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One-photon and two-photon blockades in a four-wave-mixing system embedded with an atom
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In this paper, the photon blockade effect in a nondegenerate four-wave-mixing system embedded with a two-
level atom has been studied. By using an analytical calculation and numerical analysis, we find that both one-
photon and two-photon blockade effects could be realized in this system by adjusting the parameters of the
system. That is, (i) when the four-wave-mixing interaction and the atom-cavity coupling strength are not equal,
the system can realize a one-photon blockade; (ii) when they are consistent with each other, the system can
realize a two-photon blockade. In addition, we also discuss the influence of different parameters on the photon
blockade effect in detail. The results show that the system constructed in this paper not only could enhance
the one-photon blockade effect decisively, but also could implement a two-photon blockade easily with a well-
designed energy-level structure, and evidently the blockade effect depends on the parameters of the system. All
the results may provide theoretical references for single-photon and multiphoton sources or devices in designing
future experiments and practical applications.
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I. INTRODUCTION

With the rapid developments of quantum optics and quan-
tum information science, photon sources [1–4] have been
widely used in quantum communication, quantum informa-
tion technology, quantum computation, and other fields [5–8].
As one of the effective physical methods to obtain stable
photon sources, the photon blockade effect [9–18] has been
studied intensely. The photon blockade effect is essentially
a photon antibunching effect. For a single-photon blockade,
the single photon inside the cavity blocks the transmission
of further photons so that the photons could be emitted one
by one. For a multiphoton blockade, the photons inside the
cavity could also block further photons to produce a photon
steam. Up to now, a single-photon blockade has been realized
in various systems, such as circuit-QED systems [19–21], op-
tomechanical systems [22–24], atom-cavity systems [25–27],
and so on, while a multiphoton blockade, which is more
challenging, has also been implemented in several systems,
such as the Jaynes-Cummings (JC) model [28–30], Kerr-type
nonlinear cavities [31–33], an atom-driven cavity-QED sys-
tem [34], and so on.

The photon blockade effect could also be divided into
a conventional photon blockade (CPB) [35–42] and uncon-
ventional photon blockade (UPB) [43–46] due to different
physical mechanisms of the blockade. The physical mecha-
nism of the formation of CPB is the anharmonic energy ladder
which requires strong nonlinearity, while the physical mech-
anism of the realization of UPB is the destructively quantum
interference between different paths with weak nonlinearity.
Up to now, both the CPB and UPB have been predicted in
many different systems including coupled nonlinear cavities
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[47–49], quantum-dot-cavity systems [50–52], cavities with
second- or third-order nonlinear materials [53,54], and so on.

For realizations of different kinds of photon blockades, ap-
propriate energy-level structures are always the key, so more
and more research has aimed to design new schemes with
novel energy-level structures to implement different kinds of
blockades [55–57]. Recently, we have investigated the CPB
in a four-wave-mixing system with Kerr nonlinearity [58].
The results show that a strong single-photon blockade effect
could be realized in this system. Inspired by this, in this
paper we construct a combined system based on the four-
wave interaction to implement the photon blockade effect. The
hybrid system is a nondegenerate four-wave-mixing system
embedded with a two-level atom which could introduce more
nonlinearity. The energy-level structure of this system could
be designed by adjusting the interaction strengths. Then dif-
ferent kinds of photon blockade effects could be realized in
this system. We investigate the one-photon and two-photon
blockade effects in this system analytically and numerically,
and obtain the conditions for realizations of different kinds of
blockades in this system decisively. In addition, the influence
of parameters of the system on the effect of the blockade is
discussed in detail.

The rest of this paper is organized as follows. The physical
model is introduced in Sec. II. The analytical conditions for
the photon blockade are presented in Sec. III. In Sec. IV,
the numerical results on the one-photon and the two-photon
blockade effects are discussed. Finally, the conclusions are
summarized in Sec. V.

II. PHYSICAL MODEL

In this paper, the system we construct here is a nonde-
generate four-wave-mixing system embedded with a two-level
atom. As shown in Fig. 1, the system consists of two cavities.
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FIG. 1. Schematic illustration of a nondegenerate four-wave-
mixing system embedded with a two-level atom. ωa is the frequency
of mode a, and ωb is the frequency of mode b, while ωc is the
frequency of mode c. ωe is the atomic transition frequency be-
tween the ground state |g〉 and the excited state |e〉, and g describes
the four-wave-mixing interaction. Fa is the driving strength for the
cavity a.

The four-wave-mixing interaction between the two cavities
could convert two photons with frequency ωa in cavity a
into one photon with frequency ωb and the other photon with
frequency ωc in cavity b. In addition, cavity a is embedded
with a two-level atom with frequency ωe and is pumped by
an external driving light field with frequency ωl . Then the
Hamiltonian of the system can be described as (setting h̄ = 1)

Ĥ = ωaâ†â + ωbb̂†b̂ + ωcĉ†ĉ + g(â†2b̂ĉ + â2b̂†ĉ†)

+ ωeσ̂+σ̂− + J (â†σ̂− + σ̂+â) + Fa(â†e−iωl t + âeiωl t ),
(1)

where â† (â), b̂† (b̂), and ĉ† (ĉ) denote the creation (annihi-
lation) operators of modes a, b, and c, respectively, and σ̂+
(σ̂−) is the raising (lowering) operator of the two-level atom.
J denotes the coupling strength between the atom and cavity
mode a, while g describes the four-wave-mixing interaction
with Fa the driving strength for cavity mode a.

Considering the rotating frame, the effective Hamiltonian
can be written as

Ĥ = �aâ†â + �bb̂†b̂ + �cĉ†ĉ + g(â†2b̂ĉ + â2b̂†ĉ†)

+�eσ̂+σ̂− + J (â†σ̂− + σ̂+â) + Fa(â† + â), (2)

where �a/b/c = ωa/b/c − ωl is the detuning between the cavity
mode a/b/c and driving light field, and �e = ωe − ωl is the
detuning between the atom and the driving field. For sim-
plicity, we only consider that 2ωa = ωb + ωc and the atom
is resonant with the cavity mode ωa = ωe. That is, 2�a =
�b + �c, and �a = �e.

III. ANALYTICAL CONDITIONS
FOR PHOTON BLOCKADE

In the weak-driving limit, the matrix form of the total
Hamiltonian of this system could be obtained in differ-
ent subspaces. In the weak-driving limit, the interaction
terms between different subspaces are close to zero, so
the eigenfrequencies of the Hamiltonian could be obtained
by diagonalizing the Hamiltonian of the system in the
corresponding subspaces. We choose the states |g, 1, 0, 0〉 and
|e, 0, 0, 0〉 to form a closed space, so then the Hamiltonian of

the system can be written as

Ĥ (1) =
(�a J

J �e

)
. (3)

The Fock-state basis of this system has been given in the
form |z, na, nb, nc〉, where z represents the state of the atom
and |na〉, |nb〉, |nc〉 denote the photon numbers of modes a,
b, c, respectively. By diagonalization, we obtain the eigenfre-
quencies of the first excited state as

ω
(1)
± = �a ± J. (4)

Similarly, we could obtain the eigenfrequencies of
the second and third excited states by diagonalizing the
Hamiltonian of system in the corresponding subspaces. By
selecting |g, 2, 0, 0〉, |g, 0, 1, 1〉, and |e, 1, 0, 0〉 as the closed
space, we get the Hamiltonian of the system in the subspace
as

Ĥ (2) =

⎛
⎜⎜⎝

2�a

√
2g

√
2J

√
2g �b + �c 0

√
2J 0 �a + �e

⎞
⎟⎟⎠. (5)

Then we get the eigenfrequencies of the second excited
state after diagonalization as

ω
(2)
± = 2�a ±

√
2g2 + 2J2, ω

(2)
0 = 2�a. (6)

By choosing the states |g, 1, 1, 1〉, |e, 0, 1, 1〉, |e, 2, 0, 0〉,
and |g, 3, 0, 0〉 as the closed space, the Hamiltonian of the
system in the subspace could be rewritten as

Ĥ (3)=

⎛
⎜⎜⎜⎜⎝

�b + �c + �e J
√

2g 0

J �b + �c + �a 0
√

6g
√

2g 0 2�a + �e

√
3J

0
√

6g
√

3J 3�a

⎞
⎟⎟⎟⎟⎠.

(7)

Then the eigenfrequencies of the third excited state after
diagonalization are obtained as

ω
(3)
±± = 3�a ±

√
1
2 [A ±

√
A2 − 4B], (8)

where A = 4J2 + 6gJ + 2g2 and B = 3J4 − 12g2J2 + 12g4.
So we get the energy-level structure of the composite sys-

tem. As given in Eqs. (4) and (6), the energy-level splitting
of the first excited state only depends on the atom-cavity
coupling strength J , while the energy-level splitting of the
second excited state depends on both the atom-cavity cou-
pling strength J and the four-wave-mixing interaction g. The
energy-level diagrams of this system are shown in Figs. 2 and
3. Figure 2 shows the energy-level diagram of this system
when the four-wave-mixing interaction g and the atom-cavity
coupling strength J are not equal, i.e., g �= J . Figure 3 gives
the energy-level diagram of this system when the four-wave-
mixing interaction g and the atom-cavity coupling strength J
are consistent with each other, i.e., g = J . The physical mech-
anism of the formation of a conventional photon blockade is
the anharmonic energy ladder. For g �= J , as shown in Fig. 2,
if the transition of 0 → ω

(1)
± is resonant, the transition from
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FIG. 2. Schematic energy-level diagram of a four-wave-mixing
system embedded with a two-level atom for g �= J . Under this con-
dition, ω

(2)
± �= 2ω

(1)
± . If the transition of 0 → ω

(1)
± is resonant, the

transition from ω
(1)
± to ω

(2)
± is detuning.

ω
(1)
± to ω

(2)
± is detuning. Thus, a one-photon blockade could

be realized in this system when the external driving frequency
satisfies the resonant condition. Then we could get the optimal
analytical condition for the one-photon blockade as

�a = ±J. (9)

For g = J , by comparing Eqs. (4) and (6), we can get ω
(2)
± =

2ω
(1)
± . As shown in Fig. 3, if the transition of 0 → ω

(1)
± is

resonant, the transition from ω
(1)
± to ω

(2)
± is resonant and the

transition from ω
(2)
± to ω

(3)
±± is detuning. Thus, a two-photon

blockade could be realized in this system when the external
driving frequency satisfies the resonant condition. Then we
could get the optimal analytical condition for the two-photon

FIG. 3. Schematic energy-level diagram of a four-wave-mixing
system embedded with a two-level atom for g = J . Under this con-
dition, ω

(2)
± = 2ω

(1)
± . If the transition of 0 → ω

(1)
± is resonant, the

transition from ω
(1)
± to ω

(2)
± is resonant and the transition from ω

(2)
±

to ω
(3)
±± is detuning.

blockade as

�a = ±J. (10)

IV. NUMERICAL ANALYSIS FOR PHOTON BLOCKADE

A. Numerical analysis method

Usually, we could know whether or not the photon block-
ade happens by using a zero-delay-time correlation function
which describes the statistical properties of photons. The one-
photon blockade will occur when the two-order correlation
function g(2)(0) < 1, while the two-photon blockade happens
when the three-order correlation function g(3)(0) < 1 and the
two-order correlation function g(2)(0) > 1. The two-order and
three-order correlation functions are defined as

g(2)(0) = Tr(â†â†ââρ̂ss )

[Tr(â†âρ̂ss)]2 , (11)

g(3)(0) = Tr(â†â†â†âââρ̂ss )

[Tr(â†âρ̂ss)]3 , (12)

where ρ̂ss is the steady-state density matrix, which could be
solved from the master equation, that is,

∂ρ̂

∂t
= −i[Ĥeff, ρ̂] + γ

2
(n̄th + 1)(2σ̂ ρ̂σ̂ † − σ̂ †σ̂ ρ̂ − ρ̂σ̂ †σ̂ )

+ κa

2
(n̄th + 1)(2âρ̂â† − â†âρ̂ − ρ̂â†â)

+ κb

2
(n̄th + 1)(2b̂ρ̂b̂† − b̂†b̂ρ̂ − ρ̂b̂†b̂)

+ κc

2
(n̄th + 1)(2ĉρ̂ĉ† − ĉ†ĉρ̂ − ρ̂ĉ†ĉ)

+ γ

2
n̄th(2σ̂ ρ̂σ̂ † − σ̂ †σ̂ ρ̂ − ρ̂σ̂ †σ̂ )

+ κa

2
n̄th(2âρ̂â† − â†âρ̂ − ρ̂â†â)

+ κb

2
n̄th(2b̂ρ̂b̂† − b̂†b̂ρ̂ − ρ̂b̂†b̂)

+ κc

2
n̄th(2ĉρ̂ĉ† − ĉ†ĉρ̂ − ρ̂ĉ†ĉ), (13)

where κa, κb, and κc denote the decay rates of modes a, b,
and c, respectively, and γ is the atomic spontaneous emission
rate. The n̄th denotes the number of thermal photons, and it
obeys n̄th = {h̄ω/(κBT ) − 1}−1, where κB denotes the Boltz-
mann constant and T is the reservoir temperature at thermal
equilibrium. For convenience, in the following numerical sim-
ulations, the decay rates of the modes are assumed to be equal,
i.e., κa = κb = κc = κ , and all the parameters are rescaled
with respect to the decay rate κ .

B. Numerical analysis of a one-photon
blockade in cavity a

The logarithmic plot of a two-order correlation function
g(2)(0) as a function of �a/κ is shown in Fig. 4. Here, we set
Fa/κ = 0.01, J/κ = 5, g/κ = 10, γ = (1/16)κ . The numeri-
cal result shows that a one-photon blockade can be realized in
cavity a. As is shown in Fig. 4, the values of g(2)(0) could
be lower than one, which means that a strong one-photon
blockade could be realized in cavity a. In addition, the optimal
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FIG. 4. Logarithmic plot of a two-order correlation function as
a function of �a/κ with Fa/κ = 0.01, J/κ = 5, g/κ = 10, γ =
(1/16)κ .

blockade position is at �a/κ = ±5, which is consistent with
the optimal analytic condition given in Eq. (9). They result
from the anharmonic energy ladder of the system, as shown
in Fig. 2. With the same parameters, we plot the average
photon number Na as a function of �a/κ , as shown in Fig. 5.
The result further indicates the realization of a one-photon
blockade in cavity a.

We further plot the second-order correlation function
g(2)(0) versus the system parameters to study their influ-
ences on the one-photon blockade effect. Figure 6 shows the
logarithmic plot of g(2)(0) as a function of the four-wave-
mixing interaction g with �a/κ = J/κ = 5, Fa/κ = 0.01,
γ = (1/16)κ . As is seen from Fig. 6, evidently the one-photon
blockade effect in cavity a depends on g. When g is smaller

FIG. 5. Plot of the average photon number Na as a function of
�a/κ with Fa/κ = 0.01, J/κ = 5, g/κ = 10, γ = (1/16)κ .

FIG. 6. Logarithmic plot of a two-order correlation function as a
function of the four-wave-mixing interaction g with �a/κ = J/κ =
5, Fa/κ = 0.01, γ = (1/16)κ .

than 5, that is, g < J , g(2)(0) increases with g. When g is
greater than 5, that is, g > J , g(2)(0) oppositely decreases with
g. That is, when the value of g is closer to the value of J ,
the value of g(2)(0) becomes larger and the blockade effect
becomes worse. The logarithmic plot of g(2)(0) as a function
of the atom-cavity coupling strength J is shown in Fig. 7
with �a/κ = J/κ , g/κ = 5, Fa/κ = 0.01, γ = (1/16)κ . As
shown in Fig. 6, similarly, when the value of J is closer to
the value of g, the value of g(2)(0) becomes larger and the
blockade effect becomes worse. The results above show that
a one-photon blockade effect in cavity a could be facilitated
largely by adjusting the four-wave-mixing interaction g and
the atom-cavity coupling strength J .

FIG. 7. Logarithmic plot of a two-order correlation function as a
function of the atom-cavity coupling strength J , with �a/κ = J/κ ,
g/κ = 5, Fa/κ = 0.01, γ = (1/16)κ .
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FIG. 8. Logarithmic plots of a two-order correlation function
(black dashed line) and a third-order correlation function (red solid
line) as a function of �a/κ with J/κ = 10, g/κ = 10, Fa/κ = 0.32,
and γ /κ = 1.

C. Numerical analysis of a two-photon blockade in cavity a

The logarithmic plots of a two-order correlation function
g(2)(0) (black dashed line) and a third-order correlation func-
tion g(3)(0) (red solid line) varying with �a/κ are shown in
Fig. 8. Here, J/κ = 10, g/κ = 10, Fa/κ = 0.32, and γ /κ =
1. As is shown in Fig. 8, the values of g(2)(0) could be higher
than one and the values of g(3)(0) are lower than one simul-
taneously, which means that a strong two-photon blockade
could be realized in cavity a. In addition, the optimal blockade
position is at �a/κ = ±10, which is consistent with the opti-
mal analytic condition given in Eq. (10). They result from the
anharmonic energy ladder of the system, as shown in Fig. 3.
With the same parameters, we plot the average photon number

FIG. 9. Plot of average photon number Na as a function of �a/κ

with J/κ = 10, g/κ = 10, Fa/κ = 0.32, and γ /κ = 1.

FIG. 10. Logarithmic plot of a third-order correlation function as
a function of �a/κ with J/κ = g/κ , Fa/κ = 0.32, and γ /κ = 1. The
values of J for the red solid line, blue dotted line, and black dashed
line are J/κ = 8, J/κ = 10, and J/κ = 12, respectively.

Na as a function of �a/κ , as shown in Fig. 9. The result further
indicates the realization of a two-photon blockade in cavity a.

Figure 10 shows the effect of the four-wave-mixing in-
teraction g and the atom-cavity coupling strength J on the
two-photon blockade. In Fig. 10, we logarithmically plot the
third-order correlation function g(3)(0) as a function of �a/κ

under different values of J/κ , and g/κ = J/κ . The values of
J/κ are J/κ = 8 (red solid line), J/κ = 10 (blue dotted line),
and J/κ = 12 (black dashed line), respectively. The shared pa-
rameter is Fa/κ = 0.32 and γ /κ = 1. As is seen from Fig. 10,
a two-photon blockade could be realized for different values
of J/κ , and it gets stronger with increasing J/κ .

All the results show that both one-photon and two-photon
blockades could be realized in this composite system. In ad-
dition, for the practical realization of a photon blockade of
this model, we could adopt different potential systems based
on JC coupling [41] and four-wave mixing, for example, cou-
pled photonic wire nanocavities [59], subwavelength grated
resonators [60], and double-quantum-well microcavities [61],
and the parameters we adopt are feasible experimentally
[34,62]. For example, the atom-cavity coupling strength J
could be around J/κ = 10 experimentally [34]. Furthermore,
the order of magnitude for four-wave-mixing interaction we
adopt is g/κ = 10, and it is a realistic estimate. The value
of it could be reduced at the cost of increasing g(2)(0) or
g(3)(0). Thus, the proposed system could be used to obtain
single-photon or two-photon sources or devices.

Finally, in order to find the advantages of this system to
realize a photon blockade, we compare our results with that in
similar systems given in Refs. [41,58]. The proposed model
in this paper could be considered as a composite model of
the JC model and the four-wave-mixing model. For g = 0, the
hybrid system is reduced to a JC model, and Ref. [41] shows
the photon blockade in the JC model. For J = 0, the hybrid
system is reduced to a four-wave-mixing model, and Ref. [58]
gives the photon blockade in the four-wave-mixing model.
Figures 11(a)–11(c) show the energy ladder in the hybrid

043702-5



YUANCHUAN LI, ZHIHAI YAO, AND HUI YANG PHYSICAL REVIEW A 109, 043702 (2024)

FIG. 11. (a) Schematic energy-level diagram of the hybrid system (for J = g). (b) Schematic energy-level diagram of the JC model.
(c) Schematic energy-level diagram of the four-wave-mixing model.

system (for g = J), the JC model, and the four-wave-mixing
model, respectively. It should be noted that here we focus
on the CPB effects in the three different systems under the
same driving condition, that is, driving the cavity mode a only.
As shown in Fig. 11(a), in the hybrid system, the energy-
level splitting of the first excited state only depends on the
atom-cavity coupling strength J , while the energy-level shift
of the second excited state depends on both the atom-cavity
coupling strength J and the four-wave-mixing interaction g.
Thus, the system could realize a two-photon blockade when
g = J . As shown in Fig. 11(b), in the JC model, both the
energy-level splittings of the first excited state and the second
excited state only depend on J , so only a one-photon blockade
could exist under this driving condition [41]. As shown in
Fig. 11(c), in the four-wave-mixing model, the energy-level
splitting of the second excited state only depends on g, so only
a one-photon blockade could be realized under this driving
condition [58].

A comparison of the photon blockade effect in the present
scheme with that in Refs. [41,58] under this driving con-
dition is also shown in Table I. As is seen in Table I,
different from the results in Refs. [41,58], the scheme we
adopt in this paper could both realize a one-photon blockade
and two-photon blockade, which may lead to wide applica-
tions in quantum-nonlinear optics such as a single-photon
or multiphoton source. Moreover, for a one-photon block-
ade, compared with the scheme adopted in Ref. [41], the
system we choose here could have a more obvious one-
photon blockade effect under similar parameters. Compared

with the scheme adopted in Ref. [58], the system we choose
here could block two different frequencies of photons in one
system.

V. CONCLUSION

In this paper, we have investigated the photon blockade ef-
fect of a four-wave-mixing system embedded with a two-level
atom. Through an analytical analysis, we find that both one-
photon and two-photon blockades could be realized in this
system with different values of the atomic coupling strength
and the four-wave-mixing interaction. When the two values
are not equal, a one-photon blockade can be formed, and
when the two values are equal, a two-photon blockade can be
achieved. Then we investigate the blockade effect numerically
by using a master equation and correlation function. Results
show that the numerical results are consistent with the ana-
lytical conditions. Single-photon and multiphoton blockades
could be implemented in this system, which may lead to
wide applications in quantum-nonlinear optics such as differ-
ent photon sources. The results also show that the blockade
effect could be facilitated largely by adjusting the parameters
of the system. All the results may provide useful references
for single-photon and multiphoton sources or the design of
devices in future studies.
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TABLE I. Comparison of the photon blockade effect in different schemes.

J g CPB Optimal blockade condition

Scheme in Ref. [41]
√

None One-photon blockade �a = ±J
Scheme in Ref. [58] None

√
One-photon blockade �a = 0

Our scheme
√ √

One-photon blockade (g �= J ) �a = ±J
Two-photon blockade (g = J ) �a = ±J
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