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Full characterization of biphotons with a generalized quantum interferometer
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Entangled photons (biphotons) in the time-frequency degree of freedom play a crucial role in both foundational
physics and advanced quantum technologies. Fully characterizing them poses a key scientific challenge. Here, we
propose a theoretical approach to achieving the complete tomography of biphotons by introducing a frequency
shift in one arm of the combination interferometer. Our method, a generalized combination interferometer,
enables the reconstruction of the full complex joint spectral amplitude associated with both frequency sum and
difference in a single interferometer. In contrast, the generalized Hong-Ou-Mandel and N00N state interferom-
eters only allow for the partial tomography of biphotons, either in frequency difference or frequency sum. This
provides an alternative method for full characterization of an arbitrary two-photon state with exchange symmetry
and holds potential for applications in high-dimensional quantum information processing.
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I. INTRODUCTION

Entangled photon sources in the time-frequency de-
gree of freedom play a crucial role in both foundational
physics and advanced quantum technologies, such as high-
dimensional quantum information processing [1–3]. Since
high-dimensional information can be naturally encoded in
the time and frequency degrees of freedom, such entangled
sources have the potential to improve the robustness and
key rate of quantum communication protocols [4–6], quan-
tum enhanced sensing [7], and achieve more efficient and
error-tolerant quantum computation [8]. These applications
require well-characterized sources, and how to fully charac-
terize them is a key scientific challenge.

A direct way to characterize the spectrum of entangled
photon pairs (biphotons) is to measure the joint spectral inten-
sity (JSI), which gives the probability of detecting the photons
with given frequencies [9], and the joint temporal intensity
(JTI), which gives the probability of detecting the photons
at given arrival times [10,11]. Joint measurements of JSI
and JTI in both frequency and time have enabled the partial
characterization of entangled ultrafast photon pairs, but they
are still unable to provide the full two-photon state [11]. An
indirect way to do this is by using quantum Fourier-transform
spectroscopy established by the extended Wiener-Khinchin
theorem [12–14], where the spectral information of entan-
gled light can be extracted by performing a Fourier transform
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on its time-domain interferograms obtained from the Hong-
Ou-Mandel (HOM) interferometer [15,16], the N00N state
interferometer [17–19] (also called the Mach-Zehnder inter-
ferometer), or their combination [20].

However, both of these methods are insensitive to the phase
and therefore cannot reveal the phase information of bipho-
tons [11,21]. To address this issue, some efforts have been
made based on phase retrieval algorithms that are widely used
in classical ultrafast optics [22,23]. Recently, Davis et al. [24]
demonstrated a technique for determining the full quantum
state of biphotons using electrooptic shearing interferometry.
Some relevant review articles can be found in Refs. [25,26].

Another way to acquire the phase information of biphotons
is to introduce a frequency shift in one arm of the inter-
ferometers, which was demonstrated in a conjugate-Franson
interferometer for the time-energy-entangled resource [27].
Later, Fabre [28] theoretically proposed a generalized HOM
interferometer that allowed for the reconstruction of the
amplitude and phase of the joint spectral amplitude (JSA)
associated with frequency difference for any symmetric JSA.
Additionally, a generalized N00N state interferometer was
introduced, allowing the reconstruction of the amplitude and
phase of the JSA associated with a frequency sum for sym-
metric JSA and frequency difference for antisymmetric JSA.
However, it was impossible to obtain the full complex JSA as-
sociated with both frequency difference and sum using either
of these two interferometers.

In this paper, we expand the combination interferometer
that we recently proposed in Ref. [20] and develop a gener-
alized version by introducing a frequency shift in one arm
of the interferometer. It is found that, with the generalized
combination interferometer, it is possible to reconstruct the
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FIG. 1. (a) Generalized HOM interferometer, allows for the reconstruction of the amplitude and phase of f− for any symmetric JSA.
(b) Generalized N00N state interferometer, allows for the reconstruction of the amplitude and phase of f+ for symmetric JSA and of f− for
antisymmetric JSA. (c) Generalized combination interferometer,allows for the reconstruction of the amplitude and phase of both f+ and f− for
symmetric or antisymmetric JSA. τ represents the time delay between two arms of interferometers, and μ the frequency shift. If there is no
frequency shift μ in the above interferometers, i.e., μ = 0, they would revert to the original ones and only allow for the reconstruction of the
amplitude of the corresponding f , namely | f |. M:Mirror, BS(50/50): beamspliter, D: detector, &: coincidence measurement.

full complex JSA associated with both frequency sum and
difference for symmetric JSA or antisymmetric JSA within
a single interferometer. This allows us to perform the full to-
mography of biphotons. In contrast, the generalized HOM and
N00N state interferometers only enable partial tomography of
biphotons, either in frequency difference or frequency sum.
Additionally, we discuss an experimental feasibility involving
biphoton sources with different symmetries, frequency shifts,
and postprocessing of the coincidence data as well as the
possible experimental difficulties with the proposed approach.

The rest of the paper is organized as follows. In Sec. II, we
describe the generalized HOM interferometer and discuss the
possibility of the reconstruction of the full complex JSA asso-
ciated with the frequency difference for any symmetric JSA.
At the end of this part, as an example, we analyze the phase
sensitivity of such a generalized interferometer and show the
simulated results for a Gaussian input state without and with
a quadratic spectral phase. In Sec. III, we describe the gener-
alized N00N interferometer and discuss the possibility of the
reconstruction of the full complex JSA associated with fre-
quency sum for symmetric JSA and frequency difference for
antisymmetric JSA. The simulated results are also shown for
a Gaussian input state without and with a quadratic spectral
phase. In Sec. IV, we describe the generalized combination
interferometer and discuss the possibility of the reconstruction
of the full complex JSA associated with both the frequency
difference and sum for symmetric JSA or antisymmetric JSA.
Section V compares the results obtained with three general-
ized interferometers and discusses the experimental feasibility
and possible difficulties of performing the full tomography of

biphotons with these generalized interferometers. Section VI
summarizes the results and concludes the paper.

II. GENERALIZED HOM INTERFEROMETER

The setup of a generalized HOM interferometer is illus-
trated in Fig. 1(a), where a frequency shift μ is introduced
in the idler arm. Assuming that the biphotons are generated,
for instance, by spontaneous parametric down-conversion
(SPDC). The coincidence probability between two detectors,
D1 and D2, as functions of the time delay τ and the frequency
shift μ for the generalized HOM interferometer, can be ex-
pressed as

R(τ, μ) = 1

4

∫ ∞

0

∫ ∞

0
dωsdωi| f (ωi + μ,ωs)e−iωsτ

− f (ωs, ωi + μ)e−iωiτ |2, (1)

where f (ωs, ωi ) represents the JSA of the signal (s) and idler
(i) photons. In general, the JSA cannot be factorized as a
product of functions f (ωs) and f (ωi), revealing a frequency
entanglement between two photons with frequency ωs and
ωi. However, it can be expressed in terms of the collective
coordinate ω+ and ω− and generally decomposed as follows
[21,28]:

f (ωs, ωi ) = f+(ω+) f−(ω−)

= | f+(ω+)|| f−(ω−)|eiφ+(ω+ )eiφ−(ω− ), (2)

where ω± = (ωs ± ωi )/2 and f+ can be used to model the
energy conservation in the SPDC process, and it depends on
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the spectral profile of the pump light. f− is the phase-matching
function, which can have various forms depending on the
considered nonlinear crystal and the method to achieve phase
matching. The terms | f±| and φ± denote the amplitude and
phase of the JSA, associated with the frequency sum ω+
and the frequency difference ω−, respectively. The phase φ+
can be introduced by controlling the pump spectral phase,
for instance, through a quadratic spectral phase by chirping
the pump as shown in Ref. [24], and the phase φ− can be
introduced by shaping the signal and idler spectra with a pro-
grammable phase spectral filter as demonstrated in Ref. [27].
If one seeks to know all information about biphotons, the
tomography of the full complex JSA must be performed, i.e.,
the tomography of both the amplitudes of | f±| and the phases
of φ±.

The specific expression of Eq. (1) depends on the ex-
change symmetry of the JSA. It is obvious that the exchange
between ωs and ωi does not affect their sum ω+, thus the
exchange symmetry of f+. However, it will affect their dif-
ference ω−, resulting in a change in the exchange symmetry
of f−, e.g., f (ωi, ωs) = f+(ω+) f−(−ω−) = f+(ω+) f−(ω−)
for symmetric JSA, and f (ωi, ωs) = f+(ω+) f−(−ω−) =
− f+(ω+) f−(ω−) for antisymmetric JSA. This means that
only the phase-matching function associated with f− affects
the exchange symmetry of the JSA.

As derived in Appendix A, Eq. (1) can be further simplified
as

R(τ, μ) = 1
2 (1 − W−(τ, μ)). (3)

where

W−(τ, μ) =
∫

dω− f−

(
μ

2
− ω−

)
f ∗
−

(
μ

2
+ ω−

)
e−i2ω−τ

(4)

is the chronocyclic Wigner distribution associated with the
phase matching function f− [29,30]. The chronocyclic Wigner
distribution is a real distribution and is negative (an entan-
glement witness [31]) when R(τ, μ) > 1/2. As such, it is a
quasiprobability distribution. The cut of the Wigner distribu-
tion at μ = 0, where there is no frequency shift, corresponds
to the original HOM interference result. In this case, assuming
the phase distribution is symmetric, i.e., φ−(ω−) = φ−(−ω−),
W−(τ, 0) is a function of the Fourier transform of the modulus
squared | f−(ω−)|2, which is insensitive to the phase. This
allows us to obtain only the amplitude of the JSA, as shown in
Ref. [20]. However, for the generalized HOM interferometer
(μ �= 0), we can see from Eq. (4) that W−(τ, μ) is sensitive to
the phase due to the introduction of the frequency shift μ [27].
Therefore, it is possible to to extract the phase information of
f−(ω−). Assuming that f−(0) �= 0, the following reconstruc-
tion formula can be used:

f ∗
−(μ) = 1

2π f−(0)

∫
W−(τ, μ)eiμτ dτ, (5)

to perform the full tomography of f−. The detailed deriva-
tion for Eq. (5) can be found in Appendix B. In practice,
W−(τ, μ) can be obtained from the coincidence probabil-
ity measured with the generalized HOM interferometer at

different frequency shifts μ. It is important to note that the
HOM interferometer [μ = 0 in Fig. 1(a)] always depends on
the frequency difference, regardless of whether the JSA is
symmetric, antisymmetric, or anyonic [12,20,28]. Therefore,
the reconstruction formula Eq. (5) is suitable for any sym-
metric JSA. This has been shown schematically in the right
part of Fig. 1(a). When μ = 0, Eq. (5) represents a direct
integral of the Wigner distribution, which corresponds to a
marginal distribution of | f−|2. In this case, it only allows for
the reconstruction of the amplitude of the corresponding f−,
namely, | f−|. To validate the effectiveness of the reconstruc-
tion formula Eq. (5), we provide the proof and an example in
Appendix B. The simulations of chronocyclic Wigner distri-
bution for a Gaussian input state without and with a quadratic
spectral phase in the example in Appendix B are presented in
Fig. 2.

III. GENERALIZED N00N STATE INTERFEROMETER

The setup of a generalized N00N state interferometer is
illustrated in Fig. 1(b), where a frequency shift μ is introduced
in path 2. The coincidence probability between two detectors
D3 and D4, as functions of the time delay τ and the frequency
shift μ for the generalized N00N state interferometer, can be
expressed as

R(τ, μ) = 1

2

∫∫
dωsdωi| f (ωs, ωi, μ)(e−i(ωs+μ)τ + 1)

× (e−i(ωi+μ)τ + 1) + f (ωi, ωs, μ)(e−i(ωi+μ)τ − 1)

× (e−i(ωs+μ)τ − 1)|2. (6)

Note that the N00N state is represented as |2002〉 =
1√
2
(|2, 0〉 + |0, 2〉) in Fig. 1(b), which has a photon number of

2. The specific form of Eq. (6) depends on the exchange sym-
metry of the JSA. If the JSA is symmetric, i.e., f (ωs, ωi ) =
f (ωi, ωs), we can simplify Eq. (6) as (see Appendix C)

RS (τ, μ) = 1
2 (1 + Re[F+(μ, τ )]), (7)

where F+ is the short-time Fourier transform (STFT) of the
function f+ defined as

F+(μ, τ ) =
∫

dω+ f+(ω+) f ∗
+(ω+ + μ)ei2ω+τ . (8)

If the JSA is antisymmetric, i.e., f (ωs, ωi ) = − f (ωi, ωs), we
can further simplify Eq. (6) as (see Appendix C)

RA(τ, μ) = 1
2 (1 + Re[e−iμτ F−(μ, τ )]). (9)

where F− is the STFT of the function f− defined as

F−(μ, τ ) =
∫

dω− f−(ω−) f ∗
−(ω− + μ)e−i2ω−τ . (10)
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FIG. 2. Chronocyclic Wigner distribution as functions of the frequency shift μ and the time delay τ for a Gaussian input state are shown
in (a) without a phase, i.e., α = 0, (b) with a quadratic spectral phase α = 1, and (c) with a quadratic spectral phase α = −2. The quadratic
spectral phase results in an increased time-frequency correlation and temporal variance.

The additional phase factor e−iμτ in Eq. (9) stems from
the symmetric time-frequency displacement operator D̂(μ, τ )
[28],

χψ (μ, τ ) = 〈ψ |D̂(μ, τ )|ψ〉

= e−iμτ/2
∫

dω− f−(ω− − μ) f ∗
−(ω−)eiω−τ . (11)

where D̂(μ, τ ) = e−iμτ/2
∫

dωe−iωτ |ω + μ〉〈ω| [32].
Note that F± is essentially the Fourier transform of

f±(ω) f ∗
±(ω + μ), a complex function representing the phase

and magnitude of the function f± with respect to time and
frequency. If μ = 0, F± becomes a Fourier transform of | f±|2,
a real function representing only the magnitude of the function
f±. Thus, introducing a frequency shift in one arm of the
interferometer allows for the acquisition of additional phase
information for biphotons [27,28]. Since the N00N state in-
terferometer [μ = 0 in Fig. 1(b)] depends on the frequency
sum for symmetric JSA, but the frequency difference for an-
tisymmetric JSA [12,20,28], it only allows to reconstruct the
amplitude of the JSA associated with the frequency sum for
symmetric JSA or the frequency difference for antisymmetric
JSA. However,with the generalized N00N state interferom-
eter, it is possible to extract the phase information of the
JSA due to the introduction of the frequency shift μ [27].
Specifically, one can measure the real part of F+ associated
with frequency sum for symmetric JSA [Eq. (7)] and of
F− associated with frequency difference for antisymmetric
JSA [Eq. (9)], respectively. Then, if one introduces a phase
eiπ/2 in one of the arms inside the generalized N00N state
interferometer, the imaginary parts of F± can also be mea-
sured. Experimentally, such a phase can be realized with a

quarter-wave plate. Once the real and imaginary parts are ob-
tained, assuming that f±(0) �= 0, the following reconstruction
formula can be used:

f ∗
±(μ) = 1

2π f±(0)

∫
F±(μ, τ )dτ, (12)

to perform the full tomography of f+ for symmetric JSA and
of f− for antisymmetric JSA. This has been shown schemati-
cally in the right part of Fig. 1(b). This reconstruction method
is similar to the filter bank summation method in signal pro-
cessing. The proof and an example for the reconstruction
formula Eq. (12) can be found in Appendix D. The analysis
of the phase sensitivity for the generalized N00N state in-
terferometer is similar to the case of the generalized HOM
interferometer. As an example, Fig. 3 shows the simulated
results of the real (left) and imaginary (right) parts of F+
for a Gaussian input state (as shown in Appendix D) with-
out a phase [Fig. 3(a)], and with a quadratic spectral phase
[Figs. 3(b) and 3(c)]. It can be seen that biphotons with dif-
ferent phases will lead to different distributions of the real
(left) and imaginary (right) parts of F+, which can be obtained
from the coincidence probability measured with the general-
ized N00N state interferometer at different frequency shifts
μ. Conversely, the phase information of input state can also
be extracted from F+ using reconstruction formula Eq. (12).

IV. GENERALIZED COMBINATION INTERFEROMETER

The setup of a generalized combination interferometer is
illustrated in Fig. 1(c), where a frequency shift μ is introduced
in the path 4. The coincidence probability between two detec-
tors D5 and D6, as functions of the time delay τ , τ0 and the
frequency shift μ, can be expressed as

R(τ0, τ, μ) = 1

64

∫∫
dωsdωi

× | f (ωs, ωi, μ)(e−iωsτ0 e−i(ωs+μ)τ + e−iωsτ0 + e−i(ωs+μ)τ − 1)(e−iωiτ0 e−i(ωi+μ)τ − e−iωiτ0 − e−i(ωi+μ)τ − 1)

+ f (ωi, ωs, μ)(e−iωiτ0 e−i(ωi+μ)τ + e−i(ωi+μ)τ − e−iωiτ0 + 1)(e−iωsτ0 e−i(ωs+μ)τ − e−i(ωs+μ)τ + e−iωsτ0 + 1)|2. (13)
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FIG. 3. The real (left) and imaginary parts (right) of F+ as functions of the frequency shift μ and the time delay τ for a Gaussian input
state are depicted as follows: (a) without a phase, i.e., α = 0; (b) with a quadratic spectral phase α = 1; and (c) with a quadratic spectral phase
α = −2.

Also, the specific expression of Eq. (13) depends on the exchange symmetry of the JSA. In general, τ0 is set to be fixed, and the
coincidence probability in Eq. (13) is a function of the time delay τ and the frequency shift μ [20]. If the JSA is symmetric, i.e.,
f (ωs, ωi ) = f (ωi, ωs), we can simplify Eq. (13) as (see Appendix E)

RS (τ0, τ, μ) = 1
2

(
1 − 1

2 Re[P+(τ0)]Re[e−iμτ F−(μ, τ )] − 1
2 Re[F+(μ, τ )] − 1

2 Re[e−iμτ F−(μ, τ )]

+ 1
4 Re[F+(μ, τ + τ0)] + 1

4 Re[F+(μ, τ − τ0)]
)
, (14)

where F+ and F− are the STFT of the function f+ and f−, respectively, as defined in Eqs. (8) and (10). P+(τ0) is defined as

P+(τ0) =
∫

dω+ f+(ω+) f ∗
+(ω+)e−i2ω+τ0 . (15)

Again, the additional phase factor e−iμτ in Eq. (14) stems from the symmetric time-frequency displacement operator D̂ defined
in Eq. (11). If we take f+ as a Gaussian function, i.e., f+(ω+) = e−ω2

+/σ 2
+eiφ+ , where σ+ denotes the linewidth of the pump

pulse, then Re[P+(τ0)] ∼ e−2σ 2
+τ 2

0 . The last two terms in Eq. (14) correspond to two identical interferograms centered at ±τ0. If
τ0 < 1/σ+, these two interferograms will gradually overlap and become fully indistinguishable as τ0 decreases to zero. Thus, if
one would like to distinguish these two interferograms, τ0 must be much larger than the inverse linewidth 1/σ+ [20], resulting
in Re[P+(τ0)] ∼ 0. Hence, we have

RS (τ0, τ, μ) = 1
2

(
1 − 1

2 Re[F+(μ, τ )] − 1
2 Re[e−iμτ F−(μ, τ )] + 1

4 Re[F+(μ, τ + τ0)] + 1
4 Re[F+(μ, τ − τ0)]

)
. (16)

If the JSA is antisymmetric, i.e., f (ωs, ωi ) = − f (ωi, ωs), Eq. (13) can be further simplified as

RA(τ0, τ, μ) = 1
2

(
1 − 1

2 Re[P−(τ0)]Re[F+(μ, τ )] + 1
2 Re[F+(μ, τ )] + 1

2 Re[e−iμτ F−(μ, τ )] + 1
4 Re[e−iμτ F−(μ, τ + τ0)]

+ 1
4 Re[e−iμτ F−(μ, τ − τ0)]

)
, (17)
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where P−(τ0) has a similar definition as in Eq. (15). Analo-
gously, to distinguish the two interferograms of the last two
terms in Eq. (17), τ0 must be much larger than the inverse
linewidth 1/σ−, resulting in Re[P−(τ0)] ∼ 0. Thus, we have

RA(τ0, τ, μ) = 1
2

(
1 + 1

2 Re[F+(μ, τ )] + 1
2 Re[e−iμτ F−(μ, τ )]

+ 1
4 Re[e−iμτ F−(μ, τ + τ0)]

+ 1
4 Re[e−iμτ F−(μ, τ − τ0)]

)
. (18)

Note that since the general combination interferometer [μ = 0
in Fig. 1(c)] depends on both the frequency sum and dif-
ference for symmetric JSA or antisymmetric JSA, it allows
for the reconstruction of the amplitude of the JSA associated
with both frequency sum and difference for symmetric JSA
or antisymmetric JSA in a single quantum interferometer, as
shown in our recent publication [20]. With the generalized
combination interferometer [μ �= 0 in Fig. 1(c)], the inter-
ferograms associated with the real parts of F+ and F− will
appear in different regions of a single interferogram and can
be well distinguished, as shown in Eqs. (16) and (18). On the
other hand, the introduction of the frequency shift μ allows for
the extraction of the phase information of the JSA, enabling
the possibility of performing full tomography of biphotons.
The method is similar to part III. First, one can measure
simultaneously the real parts of F+ and F− for symmetric JSA
[Eq. (16)] or antisymmetric JSA [Eq. (18)] with the setup
of Fig. 1(c). Then, by introducing a phase eiπ/2 in one of
the arms inside the generalized combination interferometer,
the imaginary parts of F+ and F− can both be measured.
Once the real and imaginary parts are obtained, assuming that
f±(0) �= 0, the reconstruction formulas defined in Eq. (12) can
be used to perform the full tomography of both f+ and f− for
symmetric JSA or antisymmetric JSA. This has been shown
schematically in the right part of Fig. 1(c).

V. DISCUSSION

By introducing a frequency shift in one arm of the in-
terferometers, we can obtain a generalized interferometer,
which is sensitive to the phase of the input state. The interfer-
ence between the frequency-shifted and frequency-unshifted
paths at a 50/50 beam splitter allows for obtaining addi-
tional phase information of biphotons [27]. Consequently, it
becomes possible to perform full tomography of biphotons,
both in amplitude and phase, using such a generalized in-
terferometer with the reconstruction formulas Eqs. (5) and
(12). From Eq. (3), we can see that for the generalized HOM
interferometer, the coincidence probability always depends
on the frequency difference of biphotons associated with the
phase matching part f−, regardless of whether the JSA is sym-
metric, antisymmetric, or anyonic. As a result, it only allows
for the reconstruction of the full complex JSA associated with
the frequency difference for any symmetric JSA, performing
the partial tomography of biphotons.

From Eqs. (7) and (9), we can see that for the general-
ized N00N state interferometer, the coincidence probability
depends on the frequency sum for the symmetric JSA, and the
frequency difference for the antisymmetric JSA. There exists
a one-to-one correspondence between coincidence proba-
bility and F+ for symmetric JSA [see Eq. (7)] or F− for

antisymmetric JSA [see Eq. (9)]. This means that the real or
imaginary part of F+ or F− can be obtained directly from
the coincidence data measured at different frequency shifts
μ, which enables the reconstruction of the full complex JSA
associated with the frequency sum for symmetric JSA or the
frequency difference for antisymmetric JSA, performing the
partial tomography of biphotons as well.

For biphotons with anyonic symmetry, an interference
arises between the symmetric and the antisymmetric part
associated with the phase matching part f− in the general-
ized HOM interferometer, and an interference effect emerges
between the symmetric part associated with F+ and the anti-
symmetric one associated with F− in the generalized N00N
state interferometer due to the frequency shift μ, as discussed
in Ref. [28]. As a result, it is impossible to simultaneously
perform full tomography of both f+ and f− with these two
generalized interferometers.

However, in a generalized combination interferometer, the
coincidence probability depends on both frequency sum and
difference [see Eqs. (16) and Eq. (18)] and has no one-to-one
correspondence with F+ or F− but rather with their combina-
tion. In this case, it is necessary to postprocess the coincidence
data to extract the desired information from F+ and F−. For
example, in Eq. (16), one needs to first extract the real part
of F+ from the total coincidence data. Since τ0 must be much
larger than the inverse linewidth 1/σ+, the coincidence data
containing the last two terms in Eq. (16) are well distinguished
from other parts. It is thus possible to extract the coincidence
data associated with the real part of F+ from the total coin-
cidence data. Then, by substituting the real part of F+ into
Eq. (16), the real part of F− can be indirectly obtained. The
imaginary parts of F+ and F− can be obtained in a similar
manner. With both the real and imaginary parts of F+ and F−,
and by using the reconstruction formulas defined in Eq. (12),
it becomes possible to perform the full tomography of both
f+ and f− for symmetric JSA. For antisymmetric JSA, the
situation is analogous, where Eq. (18) can be used to perform
the full tomography of both f+ and f−. The main difference is
the order of obtaining the real part of F− and F+.

For biphotons with anyonic symmetry, the coincidence
probability of the generalized combination interferometer be-
comes more complex, and Eqs. (16) and (18) do not hold.
One possible solution to this issue is to create a super-
position state that satisfies the exchange symmetry condi-
tion, i.e., FS (ωs, ωi ) = f (ωs, ωi ) + f (ωi, ωs), FA(ωs, ωi ) =
f (ωs, ωi ) − f (ωi, ωs), which are symmetric and antisym-
metric, respectively. This can be experimentally realized by
placing a nonlinear crystal inside an interferometer, as re-
ported in Ref. [33]. Then, the information about biphotons
with f± can be extracted from FS or FA. Thus, the pro-
posed protocol for the full tomography of biphotons can
also be extended to the case of biphotons with anyonic
symmetry.

Experimentally, biphtons with symmetric, antisymmetric,
or anyonic JSA can be generated in bulk nonlinear crystal or
integrated optical devices using different methods [33–36].
Additionally, the frequency shift can be experimentally
realized using recent and promising electrooptics modula-
tors [37,38], or a waveguide-based optomechanical system
based on the piezoelectric effect [39]. Another method for
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implementing such a frequency shift for wider spectral dis-
tributions involves introducing a dynamical shift of the
eigenfrequencies or eigenmodes of optical resonators or
waveguides [40], which corresponds to a tuning of the photon
frequency. In summary, it is feasible to experimentally per-
form the full tomography of biphotons using the generalized
interferometers after carefully choosing biphoton resources,
frequency shifts, and experimental setups. If there is no fre-
quency shift μ in generalized interferometers shown in Fig. 1
(μ = 0), they would revert to the original ones and only allow
for the reconstruction of the amplitude of the corresponding f ,
namely, | f | [20]. On the other hand, when the reconstruction
formulas are used as a tool to analyze experimental data,
typically in the form of a discretized coincidence distribution
(i.e., a histogram) due to finite sampling, the reliability of
the reconstruction results will be limited by imperfections
such as losses and detector noise. The effect of such im-
perfections on the accuracy of the reconstruction formulas
must be considered and needs to be studied further in the
future.

VI. CONCLUSION

By introducing a frequency shift in one arm of in-
terferometers, we theoretically described three generalized
quantum interferometers:the generalized HOM interferom-
eter, the generalized N00N state interferometer, and the
generalized combination interferometer. The key result is that
these generalized interferometers are phase-sensitive to the in-
put state. The interference between the frequency-shifted and

frequency-unshifted paths at a 50/50 beam splitter enables
the acquisition of additional phase information for biphotons
within the generalized interferometers. Specifically, the gen-
eralized HOM interferometer allows the reconstruction of the
full complex JSA associated with frequency difference for any
symmetric JSA, while the N00N state interferometer allows
the reconstruction of the full complex JSA associated with
frequency sum for symmetric JSA or frequency difference for
antisymmetric JSA. Both of them enable only partial tomogra-
phy of biphotons, either in frequency difference or frequency
sum. In contrast, the generalized combination interferometer
enables the reconstruction of the full complex JSA associated
with both the frequency sum and difference for symmetric
JSA or antisymmetric JSA in a single interferometer, thereby
allowing for the full tomography of biphotons. Furthermore,
we discussed the experimental feasibility and possible exper-
imental difficulties with the proposed approach. This work
provides an alternative method for the full characterization of
an arbitrary two-photon state with exchange symmetry and
holds potential for applications in high-dimensional quantum
information processing.
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APPENDIX A: COINCIDENCE PROBABILITY FOR A GENERALIZED HOM INTERFEROMETER

For a generalized HOM interferometer as described in Fig. 1(a), the coincidence probability between two detectors D1 and
D2, as functions of the time delay τ and the frequency shift μ, can be expressed as

R(τ, μ) = 1

4

∫∫
dωsdωi| f (ωi + μ,ωs)e−iωsτ − f (ωs + μ,ωi )e

−iωiτ |2. (A1)

For a normalized f (ωs, ωi ), using the relations,

ωi + μ − ωs = 2[(ωi − ωs)/2 + μ/2] = 2[μ/2 − ω−],

ωs + μ − ωi = 2[(ωs − ωi )/2 + μ/2] = 2[μ/2 + ω−],

f (ωs, ωi ) = f+(ω+) f−(ω−); f (ωi, ωs) = f+(ω+) f−(−ω−), (A2)

Eq. (A1) can be reduced to

R(τ, μ) = 1

4

∫∫
dω+dω−| f+(ω+) f−(μ/2 − ω−)e−i(ω++ω− )τ − f+(ω+) f−(μ/2 + ω−)e−i(ω+−ω− )τ |2

= 1

4

∫
dω+| f+(ω+)|2

∫
dω−| f−(μ/2 − ω−)e−iω−τ − f−(μ/2 + ω−)eiω−τ |2

= 1

4

∫
dω−| f−(μ/2 − ω−)e−iω−τ − f−(μ/2 + ω−)eiω−τ |2

= 1

4

∫
dω−( f−(μ/2 − ω−)e−iω−τ − f−(μ/2 + ω−)eiω−τ )( f−(μ/2 − ω−)e−iω−τ − f−(μ/2 + ω−)eiω−τ )∗

= 1

4

∫
dω−(| f−(μ/2 − ω−)|2 + | f−(μ/2 + ω−)|2

− f−(μ/2 − ω−) f ∗
−(μ/2 + ω−)e−i2ω−τ − f ∗

−(μ/2 − ω−) f−(μ/2 + ω−)ei2ω−τ )

= 1
2 (1 − Re[W−(τ, μ)]), (A3)

043703-7



BAIHONG LI et al. PHYSICAL REVIEW A 109, 043703 (2024)

where W− is the chronocyclic Wigner distribution of the phase matching function f− as defined in Eq. (4). In the above derivation,
we change the variables in the double integral from ωs, ωi to ω+, ω−, and use the normalized condition, i.e.,

∫
dω+| f+(ω+)|2 =∫

dω−| f−(μ/2 − ω−)|2 = ∫
dω−| f−(μ/2 + ω−)|2 = 1.

APPENDIX B: PROOF AND AN EXAMPLE FOR THE RECONSTRUCTION FORMULA EQ. (5)

Considering the integral
∫

W−(τ, μ/2)eiμτ dτ with respect to τ , and using Eq. (4), we have
∫

W−(τ, μ/2)eiμτ dτ =
∫∫

dω− f−(μ/2 − ω−) f ∗
−(μ/2 + ω−)e−i2ω−τ eiμτ dτ

=
∫

dω− f−(μ/2 − ω−) f ∗
−(μ/2 + ω−)

∫
ei(μ−2ω− )τ dτ

=
∫

dω− f−(μ/2 − ω−) f ∗
−(μ/2 + ω−)2πδ(μ − 2ω−)

= f−(0) f ∗
−(μ)2π, (B1)

we thus obtain Eq. (5).
As an example, we take the JSA associated with the phase-matching part f− as a Gaussian function

f−(ω−) = e−ω2
−/σ 2

−eiφ− , (B2)

with the phase φ−(ω−) = αω2
−, a quadratic spectral phase with an index of α. σ− denotes the linewidth determined by the

phase-matching condition. Then, we get

f−(μ/2 − ω−) = e−(μ/2−ω− )2/σ 2
−ei[α(μ/2−ω− )2],

f ∗
−(μ/2 + ω−) = e−(μ/2+ω− )2/σ 2

−e−i[α(μ/2+ω− )2]. (B3)

Substituting Eq. (B3) into Eq. (4), we obtain

W−(τ, μ) =
√

2πσ−
2

e
− μ2+(αμ+τ )2σ4−

2σ2− . (B4)

Substituting Eq. (B4) into Eq. (5), and using f−(0) = 1, we finally arrive at

f ∗
−(μ) = 1

2 e−μ2/σ 2
−e−iαμ2

, (B5)

we thus recover the amplitude and phase as preset in Eq. (B2) using the reconstruction formula Eq. (5).

APPENDIX C: COINCIDENCE PROBABILITY FOR A GENERALIZED N00N STATE INTERFEROMETER

For a generalized N00N state interferometer as described in Fig. 1(b), the coincidence probability between two detectors D3
and D4, as functions of the time delay τ and the frequency shift μ, can be expressed as

R(τ, μ) = 1

16

∫∫
dωsdωi| f (ωs, ωi, μ)(e−i(ωs+μ)τ + 1)(e−i(ωi+μ)τ + 1) + f (ωi, ωs, μ)(e−i(ωi+μ)τ − 1)(e−i(ωs+μ)τ − 1)|2.

(C1)

If the JSA is symmetric, i.e., f (ωs, ωi ) = f (ωi, ωs), we can further simplify Eq. (C1) as

RS (τ, μ) = 1

2

∫∫
dωsdωi| f (ωs + μ,ωi + μ) + f (ωs, ωi )e

i(ωs+ωi )τ |2

= 1

2

∫∫
dωsdωi( f (ωs + μ,ωi + μ) + f (ωs, ωi )e

i(ωs+ωi )τ )( f (ωs + μ,ωi + μ) + f (ωs, ωi )e
i(ωs+ωi )τ )∗

= 1

2

∫∫
dωsdωi(| f (ωs + μ,ωi + μ)|2 + | f (ωs, ωi )|2

+ f (ωs, ωi ) f ∗(ωs + μ,ωi + μ)ei(ωs+ωi )τ + f ∗(ωs, ωi ) f (ωs + μ,ωi + μ)e−i(ωs+ωi )τ ). (C2)
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For a normalized f (ωs, ωi ), by using the relations

ωs + μ + (ωi + μ) = 2[(ωs + ωi )/2 + μ] = 2(ω+ + μ),

ωs + μ − (ωi + μ) = 2[(ωs − ωi )/2] = 2ω−,

f (ωs, ωi ) = f+(ω+) f−(ω−); f (ωs + μ,ωi + μ) = f+(ω+ + μ) f−(ω−). (C3)

Equation (C2) can be reduced to

RS (τ, μ) = 1

4

∫∫
| f−(ω−)|2dω−dω+(| f+(ω+ + μ)|2 + | f+(ω+)|2

+ f+(ω+) f ∗(ω+ + μ)ei2ω+τ + f ∗
+(ω+) f+(ω+ + μ)e−i2ω+τ )

= 1

2
(1 + Re[F+(μ, τ )]), (C4)

where F+ is the STFT of the function f+ as defined in Eq. (8). In the above derivation, we change the variables in the
double integral from ωs, ωi to ω+, ω− and use the normalized condition, i.e.,

∫
dω−| f−(ω−)|2 = ∫

dω+| f+(ω+ + μ)|2 =∫
dω+| f+(ω+)|2 = 1.
If the JSA is antisymmetric, i.e., f (ωs, ωi ) = − f (ωi, ωs), we can further simplify Eq. (C1) as

RA(τ, μ) = 1

2

∫∫
dωsdωi| f (ωs + μ,ωi )e

−iωsτ + f (ωs, ωi + μ)e−iωiτ |2

= 1

2

∫∫
dωsdωi( f (ωs + μ,ωi )e

−iωsτ + f (ωs, ωi + μ)e−iωiτ )( f (ωs + μ,ωi )e
−iωsτ + f (ωs, ωi + μ)e−iωiτ )∗

= 1

2

∫∫
dωsdωi(| f (ωs + μ,ωi )|2 + | f (ωs, ωi + μ)|2

+ f (ωs + μ,ωi ) f ∗(ωs, ωi + μ)e−i(ωs−ωi )τ + f ∗(ωs + μ,ωi ) f (ωs, ωi + μ)ei(ωs−ωi )τ ). (C5)

For a normalized f (ωs, ωi ), using the relations

ωs − (ωi + μ) = 2[(ωs + ωi )/2 − μ/2] = 2(ω− − μ/2),

(ωs + μ) − ωi = 2[(ωs − ωi )/2 + μ/2] = 2(ω− + μ/2),

f (ωs + μ,ωi ) = f+(ω+ + μ/2) f−(ω− + μ/2);

f (ωs, ωi + μ) = f+(ω+ + μ/2) f−(ω− − μ/2). (C6)

Equation (C5) can be reduced to

RA(τ, μ) = 1

4

∫∫
| f+(ω+ + μ/2)|2dω+dω−(| f−(ω− + μ/2)|2 + | f−(ω− − μ/2)|2

+ f−(ω− − μ/2) f ∗
−(ω− + μ/2)e−i2ω−τ + f ∗

−(ω− − μ/2) f−(ω− + μ/2)ei2ω−τ )

= 1

2
(1 + Re[e−iμτ F−(μ, τ )]), (C7)

where F− is the STFT of the function f− as defined in Eq. (10). In the above derivation, we change the variables in the double
integral from ωs, ωi to ω+, ω−, and use the normalized condition, i.e.,

∫
dω+| f+(ω+ + μ/2)|2 = ∫

dω−| f−(ω− + μ/2)|2 =∫
dω−| f−(ω− − μ/2)|2 = 1.

APPENDIX D: PROOF AND AN EXAMPLE FOR THE RECONSTRUCTION FORMULA EQ. (12)

Considering the integral
∫

F±(μ, τ )dτ with respect to τ , and using Eqs. (8) and (10), we have∫
F±(μ, τ )dτ =

∫∫
dω± f±(ω±) f ∗

±(ω± + μ)e−i2ω±τ dτ

=
∫

dω± f±(ω±) f ∗
±(ω± + μ)

∫
e−i2ω±τ dτ

=
∫

dω± f±(ω±) f ∗
±(ω± + μ)2πδ(ω±)

= f±(0) f ∗
±(μ)2π, (D1)

we thus obtain Eq. (12).
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As an example, we take the JSA associated with the energy-conservation part f+ as a Gaussian function

f+(ω+) = e−ω2
+/σ 2

+eiφ+ , (D2)

with the phase φ+(ω+) = αω2
+, a quadratic spectral phase with an index of α. σ+ denotes the linewidth of the pump pulse. Then,

we have

f+(ω+) = e−ω2
+/σ 2

+eiαω2
+ ,

f ∗
+(ω+ + μ) = e−(ω++μ)2/σ 2

+e−i[α(ω++μ)2]. (D3)

Substituting Eq. (D3) into Eq. (8), we obtain

F+(μ, τ ) =
√

2πσ+
2

eiμτ e
− μ2+(αμ+τ )2σ4−

2σ2− . (D4)

Substituting Eq. (D4) into Eq. (12), and using f+(0) = 1, we finally arrive at

f ∗
+(μ) = 1

2 e−μ2/σ 2
+e−iαμ2

, (D5)

we thus recover the amplitude and phase as preset in Eq. (D2) using the reconstruction formula Eq. (12). f ∗
−(μ) can also be

reconstructed using Eqs. (10) and (12) in a similar manner.

APPENDIX E: COINCIDENCE PROBABILITY FOR A GENERALIZED COMBINATION INTERFEROMETER

For a generalized combination interferometer as described in Fig. 1(c), the coincidence probability between two detectors D5
and D6, as functions of the time delay τ0, τ and the frequency shift μ, can be expressed as

R(τ0, τ, μ) = 1

64

∫∫
dωsdωi

× | f (ωs, ωi, μ)(e−iωsτ0 e−i(ωs+μ)τ + e−iωsτ0 + e−i(ωs+μ)τ − 1)(e−iωiτ0 e−i(ωi+μ)τ − e−iωiτ0 − e−i(ωi+μ)τ − 1)

+ f (ωi, ωs, μ)(e−iωiτ0 e−i(ωi+μ)τ + e−i(ωi+μ)τ − e−iωiτ0 + 1)(e−iωsτ0 e−i(ωs+μ)τ − e−i(ωs+μ)τ + e−iωsτ0 + 1)|2. (E1)

To simplify the expressions, we use f(ωs,ωi ) to denote f (ωs, ωi )„ and similarly for others, in the following derivations. If the JSA
is symmetric, i.e., f(ωs,ωi ) = f(ωi,ωs ), we can further simplify Eq. (E1) as

RS (τ0, τ, μ) = 1

64

∫∫
dωsdωi

× | f(ωs,ωi ) − f(ωs+μ,ωi )e
−i(ωs+μ)τ + f(ωs,ωi+μ)e

−i(ωi+μ)τ − f(ωs,ωi )e
−i(ωs+ωi )τ0 − f(ωs+μ,ωi )e

−i(ωs+μ)τ e−i(ωs+ωi )τ0

− f(ωs+μ,ωi+μ)e
−i(ωs+ωi )τ + f(ωs,ωi+μ)e

−i(ωi+μ)τ e−i(ωs+ωi )τ0 + f(ωs+μ,ωi+μ)e
−i(ωs+ωi )τ e−i(ωs+ωi )τ0 |2

= 1

64

∫∫
dωsdωi

× {8(| f(ωs,ωi )|2 + | f(ωs+μ,ωi )|2 + | f(ωs,ωi+μ)|2 + | f(ωs+μ,ωi+μ)|2)

− 4( f(ωs+μ,ωi ) f ∗
ωs,ωi+μe−i(ωs−ωi )τ + f ∗

(ωs+μ,ωi ) f(ωs,ωi+μ)e
i(ωs−ωi )τ )

× ( f(ωs,ωi ) f ∗
(ωs,ωi )e

−i(ωs+ωi )τ0 + f ∗
(ωs,ωi ) f(ωs,ωi )e

i(ωs+ωi )τ0 )

− 8( f(ωs+μ,ωi+μ) f ∗
(ωs+μ,ωi+μ)e

−i(ωs+ωi )τ + f ∗
(ωs+μ,ωi+μ) f(ωs+μ,ωi+μ)e

i(ωs+ωi )τ )

− 8( f(ωs+μ,ωi ) f ∗
(ωs,ωi+μ)e

−i(ωs−ωi )τ + f ∗
(ωs+μ,ωi ) f(ωs,ωi+μ)e

i(ωs−ωi )τ )

+ 4( f(ωs+μ,ωi ) f ∗
(ωs,ωi+μ)e

−i(ωs+ωi )τ0 ei(ωs+ωi )τ + f ∗
(ωs+μ,ωi ) f(ωs,ωi+μ)e

i(ωs+ωi )τ0 e−i(ωs+ωi )τ )

+ 4( f(ωs+μ,ωi ) f ∗
(ωs,ωi+μ)e

−i(ωs+ωi )τ0 e−i(ωs+ωi )τ + f ∗
(ωs+μ,ωi ) f(ωs,ωi+μ)e

i(ωs+ωi )τ0 ei(ωs+ωi )τ )}. (E2)

For a normalized f (ωs, ωi ), using Eqs. (C3) and (C6), Eq. (E2) can be reduced to

RS (τ0, τ, μ) = 1

2
{1 − 1

64

∫
dω+

∫
dω−

+ {4( f(ω−+μ/2,ω−−μ/2) f ∗
(ω−+μ/2,ω−−μ/2)e

−i2ω−τ + f ∗
(ω−+μ/2,ω−−μ/2) f(ω−+μ/2,ω−−μ/2)e

i2ω−τ )

× ( fω+ f ∗
ω+e−i2ω+τ0 + f ∗

ω+ fω+ei2ω+τ0 )

+ 8( f(ω+,ω++μ) f ∗
(ω+,ω++μ)e

−i2ω+τ + f ∗
(ω+,ω++μ) f(ω+,ω++μ)e

i2ω+τ )
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+ 8( f(ω−+μ/2,ω−−μ/2) f ∗
(ω−+μ/2,ω−−μ/2)e

−i2ω−τ + f ∗
(ω−+μ/2,ω−−μ/2) f(ω−+μ/2,ω−−μ/2)e

i2ω−τ )

− 4( f(ω+,ω++μ) f ∗
(ω+,ω++μ)e

−i2ω+τ0 e−i2ω+τ + f ∗
(ω+,ω++μ) f(ω+,ω++μ)e

i2ω+τ0 ei2ω+τ )

− 4( f(ω+,ω++μ) f ∗
(ω+,ω++μ)e

−i2ω+τ0 ei2ω+τ + f ∗
(ω+,ω++μ) f(ω+,ω++μ)e

i2ω+τ0 e−i2ω+τ )}. (E3)

In the above derivation, we change the variables in the double integral from ωs, ωi to ω+, ω−, and use the normalized
condition, i.e.,

∫
dω−| f−(ω−)|2 = ∫

dω+| f+(ω+)|2 = ∫
dω+| f+(ω+ + μ/2)|2 = ∫

dω+| f+(ω+ − μ/2)|2 = ∫
dω−| f−(ω− +

μ/2)|2 = ∫
dω−| f−(ω− − μ/2)|2 = 1. Finally, we arrive at

RS (τ0, τ, μ) = 1
2

(
1 − 1

2 Re[P+(τ0)]Re[e−iμτ F−(μ, τ )] − 1
2 Re[F+(μ, τ )] − 1

2 Re[e−iμτ F−(μ, τ )]

+ 1
4 Re[F+(μ, τ + τ0)] + 1

4 Re[F+(μ, τ − τ0)]
)
, (E4)

where F+ and F− are the STFT of the functions f+ and f−, respectively, as defined in Eqs. (8) and (10). If the JSA is
antisymmetric, i.e., f(ωs,ωi ) = − f(ωi,ωs ), the derivation process is similar and we give the result directly in Eq. (17).
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