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Paraxial fluids of light have recently emerged as promising analog physical simulators of quantum fluids using
laser propagation inside nonlinear optical media. In particular, recent works have explored the versatility of such
systems for the observation of two-dimensional quantum-like turbulence regimes, dominated by quantized vortex
formation and interaction that results in distinctive kinetic energy power laws and inverse energy cascades.
In this manuscript, we explore a regime analog to Kelvin-Helmholtz instability to examine in further detail
the qualitative dynamics involved in the transition from smooth laminar flow to turbulence at the interface of
two fluids with distinct velocities. Both numerical and experimental results reveal the formation of a vortex
sheet as expected, with a quantized number of vortices determined by initial conditions. Using an effective
length transformation scale we get a deeper insight into the vortex formation phase, observing the appearance
of characteristic power laws in the incompressible kinetic energy spectrum that are related to the single vortex
structures. The results enclosed demonstrate the versatility of paraxial fluids of light and may set the stage for the
future observation of distinct classes of phenomena recently predicted to occur in these systems, such as radiant
instability and superradiance.
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I. INTRODUCTION

In recent years, the propagation of light in nonlinear media
under the paraxial regime received increasing attention as
an interesting experimental platform for emulating quantum
fluid dynamics [1,2]. In its essence, the idea is to leverage
the formal equivalence of the mathematical models describ-
ing the propagation of a laser beam in a nonlinear medium
and the nonlinear Schrödinger equation (NLSE) describing
the temporal evolution of the wave function of Bose-Einstein
condensates (BECs) [1]. This research topic, usually called
in the literature quantum fluids of light in propagating
geometries or paraxial fluids of light, exploits major advan-
tages of light-based experimental systems and constitutes a
promising line of research for quantum simulations, namely,
for the experimental observation of quantum-like regimes
[3–6].

Compared with its analog, a paraxial light fluid emulates
the dynamics of the BEC along the propagation axis of the
electromagnetic field, meaning that the analog of the fluid
density evolution in time of an initial state corresponds to
the electric field intensity at consecutive transversal planes.
Experimentally, paraxial light fluids can be achieved in dis-
tinct optical media including resonant atomic systems [2,4,5],
photorefractive crystals [6,7], or thermo-optic liquid solutions
[8,9]. Although these feature distinct degrees of complexity
and specifications depending on the utilized optical media,
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the lower cost and simpler experimental control compared
with actual BECs make them an interesting solution to ex-
plore particular aspects of quantum-like phenomenology in
the laboratory. Furthermore, this higher accessibility also adds
a plethora of advantages, from which we highlight the versa-
tile state initialization using wavefront shaping techniques, the
ability to assess the phase of the initial and final state using
holographic reconstruction, and the enhanced control of the
potential landscape using the interaction with other optical
beams under cross-Kerr effects.

One of the topics that can strongly benefit from the use
of these platforms is the subject of quantum turbulence.
Turbulence consists of complex fluid motion dominated by
chaotic behavior and is a class of phenomena ubiquitous
across multiple domains of physical sciences [10–12]. Al-
though an analytical description is often unfeasible, it usually
features qualitative and quantitative signatures with a certain
degree of universality that can be studied. Focusing on its
quantum counterpart, quantum turbulence signatures depend
on the dimensionality of the physical system [13]. In specific,
for two-dimensional (2D) systems, strong turbulence regimes
lead to the formation of vortex structures, featuring a char-
acteristic k−3 power law in the incompressible kinetic energy
spectrum towards smaller scales [14]. Furthermore, the inter-
action between multiple vortices may also lead to an energy
transfer between smaller to large scales—an inverse energy
cascade—featuring a characteristic k−5/3 power law towards
larger scales [14]. Regarding its experimental observation,
paraxial fluids of light can leverage the easy state initialization
and access to phase distributions to probe theoretical predic-
tions and provide better insight into the underlying physical
phenomena. Recent work on this subject has focused mostly
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FIG. 1. Illustration of the typical experimental scenario for the observation of Kelvin-Helmholtz instability in paraxial fluids of light. (A)
Simplified schematic of the experimental setup. (B) Evolution of the optical intensity along the crystal, obtained using numerical simulations
for an initial state with v ≈ 4.4cs under the conditions described in the main text. (C) State at the input (numerical simulation), with (C1)
corresponding to the intensity profile and (C2) to the phase profile with its characteristic phase imprinted on the top half-plane using wavefront
shaping techniques. (D) Typical state (numerical simulation) at the output, revealing the formation of a vortex sheet along the discontinuity
interface.

on the generation and observation of vortex structures past
obstacles [6] or forced by two-wave interference and dark
soliton decay [4].

Another topic of interest for quantum turbulence is the
observation and exploration of the hydrodynamic instabili-
ties which govern the transition from smooth laminar flow
to chaotic turbulence. In this domain, the Kelvin-Helmholtz
instability (KHI) is perhaps the most recognizable class of
hydrodynamic instability and simply describes the instability
formed at the interface of two streams moving with distinct
relative velocities. In particular, under convenient velocity
differences (for a single-component fluid it occurs at all
velocity values), the streams start to roll up at the interface,
and the unstable perturbations start to grow exponentially,
leading to turbulent phenomena. The observation of the KHI
in superfluid and BECs has been suggested multiple times
in the literature. Focusing on the case of BECs, KHI was
studied both in single [15,16] and binary BECs [17,18],
leading to the observation of vortex sheets, i.e., collections
of point vortices along a specific curve. Yet, the experi-
mental realization of the theoretical studies can be quite
challenging.

The difficulty in exploring KHI experimentally with BECs
sets the stage and opportunity for this manuscript that aims
to use paraxial fluids of light for such purpose. To this end,
we first introduce a theoretical model for light propagating
inside a photorefractive crystal, highlighting the analogy with
fluids and BECs. We then introduce an experimental setting
for the observation of KHI, analyzing the numerical and ex-
perimental results obtained for distinct values of analog fluid
velocity. Finally, we verify the experimental observation of
qualitative and quantitative behavior in terms of vorticity and

incompressible kinetic energy spectrum, which align with the
expected theoretical predictions.

II. PHYSICAL MODEL

The main objective of this work is to explore the dynam-
ics of KHI in paraxial fluids of light for the observation of
quantum-like turbulence signatures. For this, we first focus on
the dynamics of a laser beam propagating inside a photore-
fractive crystal, as illustrated in Fig. 1.

Assuming a continuous wave beam and a stationary optical
response regime of the crystal, the laser propagating along
the z axis can be expressed mathematically by E f (r⊥, z, t ) =
E f (r⊥, z) exp [i(nek f z − ωt )]ep, with E f (r⊥, z) being the en-
velope function and k f = 2π/λ f being the vacuum wave
number with λ f = 532 nm. Considering the polarization ep

aligned with the c− axis of the photorefractive crystal, and
neglecting the anisotropic response of the crystal and its ab-
sorption, we can, assuming the paraxial approximation, get
that the propagation dynamics of the envelope functions of
the optical beam are described by [19]

i∂zE f + 1

2nek f
∇2

⊥E f − k f �nmax
|E f |2

|E f |2 + Isat
E f = 0, (1)

where ne is the extraordinary refractive index, Isat is the satu-
ration intensity, and �nmax = 1/2n3

er33Eext [19]. For the sake
of simplicity, we can introduce coordinate transformations
x′ = k f

√
�nmaxnex and z′ = k f �nmaxz, which, dropping the

primes, leads to

i∂zE f + 1

2
∇2

⊥E f − |E f |2
|E f |2 + Isat

E f = 0. (2)
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For regimes far away from saturation, i.e., I f = |E f |2 � Isat,
the model can be approximated by

i∂zE f + 1

2
∇2

⊥E f − 1

Isat
|E f |2E f = 0. (3)

A. Quantum fluid analogy

Looking at Eq. (3), the analogy between the dynamics of
light inside the photorefractive crystal and BECs becomes
clear. Indeed, in mean-field theory assuming binary collisions,
the Schrödinger equation for the condensate wave function
ψ (r, t ) takes the form of a nonlinear Schrödinger equation,
also called the Gross-Pitaevskii equation,

ih̄
∂ψ (r, t )

∂t
=

[
− h̄2∇2

⊥
2m

+ V (r, t ) + g|ψ (r, t )|2
]
ψ (r, t ),

(4)
where m is the mass of the particle, g is a coupling constant
related to the binary collisions, and V (r, t ) an additional ex-
ternal potential. Although the Gross-Pitaevskii describes the
dynamics of a BEC in a three-dimensional setting, it is well
known that quasi-2D and 1D dynamics can be obtained using
trapping potentials of associated force much larger than the
interatomic interactions [20]. In particular, if confinement is
strong along one direction and weak along the others, the
BEC may assume a pancake shape and its dynamics may
follow a reduced two-dimensional effective model. Taking
this scenario, and due to the mathematical equivalence of
both models, it is easy to support that the analog of tem-
poral dynamics of a BEC can be observed by looking at
multiple planes taken along the propagation direction of the
crystal [1,2,6,19,21]. It is interesting to notice other formal
relations: the quantum fluid density |ψ f |2 can be related to
the optical intensity I f = |E f |2, the interaction via particle
collision becomes an interaction mediated by the nonlinear
optical properties, and the atomic mass has its analog as an
effective mass through diffraction given by k f .

Furthermore, to reinforce the concept of paraxial fluid of
light and in particular unravel what is the equivalent of the
fluid velocity, we can consider Eq. (2) and apply the Madelung
transformation

ψ f = √
I f (r⊥, z)eiφ(r⊥,z),

where φ is the spatial phase distribution of the optical beam.
By substitution, and separating the imaginary and real part,
we can obtain a set of Navier-Stokes equations,

∂I f

∂z
+ ∇⊥ · (I f v) = 0, (5)

∂v

∂z
+ (v · ∇⊥)v = ∇⊥

(
− I f

Isat
+ ∇2

⊥
√

I f

2
√

I f

)
, (6)

by considering that the fluid velocity is related to the phase
spatial distribution as v = ∇⊥φ, meaning that one can control
it experimentally by imprinting a given phase profile using,
for example, a spatial light modulator. The last term on the
right side of Eq. (6) is known as Bohm potential, known to be
related to quantum-like effects.

Straightforward linearization of Eqs. (5) and (6) using [22]
I = I0 + δI (7)

v = v0 + δv (8)

leads to the Bogoliubov dispersion relation for elementary
excitations on top of the photon fluid with intensity I0, which
in the laboratory reference frame becomes

kz =
√

k2
⊥

2k f ne

(
k2
⊥

2k f ne
+ 2k f �nmax

I f

Isat

)
. (9)

From this follows the analog sound velocity of the fluid

cs =
√

�nmaxI f

neIsat
, (10)

and the healing length of typical length scales in the transver-
sal plane

ξ = 1

k f
√

ne�nmaxI f /Isat
. (11)

B. Kelvin-Helmholtz instability and the onset
of quantum turbulence

In general, KHI describes the instability formed at the
interface of two streams moving with distinct relative veloc-
ities. Occurring at all velocity values for a single fluid, in its
classical version the two streams start to roll up at the inter-
face, leading to unstable perturbations that induce a turbulent
regime.

In the quantum version of this effect, proposed for BECs
in multiple references in the literature (e.g., Refs. [15,16,23]),
a line of quantized vortices is seeded at the interface between
the fluids. For this case, and due to the irrotationality of the ve-
locity vector field, the condensate enters in a turbulent regime
featuring an array of vortices along the interface, mimicking
the roll-up observed on the classical KHI.

To be more specific, we focus on the case of an initial flat-
top state,

E (r⊥, z = 0) = √
I0 exp

[
−

(
2

r2
⊥

w2

)4
]

exp [ivxxθ (y)], (12)

with waist size w, θ (y) the Heaviside function, and the gra-
dient in the phase defining an analog fluid velocity vx. For
this case, the vortices are seeded in the points where the
phase difference between the bottom and top half is π , due
to instabilities related with phase discontinuity [15]. For this
reason, they appear at regular spatial intervals [16]

δx = 2π

vx
, (13)

and therefore, for a supergaussian of waist w one shall expect
the formation of Nvortices = f loor(w/δx) vortices.

Although for longer propagation distances (equivalent to
simulation time) the vortices can progressively aggregate into
larger clusters [24], the single vortex approximation [14] is
sufficient to understand some of the signatures of this regime
for shorter propagation distances. Assuming the vortices to be
independent solutions of the Gross-Pitaevskii equation, they
take the form

Ev (r⊥, z) = √
I0χ (r⊥/ξ )e−inek f zeilθ , (14)

with l ∈ Z. The vortex core structure is described by the radial
function χ (r⊥/ξ ), which indicates that the size of the vortex
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is fixed by the healing length [14]. Then it is straightforward
to obtain the velocity as

vθ = l

r
eθ , (15)

and subsequently

ω = ∇ × v = lδ(r⊥)ẑ, (16)

meaning that the vorticity is localized in the middle of the
vortex and its value is quantized. An interesting signature
of the presence of vortices, and related to strong turbulence
dynamics, is the characteristic incompressible kinetic energy
spectra of the vortex field. This quantity can be obtained from
the density-weighted velocity

u(r⊥, t ) = |ψ (r⊥, z)|v(r⊥, z) = ui(r⊥, z) + uc(r⊥, z), (17)

where the components

∇ · ui(r⊥, t ) = 0 (18)

∇ × uc(r⊥, t ) = 0 (19)

refer to the incompressible and compressible parts of the
density-weighted velocity. The incompressible kinetic energy
will then correspond to the rotational energy of vortices as

Ei = 1

2

∫
dr|ui(r⊥, t )|2. (20)

To obtain the dependency of Ei with respect to the modulus
of the momentum and thus further investigate the spectra, we
perform the Fourier transform of ui in the transverse direc-
tion and integrate on the angular coordinate. As it satisfies
k · ui = 0 we have

ui
α (k, t ) =

(
δαβ − kαkβ

k2

)
uβ (k, t ), (21)

where lower indexes indicate vector components and the sum-
mation convention was adopted, leading to

Ei(k) = k

2

∫ 2π

0
dφk|ui(k, t )|2. (22)

In the single vortex approximation (SVA), it can be shown
[14] that the low- and high-energy asymptotic behavior of
Ei(k) is given respectively by

Ei(k)
∣∣
kξ�1 ∝ 1

k
, (23)

Ei(k)
∣∣
kξ
1 ∝ 1

k3
. (24)

We note that this low-energy power law is valid for systems
of multiple vortices only when they are well separated.

III. RESULTS

Using the flat-top state introduced in Eq. 12 with waist
w = 400 µm, λ = 532 nm, and intensity I0 ≈ 55 mW cm−2,
we explored the regime of KHI for distinct velocities vx using
both experimental methods and numerical results.

A. Experimental setup

For the experimental setup, we used a SBN:61 photorefrac-
tive crystal with dimensions 5 × 5 × 20 mm3 as the nonlinear
medium, doped with cerium at 0.002% to increase its pho-
torefractive effect. The crystal with refraction index ne =
2.36 was further biased with a static electric field E0 = 8 ×
104 V/m, resulting in a refraction index variation �nmax =
1
2 n3

er33E0 ∼ 1.25 × 10−4 assuming r33 = 250 × 10−12pm/V
and neglecting the absorption effects. Additionally, a white
incoherent light was used to adjust the crystal Isat around
450 mW cm−2.

The analog fluid velocity is controlled by imprinting the
necessary phase gradients through a spatial light modula-
tor. The beam is then imaged at the input of the crystal
with a 4f system and imaged and magnified at the output
with another 4f system. The profile and phase of the out-
put are reconstructed using a complementary metal-oxide
semiconductor (CMOS) camera and an off-axis holographic
technique [25] which allows retrieving the phase profile of
the output beam and access to further quantities such as the
angular momentum, vorticity, and kinetic energy.

Finally, one limitation of these setups is that it is impossible
to assess intermediate states, i.e., distinct transversal planes
inside the crystal, by simply changing the imaging plane due
to the nonlinear optical properties of the medium. Neverthe-
less, it is still possible to recreate the evolution of the fluid
inside the crystal by performing a series of experiments with
different beam intensities I ′

0 = f I0 [3]. Indeed, it can be shown
that this transformation effectively rescales the system along
the propagation and transverse directions as

r′
⊥ =

√
f r⊥, (25)

z′ = f z. (26)

As a result, it is possible to assess the beam at the exit of
the crystal for different effective propagation lengths and thus
reconstruct some dynamics of the beam.

B. Numerical results

In order to validate the results obtained at the experimental
level and further understand the inner workings of the KHI in
paraxial light fluids, we also performed numerical simulations
by numerical integration of Eq. (3) using a standard beam
propagation method [26,27].

For each simulation, we used the initial state given by
Eq. (12), varying the input velocity vx of the top half of the
flat-top beam. Using standard numerical libraries and post-
processing numerical routines, we computed quantities such
as angular momentum, vorticity, and incompressible kinetic
energy spectrum for the light fluid, to compare with the
experimental results.

C. Results for the KHI mechanism

Figure 2 shows typical numerical and experimental results
obtained for the evolution of the flat-top state given in equa-
tion 12 with distinct velocities vx in terms of the predicted
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FIG. 2. Profiles obtained using numerical (Column 1) and experimental (Columns 2 and 3 for intensity field and phase distribution,
respectively) methodologies for the output states with distinct velocities (A–C) as shown in the picture. The different values for the velocity
lead to the generation of a different number of vortices at the interface.

analog sound velocity cs. It is straightforward to observe a
good qualitative agreement between numerical and experi-
mental data, with vortices being nucleated at the interface
between the top (moving) and bottom (still) half of the flat-top
state. Additionally, one can also observe the generation of
shock waves propagating on top of the fluid, although the
anisotropy of the crystal [19] and additional noise makes this
signature much less clear in the experimental results com-
pared to the numerical ones.

It can also be seen that as expected, each vortex is being
nucleated at the spatial points where the phase difference
is π , meaning that the system follows the expected period-
icity for vortices. This can be confirmed by the numerical

comparison between the linear density of vortex defined as
nv = Nvortices/w along the interface and the expected density
nv = w/δ = vx/(2π ), plotted in Fig. 3.

To further understand the dynamics of vortex nucleation
under the KHI, we first performed numerical simulations to
analyze the behavior at distinct planes in the propagation
distance. As it can be inferred from Fig. 4, the phase distri-
bution of the top half of the flat-top state creates an effective
velocity component along the y axis at the interface, depicted
in Fig. 4(A2) in red arrows. Focusing on the central point with
phase difference π , spatial points to the left at the interface
feature an upward velocity contribution while points to the
right feature a downward one. Due to this mechanism, the KHI
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FIG. 3. Plot comparing the observed linear vortex density nv =
Nvortices/w (circles) and the theoretically predicted value given by
equation nv = vx/(2π ) (dashed line) as described in the main text.

starts to develop, eventually turning into a vortex as the phase
and intensity pattern starts to roll up, assisted by convective
currents and pressure related to the self-defocusing optical
nonlinearity as described by Eq. (2). Besides, we can also
note that the same phase difference is also responsible for
the presence of shock waves moving outwards, which can be
better observed in Fig. 4(B1) and that also feature a degree of
periodicity related with similar reasoning to the mechanism
generating the KHI.

Using the transformation of coordinates trick introduced
in Sec. III.A–which utilizes the variation of the total in-
tensity of the input beam to change the effective length
of the sample, thus allowing to reconstruct the evolu-
tion of the fluid without accessing the inside of the
crystal—we obtained the experimental results presented in
Fig. 5. Again, the results qualitatively match those ob-
tained numerically and depicted in Fig. 4. Furthermore, the
incompressible part of the velocity was computed numerically

FIG. 4. Numerical results obtained for a state with velocity vx = 4.4cs, with (A–D) representing slices taken along the propagation
direction, where the top corresponds to the intensity profiles and the bottom to the phase profiles. On the bottom, the stream plots illustrate the
gradient of the phase, associated with the analog velocity of the paraxial fluid of light. The red arrows in (A2) represent the y component of
the velocity occurring due to the discontinuity at the half-plane interface.

by first calculating the incompressible part of the velocity in
the Fourier space, according to Eq. (21). Subsequently, the
inverse Fourier transform is taken and followed by the norm
to finally obtain the spatial distribution |ui(x, y)|2. Analyz-
ing the results for the incompressible part of the velocity,
one can also observe that nonzero regions are related to
the spatial points where the vortices form, as observed in
Figs. 5(A3)–5(C3).

Transforming the incompressible part of the kinetic energy
to the Fourier space, one can also seek for the emergence of
the characteristic power law for the single vortex in the incom-
pressible kinetic energy spectrum, featuring a transition to a
k−1 (for kξ � 1) and k−3 (for kξ 
 1) power law after some
propagation distance, as predicted [14]. Indeed, the results
obtained in Fig. 6 match the theoretical predictions [4,14]. For
small propagation lengths, phase slips dominate the spectra,
and no characteristic power law appears in the incompressible
kinetic energy spectra as the states do not have well-defined
vortices at smaller scales. Entering larger effective propa-
gation distances, the single vortices start to develop, which
can be observed both qualitatively in the profile and phase
spatial distributions, but also quantitatively, with the appear-
ance of the characteristic power laws expected to occur. This
signature confirms the onset of a vortex turbulence regime
after KHI.

IV. CONCLUDING REMARKS

In this manuscript, we investigated the dynamics of an
analog of a Kelvin-Helmholtz instability in paraxial fluids
of light and reported its observation, aiming to provide a
better understanding of this phenomenology and establish a
parallel to that expected to be observed in two-dimensional
quantum fluids [16]. By making use of an experimental setup
with a photorefractive crystal and optical phase control using
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FIG. 5. Experimental results obtained for a state with velocity vx = 4.4cs. with panels representing slices taken along the propagation
direction, where the top corresponds to the intensity profiles and the middle to the phase profiles using the effective scale transformation
technique described in the main text. On the bottom, (A3)–(C3) represent the incompressible part of the velocity related to the presence of
vortex structures in the velocity field, revealing the appearance of a vortex at the expected point.

wavefront shaping techniques, we experimentally observed
an analog behavior to the KHI regime in the interface of
a fluid featuring distinct transverse velocities. Qualitatively
and as expected, the results obtained demonstrate the nu-
cleation of a vortex sheet along the velocity discontinuity
interface.

The nucleation of these vortices is found to occur at spe-
cific points having phase discontinuity equal to π between the
bottom (still) and top (moving with velocity v) half-planes,
which is validated through the comparison with the expected
linear vortex density, in agreement with the theoretical pre-
dictions. The instability and vortex generation mechanism is

further investigated by utilizing effective coordinate transfor-
mations using the variation of the power beam, as previously
explored in the literature [3]. We then establish a connection
between this KHI regime and a vortex turbulence regime,
confirming it quantitatively with the observation of charac-
teristic k−1 and k−3 power laws in the incompressible kinetic
energy spectrum. All the results presented align with theoret-
ical predictions and those obtained using numerical methods,
confirming the potential of the experimental setup pre-
sented here for the exploration of instability and tur-
bulence signatures of two-dimensional quantum fluids of
light.
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FIG. 6. Plot showing the incompressible energy spectrum in
arbitrary units obtained for distinct effective propagation lengths,
confirming the presence of the expected power laws for the single
vortex distribution, i.e., k−1, towards large scales, in clear contrast
with the k−3 power law observed towards smaller scales as the
instability develops into a vortex.

Finally, the current experimental configuration allows for
the exploration of various topologies, such as those with peri-
odic boundary conditions. This could serve as the foundation
for future research into, for instance, the observation of super-
radiance signatures in such systems [15,16].
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