean.
Here we selected φ∗ = π/2, and for the hot curves we use α∗ =
0.251 751 7, corresponding to a stationary temperature T ∗ = 1.5,
while for the cold curves we have α∗ = 0.451 963, corresponding
to a stationary temperature T ∗ = 0.5. The mean value across 10
simulations of the evolving temperature is plotted as a continuous
line, surrounded by its standard deviation. For reference, the constant
interaction time case with �tk = 0.4 is plotted with a dotted line. It
is evident that both heating and cooling the cavities with noise in the
interaction times slows down the thermalization process, although
the final stable temperature is reached at some point. Interaction
times are given in units of 1/, while temperature is shown in units
of KB/(h̄ω).

in the same fashion as the previous figure. In Fig. 5, we can
see that cooling to temperature Tφ∗ = 0.5 presents only little
noise in the final stable temperature, while the heating sce-
nario suffers more, showing manifest noise around the mean

FIG. 5. Behavior of the temperature of the first cavity S1 (left
panel) and second cavity S2 (right panel) using coherence phases
φk extracted at every step k from a Gaussian distribution with
standard deviation σ . For the cooling process, we select α∗ = 0.25
and φ∗

k = 1.585 589 386, with σ = 0.2, corresponding to a station-
ary temperature T ∗ = 0.5. For the heating process, we have two
simulations with increasing standard deviation, using α∗ = 0.5 and
φ∗

k = 1.267 686 86, with σ = 0.2 for the red curve and σ = 0.35
for the brown curve, both corresponding to a stationary tempera-
ture T ∗ = 1.5. Interaction time �tk = 0.2 is fixed. The mean value
across 10 simulations of the evolving temperature is plotted as a
continuous line, surrounded by its standard deviation across different
simulations. For reference, the constant coherence case with σ = 0
is plotted with a dotted line. The cooling process is not much af-
fected by random variations in the coherence phase: the first cavity
reaches a noisy stable state at T1 = (0.498 ± 0.006), and the second
thermalizes at T2 = (0.498 ± 0.004). Noise is higher in the heating
scenario, with T1 = (1.50 ± 0.03) and T2 = (1.50 ± 0.02) for the red
curve with σ = 0.2 and T1 = (1.52 ± 0.05) and T2 = (1.52 ± 0.03)
for the brown curve with σ = 0.35. Interaction times are given in
units of 1/, while temperature is shown in units of KB/(h̄ω).
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FIG. 6. Behavior of the temperature of the first cavity S1 (right
panel) and second cavity S2 (left panel) using coherence phases φk

extracted at every step k from a Gaussian distribution with standard
deviation σ = 0.2. Here we selected the same set of parameters α∗ =
0.25 and φ∗

k = (2.404 315 987 ± 0.2), corresponding to a stationary
temperature T ∗ = 1.5, but with two different initial conditions for the
cavities: starting at temperatures T0 = 2.0 or T0 = 1.0. Interaction
time �tk = 0.2 is fixed. The mean value across 10 simulations of
the evolving temperature is plotted as a continuous line, surrounded
by its standard deviation. For reference, the constant coherence case
with φk = 2.404 315 987 and φk = 1.585 589 386 is plotted with a
dotted line. A clear difference arises in the reference thermalization
at T ∗ = 1.5 and the two stochastic processes. In fact, in both cases,
the first cavity thermalizes to a noisy temperature T1 = (1.37 ± 0.04)
and the second to T2 = (1.37 ± 0.03). Interaction times are given in
units of 1/, while temperature is shown in units of KB/(h̄ω).

value but still getting to an average steady temperature close
to the predicted Tφ∗ = 1.5. Moreover, as can be seen from
the two plotted heating processes, the precision of heating is
affected by the precision in preparing the phaseonium atoms.
Figure 6 shows different and nontrivial behavior: heating
and cooling with stochastic coherence phases drawn from a
different region of the parameter landscape in Fig. 2 lead
to a steady-state temperature T ∗ for both cavities which is
lower than the expected temperature Tφ∗ . This can be under-
stood by looking at the resulting stochastic distribution of the
ancillas’ apparent temperatures defined in Eq. (19). In fact,
given the nonlinear behavior of the temperature in φ, the
resulting distribution will be right skewed. This will shift the
mode to the left of the mean, so that we are really sending,
through the cavities, a bigger number of “cooler” ancillas with
temperature Tk < Tφ∗ , lowering the final temperature of the
systems.

VII. DISCUSSION

In this paper, we have studied the dynamics of two optical
cavities immersed in a phaseonium bath, highlighting how the
quantum coherence present in the initial state of this pecu-
liar atomic environment affects the cavity’s evolved state. In
particular, the two-cavity system, assembled in a cascade con-
figuration, thermalizes at a temperature Tφ which depends on
the coherence between the ground levels of the phaseonium.
We have found the quantum dynamical map [see Eq. (25)] for
finite interaction times using only a few assumptions required
by collision models. In general, this equation can be used
to calculate the evolution of observables on the system via
Eq. (E3).

It is also possible to see the unidirectionality of the cascade:
the first cavity evolves independently of the second cavity,
following the dynamical map of Eq. (13), and it is the first

to reach the steady state given by Eq. (17). From this moment
on, every subsequent ancilla is altered in the same way by the
previous interaction and ends up in the state of Eq. (20). This
state then makes the second cavity to thermalize at the same
temperature Tφ of the first cavity.

Remarkably, we have demonstrated that by suitably har-
nessing the excited-state population and coherence phase
of each phaseonium atom, the cavity fields can be
heated up or cooled down with respect to their initial
temperature.

From an experimental point of view, the use of two har-
monic oscillators (represented here by single-mode cavities)
and Gaussian states allows us to work with general-purpose
systems that are easy to implement in various ways. The
preparation of phaseonium atoms is also possible via stimu-
lated Raman adiabatic passage (STIRAP) [46,47], or similarly
fractional STIRAP [48] or fractional Stark-chirped rapid
adiabatic passage (f-SCRAP) [49], Morris-Shore transfor-
mation [50], or quantum Householder reflection [51]. The
thermodynamic cost of creating phaseonium atoms is studied
in [43].

We have also shown how the interaction time �t can be
tuned to achieve faster or slower thermalization. Besides the
velocity selector, another well-known method for modulating
the interaction between an atom and a cavity is the Stark
shift [52–54]. While phaseonium atoms with level spacing h̄ω′
enter the cavities with a certain velocity, an external electric
field can be applied inside the cavity for a time �t to shift the
atom frequency from ω′ to ω and obtain the required resonant
interaction for the desired time.

Also, from the given dynamical equations, it is straight-
forward to take the continuous limit for �t → 0, but we
emphasize that in real implementations, the interaction time
is finite and can be used as control parameters. The time spent
by an ancilla inside the cavity can be easily set by a velocity
selector for phaseonium atoms.

These results open the way to various prospects. Future
works will investigate the role of intrasystem quantum corre-
lations, created by the ancillas interacting with both cavities.
Although the cavities are not directly coupled with each other,
a unidirectional flow of information is mediated by the an-
cilla atoms, going from the first cavity to the second one.
Working with quadratic operators as we did in Appendix B,
approximating the time-evolution operator for short collision
times, one can exploit the theory of continuous systems’ co-
variance matrices as a useful tool for looking at the evolution
of the von Neumann entropy, exchanged mutual information
[55,56], quantum discord [56–59], and even entanglement
via logarithmic negativity as an entanglement monotone
[60–62]. The starting point for this further study is given in
Appendix E.

A further addition to our system will be the implementation
of cavity losses to a thermal environment, adding a dissipative
term to the master equation to see the effects on the ther-
malization. This problem is already tackled in Ref. [63] and
some specific dissipation models for � systems in a cavity are
considered in Refs. [64,65]. Numerical results for the simpler
micromaser are also reported to describe the steady state of
the system [66] and to study the effects on the performances
of a quantum micromaser battery [31].
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Finally, another promising direction to be analyzed is the
utilization of different types of ancilla phaseonium atoms, pre-
pared with different coherences, to induce a thermodynamic
cycle on the cavities.
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APPENDIX A: TIME-EVOLUTION
OPERATOR EXPANSION

This Appendix contains the key passages to recover a man-
ageable expression of the evolution operator Ûk that rules the
evolution of the system ρk−1 ⊗ ηk and will lead us to the Kraus
map (12). This operator is naturally given by the exponential
of the cavity-ancilla interaction (8), Ûk = exp −i�tV̂k . We
can collect the interaction strength h̄ outside the interaction
Hamiltonian and call h̄�t the accumulated Rabi phase θ

during the interaction. Therefore, we can expand the unitary
evolution operator Ûk = exp(iθV̂k ) as

eiθVk =
∞∑
j=0

(iθ ) j

j!
V j

k = I +
∞∑
j=1

(iθ )2 j

(2 j)!
V 2 j

k

+
∞∑
j=1

(iθ )2 j−1

(2 j − 1)!
V 2 j−1

k . (A1)

We will see shortly why this decomposition in even and odd
powers is convenient, but first we must reframe the interaction
Hamiltonian in the ancilla basis |e〉, |g1〉, |g2〉, that is,

V̂k =

⎛⎜⎝ 0 â â
â† 0 0
â† 0 0

⎞⎟⎠. (A2)

By brute matrix multiplication, we can calculate V̂ 2
k and V̂ 3

k ,
and easily infer a rule for even and odd powers, as we will
show later. Now, the summation in Eq. (A1) is to be the
intended matrix element by matrix element.

Referring each element of Ûk in row r and columns l as
Û (rl )

k , we can again sum up each series and recover the 3 × 3
time-evolution operator Ûk given in Eq. (9). One finds that the
rules for even and odd powers of V̂k are

V 2 j
k =

⎛⎜⎝2i(ââ†) j 0 0

0 2 j−1(â†â) j 2 j−1(â†â) j

0 2 j−1(â†â) j 2 j−1(â†â) j

⎞⎟⎠, (A3)

V 2 j−1
k =

⎛⎜⎜⎝
0 2 j−1(ââ†) j−1â 2 j−1(ââ†) j−1â

2 j−1(â†â) j−1â† 0 0

2 j−1(â†â) j−1â† 0 0

⎞⎟⎟⎠.

(A4)

For even powers of the time-evolution operator expansion, we
have the elements

Û (11)
k =

∞∑
j=1

(iθ )2 j

(2 j)!
2k (ââ†) j

=
∞∑
j=1

(−1) j θ
2 j (

√
2ââ†)2 j

(2 j)!

= cos(θ
√

2ââ†) − I, (A5)

Û (22)
k = Û (23)

k = Û (32)
k = Û (33)

k

=
∞∑
j=1

(iθ )2 j

(2 j)!
2 j−1(â†â) j

= 1

2

∞∑
j=1

(−1) j θ
2 j (

√
2â†â)2 j

(2 j)!

= 1

2
[cos(θ

√
2â†â) − I], (A6)

and for odd powers, we have the elements

Û (12)
k = Û (13)

k =
∞∑
j=1

(iθ )2 j−1

(2 j − 1)!
2 j−1â†(ââ†) j−1

=
∞∑
j=1

(−1) j â† θ2 j−1(
√

2ââ†) jk−1

(2 j − 1)!
√

2ââ†
= iâ† sin(θ

√
2ââ†)√

2ââ†
,

(A7)

Û (21)
k = Û (31)

k =
∞∑

k=1

(iθ )2 j−1

(2 j − 1)!
2 j−1(ââ†)k−1

â = i
∞∑
j=1

(−1) j θ
2 j−1(

√
2ââ†)2 j−1

(2 j − 1)!
√

2ââ†
â = i

sin(θ
√

2ââ†)√
2ââ†

â,

(A8)

having used, in the first line, the equivalence f (â†â)â† =
â† f (ââ†).

We can thus define the photon operators that appear in the
elements of the time-evolution operator as in Eq. (10), and
with those we can rewrite the exponential operator in terms of
the 3 × 3 matrix representation in the ancilla’s basis,

Û †
k = e−iθV̂k =

⎛⎜⎜⎝
Ĉ −iS† −iS†

−iŜ 1
2 (Ĉ′ + I) 1

2 (Ĉ′ − I)

−iŜ 1
2 (Ĉ′ − I) 1

2 (Ĉ′ + I)

⎞⎟⎟⎠, (A9)

Ûk = eiθV̂k =

⎛⎜⎜⎝
Ĉ iS† iS†

iŜ 1
2 (Ĉ′ + I) 1

2 (Ĉ′ − I)

iŜ 1
2 (Ĉ′ − I) 1

2 (Ĉ′ + I)

⎞⎟⎟⎠. (A10)

Note that now the time dependence of the evolution is
hidden inside the sinusoidal functions of photon operators Ĉ,
Ĉ′, and Ŝ.

043705-8



HEATING AND COOLING PROCESSES VIA … PHYSICAL REVIEW A 109, 043705 (2024)

APPENDIX B: CONTINUOUS-TIME LIMIT

We show here the continuous-time limit of the master
equation (13) for the cascade system. Revising Ref. [8], con-
tinuous time is a standard approximation in collision models
approaches, where system-ancilla interactions are taken to be
short enough to allow a second-order approximation of the
time-evolution operator Ûk . As long as collisions must happen,
the limit �t → 0 can survive only for diverging interaction
strengths; otherwise, one focuses on evolution times much
larger than �t , so that the stroboscopic dynamics happen-
ing at discrete time steps tn = n�t can be replaced with a
continuous-time variable t , and finite differences can be re-
placed with differentials. This is called coarse graining. In this
approximation, the photonic operators in Eq. (10) become

C = I − θ2aa†, C′ = I − θ2a†a, S = θa†, (B1)

and, denoting â (â†) and b̂ (b̂†) as the annihilation (creation)
operators for the first and second cavity, respectively, the
Kraus operators in Eq. (24) can be written as

E0 =
√

1 − γα

2
− γβ

2
I, (B2)

E1 =
√

γα

2
[1 − θ2b̂b̂† − θ2ââ† − 2θ2â†b̂], (B3)

E2 = √
γα[θ â† + θ b̂†], (B4)

E3 = √
γβ[θ â + θ b̂], (B5)

E4 =
√

γβ

2
[1 − θ2b̂†b̂ − θ2â†â − 2θ2âb̂†]. (B6)

We can now use these expressions to rewrite the discrete
master equation (13) as

dρ(t )

dt
= −i[Ĥeff, ρ] + γ ′

αD[â†+b̂†] ρ̂(t ) + γ ′
β D[â+b̂] ρ̂(t ),

(B7)

where Ĥeff = i(γ ′
β − γ ′

α )(â†b̂ − b̂†â)/2 and γ ′
α,β = γα,β2�t ,

considering always  such that 2�t converges in the contin-
uous limit. This cascade master equation is comparable to that
obtained by the standard collision model methods explained
in [8].

APPENDIX C: CAVITY STEADY STATE

Here we look for the steady state of one cavity after a
sufficient number of collisions. The stationary condition reads

�ρ∗ =
∑

i

Êiρ
∗Ê†

i − ρ∗ = 0, (C1)

with Kraus operators given in Eq. (12). This must be true
for each expectation value in the system’s basis, so by us-
ing the relations f (ââ†) |n〉 = f (n + 1) |n〉 and f (â†â) |n〉 =
f (n) |n〉, we have that the off-diagonal elements are null,

�ρ∗n
m ≡ 〈n|�ρ∗|m〉 = 0,

n �= m, (C2)

and, for n = m, we report the relative equation[
γα

2
sin2 θ

√
2n

]
ρ∗n−1

n−1 +
[
γα

2
cos2 θ

√
2(n+1)

+ γβ

2
cos2 θ

√
2n + β2

2
(1 − cos φ)

]
ρ∗n

n

+
[
γβ

2
sin2 θ

√
2(n+1)

]
ρ∗n+1

n+1 = ρ∗n
n. (C3)

This can be recursively resolved, obtaining

ρ∗n
n = γα

γβ

ρ∗n−1
n−1 =

(
γα

γβ

)n

ρ∗0
0. (C4)

We can now refer to the element ρ∗0
0 as 1/Z and

(γα/γβ )n = exp(−nh̄ω/KBTφ ) to write the steady state of the
system as a Gibbs state,

ρ∗ =
∞∑
n

exp(−En/KBTφ )

Z
|n〉〈n|, (C5)

and thus define the steady-state phase-dependent temperature
Tφ given in Eq. (16).

As the first cavity thermalizes to this temperature, ancillas
will cease to interact with it and the second cavity will start to
see the originally prepared ancillas bearing the same Tφ and to
evolve like it was a single cavity, finally thermalizing to Tφ .

Since this derivation of the steady state is the most general,
it will hold as for the coarse-grained dynamics expressed
by Eq. (B7). The steady-state temperature, in fact, does not
depend on the interaction time �t .

APPENDIX D: ANCILLAS DECOHERENCE

Here we study how our results would be modified if we
add a decoherence process to ancillas. In fact, we can suppose
ancillas to interact with the environment before and after
entering the cavities. We can think of the decoherence process
Ud (t ) as a process which takes the coherent ancillas towards
their thermal counterpart after some time τ ,

η =
⎛⎝a 0 0

0 b
2 c

0 c∗ b
2

⎞⎠ −→ Ud (τ )ηU †
d (τ ) =

⎛⎝a 0 0
0 b

2 0
0 0 b

2

⎞⎠.

(D1)

Note that with this notation, we define dissipation rates as
γα = 2a and γβ = b + (c + c∗) = b + Re(c), where Re(c) is
the real part of the coherences. We can thus model the process
Ud (t ) simply by multiplying the coherences with a time-
dependent coefficient ε(t ) which goes from 1 to 0 as t goes
from 0 to τ , so that the coherences themselves become time
dependent: c(t ) = ε(t )c. Moreover, we can suppose that if the
first cavity is close enough to the phaseonium source, the ef-
fect of the decoherence on the ancillas seen by S1 is negligible.
This cavity will thus thermalize to temperature KBT ∗

1 . For a
given “time of flight” t̄ of ancillas between one cavity and the
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other, the decohered ancilla seen from the second cavity will
have the form ⎛⎜⎝a 0 0

0 b
2 ε(t̄ )c

0 ε(t̄ )c∗ b
2

⎞⎟⎠. (D2)

Accordingly, only the dissipation rate γβ of the second cavity
will be modified. This cavity will thus thermalize to a steady
state with temperature different from the first cavity,

KBT ∗
1 = − h̄ω

ln [2a/(b + Re{c})]
, (D3)

KBT ∗
2 = − h̄ω

ln [2a/(b + ε(t̄ )Re{c})]
, (D4)

h̄ω

T ∗
1

− h̄ω

T ∗
2

= ln

(
b + Re{c}

b + ε(t̄ )Re{c}
)

, (D5)

or

KBT ∗
2

h̄ω
= KBT ∗

1

/[
h̄ω − KBT ∗

1 ln

(
b + Re{c}

b + ε(t̄ )Re{c}
)]

. (D6)

APPENDIX E: OPERATORS EVOLUTION

The variation of the expectation value of an observable
acting on the Hilbert space of the system in each collision is
given by [cf. Eq. (13)]

Tr
{
Ô �ρk

} = Tr

{
Ô

(
4∑

i=0

ÊiρkÊ†
i − ρk

)}
. (E1)

Thanks to the permutation property of the trace, this can be
recast into

Tr

{(
4∑

i=0

Ê†
i ÔÊi − Ô

)
ρk

}
= Tr{�Ô ρk}, (E2)

leading to the following discrete master equation for 〈Ô〉k:

�〈Ô〉k =
4∑

i=1

〈D̃[Ei]Ô〉k, (E3)

where D̃[Ê ]Ô = Ê†ÔÊ − 1/2{Ê†Ê , Ô}.
As a figure of merit, we can give the expression for the time

evolution of the average number of photons inside one cavity
�〈n〉k ,

�〈n〉k =
∑

n

ρn,n
k

{
γα

2
sin2[θ

√
2(n + 1)] − γβ

2
sin2(θ

√
2n)

}
.

(E4)

This dictates the rate of heating (if �〈n〉k is positive) or cool-
ing (if �〈n〉k is negative) of one cavity, and it is dependent
on cos φ inside the γβ coefficient and on θ = �t via two
squared sinusoidal functions.

Taking the continuous-time limit as in Eq. (B7), we obtain

d〈Ô〉
dt

= 〈i[Ĥeff, ρ]〉 + γ ′
α 〈D̃[â†+b̂†] Ô〉 + γ ′

β 〈D̃[â+b̂] Ô〉.
(E5)

We emphasize a crucial distinction from Eq. (E3): the pre-
sented master equation is quadratic in the cavity operators,
thereby preserving Gaussianity. Consequently, the utility of
working with Gaussian states becomes evident. Gaussian
states, when subjected to such a coarse-grained quan-
tum map, undergo evolution while retaining their Gaussian
nature.
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