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Entanglement analysis and experimental proposal for measuring Bell-type correlations
in an injected optical parametric oscillator with structured light
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We study a type-II optical parametric oscillator under injection of laser beams with first-order Hermite-Gauss
modes. We develop the equations describing the dynamics of this system in the Wigner representation of
the density matrix. These equations are solved numerically and compared with the analytical solution in the
nondepletion regime. We show that, when the injected beams are much less intense than the pumping beam,
the system still exhibits quantum entanglement, which can be witnessed via Duan-Simon criterion and Bell
inequalities. We also propose an experimental apparatus for measuring Bell inequalities. This system can
generate spin-orbit hyperentangled states, and is thus a useful resource to quantum technology applications and
fundamental physics.
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I. INTRODUCTION

Entanglement is a useful property of quantum systems,
characterized by nonclassical correlations between subsys-
tems. It was first conceived by Schrödinger in his famous
thought experiment [1] involving a cat in a peculiar state of
being both dead and alive, and later explored by Einstein,
Podolsky, and Rosen (EPR) [2]. The history of science teaches
us that the problems and enigmas of entangled systems were
little addressed until 1964 with the publication of the work
of John S. Bell, which established a way of discriminating
the results predicted by quantum mechanics with the results
of classical physics, within the idea of local realism [3].
Entanglement is the fundamental cornerstone of quantum
technology. Among all known quantum systems, light stands
out as an exceptionally promising platform for studying and
advancing quantum technologies, already proving its efficacy
in long-distance communication systems and simulating com-
plex phenomena [4].

In quantum optics, it is observed that light is a nonclassical
physical system which, in some situations, presents entangle-
ment and that can be studied in two domains: the domain of
discrete variables (DV) and the domain of continuous vari-
ables (CV). In the DV domain, the discrete nature of the
optical field is directly evidenced in the measurement pro-
cess, where the counting of single photons or coincidences
are a clear manifestation of the quantum nature of the field,
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while in the CV approach the focus is on the quadrature
operators, where homodyne measurement is used to measure
quadrature correlations and, in general, their joint probability
distribution, through continuous quasi-probability functions.
Considered the most traditional approach, this method has
been routinely employed since Aspect et al.’s pioneering
work in experimentally determining entanglement in systems
with polarized photons via Bell inequalities [5,6]. Aspect
et al.’s work paved the way for the development of quan-
tum encryption and quantum simulation devices [7–9]. In
the CV domain, optical fields are decomposed into ampli-
tude and phase quadratures. Optical parametric oscillators
(OPOs) play a crucial role as physical devices, producing
entangled laser beams in the CV domain, with significant
potential applications in implementing quantum information
protocols [10–12], quantum metrology [13,14], and quantum
computing [15]. In addition, in recent years substantial ef-
forts have been dedicated to the understanding and control
of OPO for complex quantum tasks, which require scala-
bility of useful degrees of freedom for quantum computing
[16–18]. However, within this sphere of OPO development,
both polarization and transverse modes have been exten-
sively utilized. Specifically, the dynamics of spin-orbit modes
in type-II OPOs were theoretically investigated in order to
explore hyperentanglement in CV [19], and experimentally
demonstrated in Ref. [20]. More recently, it was observed ex-
perimentally the orbital angular momentum (OAM) symmetry
of the beams converted by an injected OPO [21], an effect
governed by the conditions of the optical cavities [22,23].

Achieving the violation of Bell inequalities in CV presents
a formidable challenge with far-reaching implications for
quantum technology. This intricate matter was originally
explored in Refs. [24,25], and subsequently experimentally
implemented by Thearly et al. [26]. Their work demonstrates
the actualization of Bell inequalities violation in the CV
domain. This breakthrough was accomplished through the
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FIG. 1. A schematic diagram illustrating a triply resonant in-
jected optical parametric oscillator with four decay channels, based
simultaneously on two orthogonal polarization states and two orthog-
onal first-order Hermite-Gaussian modes.

utilization of two optical parametric oscillators in conjunction
with a well-suited homodyne detection configuration.

In this paper, we investigate entanglement in a type-II OPO
weakly injected by beams with first-order Hermite-Gauss
modes. Analogously to the experimental setup developed by
Thearly et al. [26], we will show that this system gener-
ates entangled beams that can violate the Bell inequalities.
We present a quantum description of the OPO injected with
spin-orbit beams via the Wigner representation. We analyt-
ically calculated, in a nondepletion regime, the amplitudes
of the output fields, which will be taken as the basis for
all correlations calculations, and compared the results with
exact numerical calculations, which support and give confi-
dence to the analytical results. The conditions predicted by the
Duan-Simon and Bell criteria are obtained to demonstrate the
entanglement. Finally, we propose an experimental apparatus
for measuring the Bell inequalities in the CV domain in this
system.

II. HAMILTONIAN AND STOCHASTIC EQUATIONS

Structured light has received special attention during the
last years due to potential applications in quantum informa-
tion and quantum communication. The spin-orbit modes are a
special kind of structured light that combine polarization and
transverse modes [27–29]. For example, spin-orbit modes can
be defined by combining polarization and transverse modes as

E = A1ψHG10êH + A2ψHG01êH

+ A3ψHG10êV + A4ψHG01êV , (1)

where Ai are complex amplitudes, ψHG01 and ψHG10 are the
first-order Hermite-Gauss modes and êH and êV represent the
linear horizontal and vertical polarization unit vectors, respec-
tively. Note that depending on Ai, we can find a structure
which cannot be factorized as a product between a spatial
and a polarization structure, giving rise to nonseparable modes
[27]. Here, we focus on the separable spin-orbit modes.

As illustrated in Fig. 1, the physical system considered
here consists of an injected triply resonant type-II OPO for
the pumping beam �Ep and the seed beams: signal �Es and
idler �Ei. The pumping beam is assumed to be prepared in
the fundamental transverse mode ψ00 and the seed beams
are restricted to the subspace of the first-order Hermite-
Gauss modes {ψHG10, ψHG01} [30]. Thus, we can write the

equations describing the incident fields as

�Ep = E0ψ00êH ,

�Es = eiφ1E1ψHG10êH + eiφ2E2ψHG01êH ,

�Ei = eiφ3E3ψHG10êV + eiφ4E4ψHG01êV , (2)

where ψHG01 and ψHG10 are the first-order Hermite-Gauss
(HG) modes and êH and êV represent the linear states of
horizontal and vertical polarization, respectively. The ampli-
tudes Ei and phases φi with i = 1, ..., 4 are parameters that
can be adjusted to simulate seed beams as different first-order
mode combinations. Note that signal and idler are assumed to
be frequency degenerated, being distinguishable only through
their polarization states. Note that for E1 = E2, φ1 = 0, φ2 =
+π/2 and E3 = E4, φ3 = 0, φ4 = −π/2 we have the inci-
dence of signal in the Laguerre-Gauss mode LG0+1, and idler
in the Laguerre-Gauss mode LG0−1, both carrying orbital
angular momentum (OAM). The general form of Eq. (1) en-
ables us to explore the injection of different structures in the
signal and idler beams described in the first-order subspace of
separable spin-orbit modes. For simplicity and without loss of
generality, we will study the injection of HG modes.

In the quantum domain (as illustrated in Fig. 1), when a
pumping beam photon is annihilated in the process of para-
metric down conversion in the nonlinear crystal (NLC), two
new twin photons are created in a process that basically fol-
lows two equiprobable decay channels: (a) both signal and
idler photons are emitted in the transverse mode ψHG10; (b)
both signal and idler photons are emitted in the transverse
mode ψHG01. The frequencies of the interacting fields satisfy
ωp = ωs + ωi, with the indexes p, s, and i indicating, respec-
tively, pump, signal, and idler beam frequencies.

Mathematically, the fields in the OPO are described by
bosonic operators âi, i = 0,...,4, such that

ψ00 êH → â0,

ψHG10 êH → â1,

ψHG01 êH → â2,

ψHG10 êV → â3,

ψHG01 êV → â4. (3)

The intracavity fields are damped via transmittance of the
mirrors and their interaction with the medium outside the
OPO is described through the thermal bath operators �̂ j ,
j = 0, ..., 4. The effective second-order nonlinearity of the
crystal is denoted by χ . Therefore, in the Heisenberg picture,
the Hamiltonian that describes this system is given by [31,32]

Ĥ =
4∑

j=0

h̄ω j â
†
j â j + ih̄χ

2∑
j=1

(â†
j â

†
j+2â0 − â j â j+2â†

0)

+ ih̄
4∑

j=0

(E je
−iω j t − E∗

j eiω j t ) +
4∑

j=0

(â j�̂
†
j + â†

j �̂ j ). (4)

In this equation, the first term describes the number of
photons inside the cavity for each mode. The second term
describes the interaction between the pump beam and the
signal and idler beams via the nonlinear crystal. The third
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and fourth terms describe, respectively, the seed fields injected
with the pumping beam and the cavity photons losses.

The complete solution of this system consists of solving
the master equations for the density operator, an extremely
complicated task due to the nonlinearity between the quantum
operators in the Hamiltonian. Through well-known techniques
in the literature to treat the thermal reservoir [33], this problem
can be mapped on a Fokker-Planck equation for the proba-
bility distribution of complex amplitudes in the phase space.
This equation is equivalent to the set of stochastic differential
equations, in the Wigner representation [34,35], as written
below:

dα0 = [E0eiφ0 − γ0α0 − χ (α1α3 + α2α4)]dt

+ √
γ0dw0,

dα1 = (E1eiφ1 − γα1 + χα0α
∗
3 )dt + √

γ dw1,

dα2 = (E2eiφ2 − γα2 + χα0α
∗
4 )dt + √

γ dw2,

dα3 = (E3eiφ3 − γα3 + χα0α
∗
1 )dt + √

γ dw3,

dα4 = (E4eiφ4 − γα4 + χα0α
∗
2 )dt + √

γ dw4, (5)

where α j , with j = 0, 1, ..., 4, are complex amplitudes asso-
ciated with the bosonic operators of the fields involved. The
terms γ0 and γ describe the losses in the cavity. Since modes
1,...,4 are degenerate in frequency, we use the same γ for the
losses in all down-converted modes. The dw j are complex
Wiener processes such that

〈dw j〉 = 0 and 〈dw jdw∗
k 〉 = δ jkdt . (6)

In order to proceed with the calculations with a direct
notation, we rewrite Eq. (5) as

dα0 = [E0 − γ0α0 − χ (α1α3 + α2α4)]dt + √
γ0dw0,

dα j = (E je
iφ j − γα j + χα0α

∗
j+2)dt + √

γ dw j, (7)

where the index j takes values j = 1, ..., 4 (with α5 ≡ α1

and α6 ≡ α2). Furthermore, without loss of generality, we set
the pumping beam field Ep = E∗

p = E0 as a real-valued field
by choosing φ0 = 0, so that the other fields referring to the
signal and idler beams [according to Eq. (5)] have their phases
defined in relation to it.

We now proceed to write the set of stochastic equations in
the Langevin form, by defining complex white noises �in

j such
that [34]

dw j

dt
=

√
2�in

j (t ), (8)

and 〈�in
j (t )�in

k (t ′)〉 = 1
2δ(t − t ′)δ jk . Also, we scale time as

τ = γ t and the amplitudes as a0 = (χ/γ )α0 and a j = gα j ,
with g = χ/

√
2γ γ0, to finally get the dimensionless equations

da0

dτ
= γr{μ0 − a0 − 2(a1a3 + a2a4) + 2g�0(τ )},

da j

dτ
= μ je

iφ j − a j + a0a∗
j+2 + g

√
2�in

j (τ ), (9)

where γr ≡ γ0/γ and

μ0 ≡ χE0

γ γ0
and μ j ≡ χE j

γ
√

2γ γ0
(10)
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FIG. 2. Normalized steady-state output signal and idler beams
as a function of the relative phase between the pump and injection
beams for μ0 = 0.2. The signal injection parameter is fixed as μ1 =
0.03μ0, while the idler’s varies from 0 to 0.03μ0 (lighter to darker
colors). Curves depict analytical results as in Eq. (11), while symbols
depict the numerical results as in Eq. (9). Open symbols/dashed
curves: idler intensity. Filled symbols/solid curves: signal intensity.

are the pump and injection parameters, respectively. When no
field is injected into the optical cavity, μ0 = 1 represents the
OPO’s threshold for oscillation.

III. STEADY-STATE SOLUTIONS

In this section, we will investigate the classical dynamics of
the system by finding the steady-state solutions of the average
values of the dynamical variables. This regime is useful for
the experimental analysis of the system’s parameters across
various phase regimes [36]. Under this condition, da j/dt = 0
and the noise terms are averaged out. As a result, the system
transforms into

μ0 − ā0 − 2
2∑

j=1

ā j ā j+2 = 0,

μ je
iφ j − ā j + ā0ā∗

j+2 = 0,

μ j+2eiφ j+2 − ā j+2 + ā0ā∗
j = 0. (11)

Rearranging the equations, it is possible to write the down-
converted beam amplitudes as a function of a0 and injection
parameters μ j :

ā j = μ jeiφ j + ā0μ j+2eiφ j+2

1 − ā2
0

, (12)

ā j+2 = μ j+2eiφ j+2 + ā0μ jeiφ j

1 − ā2
0

. (13)

Substituting these solutions into the initial equation from (11),
one can formulate a fifth-order polynomial for a0, which can
be addressed numerically if necessary. Finally, having these
solutions, we can readily determine the intensity of the con-
verted signal and idler beams outside the cavity.

Figure 2 shows both the numerical and analytical outcomes
for the steady-state intensity of the signal and idler output
fields when μ0 = 0.2. These intensity profiles are plotted
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against the phase φ = φ1 + φ3, which represents the com-
bined phase difference between the pump and the injected
seed. It is worth noting that Eqs. (12) and (13) provide
crucial insight into the system’s behavior. Specifically, these
equations reveal that amplitudes ā1 and ā3 remain entirely
independent of both amplitudes ā2 and ā4 and phases φ2 and
φ4. This independence indicates that the system behaves as
two separate OPOs. It should be noted that the amplitudes of
the pump, signal, and idler beams can be varied. When the
signal and idler injection beams have equal intensities, the
response observed is optimal, denoting maximum conversion.
In such a scenario, the converted signal and idler exhibit
identical intensities and are phase sensitive, relying on the
value of the relative phase φ. However, if the signal injection
beam is characterized by a proportionality factor of μ1 =
0.03μ0, while the idler injection beam has μ3 = 0.01μ0,
the signal becomes more intense than the idler injection.
Consequently, we still observe the familiar phase-sensitive
phenomenon, except that the converted signal is stronger
than the converted idler. In the absence of the idler injection
beam, the system exhibits a distinct behavior. Specifically,
we observe the generation of a relatively low-intensity idler
beam, while the signal-converted beam becomes significantly
stronger. In this configuration, as expected, there is no phase
dependence.

IV. FIELD INTENSITIES
IN THE NONDEPLETION REGIME

The set of stochastic equations (9) can be solved numer-
ically. However, under certain conditions, these stochastic
equations can be simplified and solved analytically. Here we
are working with intensities of the injection beams much
smaller than the intensity of the pumping beam, which, in
turn, is smaller than the intensity of the OPO oscillation
threshold. Under these conditions, we perform the nonde-
pletion approach: we assume the pump beam amplitude is
little affected due to the creation of photons in the down-
converted modes and hence we assume a stationary regime
for a0. This means eliminating the noise �0 as well as the
full-time dependence of a0 in Eq. (9). One then gets a0

as constant and four remaining coupled equations for the
modes j = 1, . . . , 4,

a0 = μ0,

da j

dτ
= μ je

iφ j − a j + μ0a∗
j+2 + g

√
2�in

j (τ ). (14)

This approximation makes it possible to solve the system
analytically, which will be done here by transforming the
amplitude and noise fields to the frequency domain via Fourier
transforms of the form

f̃ (
) = 1√
2π

∫ ∞

−∞
dτe−ı
τ f (τ ). (15)

In summary, applying the Fourier transform to Eq. (14) and
using relation (8), one gets

ı
ã j (
) =
√

2πμ je
iφ j δ(
) − ã j (
)

+ μ0ã∗
j+2(−
) + g

√
2�̃in

j (
),

ı
ã j+2(
) =
√

2πμ j+2eiφ j+2δ(
) − ã j+2(
)

+ μ0ã∗
j (−
) + g

√
2�̃in

j+2(
), (16)

which can be solved in order to give the intracavity fields

ã j (
) =
√

2πμ je+iφ j δ(
) + √
2πμ j+2e−iφ j+2δ(
)

(1 + ı
)2 − μ2
0

+ g
√

2
(1 + ı
)�̃ in

j (
) + μ0�̃
∗ in
j+2(−
)

(1 + ı
)2 − μ2
0

. (17)

Therefore, in this nondepletion approach, the injection and
vacuum contributions for the amplitude solutions appear as
two independent terms. In particular, when there is no injec-
tion (μ j = μ j+2 = 0), one gets the vacuum solution

ãVAC
j (
) ≡ g

√
2

(1 + ı
)�̃ in
j (
) + μ0�̃

∗ in
j+2(−
)

(1 + ı
)2 − μ2
0

. (18)

Returning to the original amplitude variables, denoted as
α j = a j/g, we can determine the field outside the cavity
through the input-output relations [33],

α̃out
j (
) =

√
2γ α̃ j (
) − √

γ �̃in
j (
). (19)

Therefore, substituting Eq. (17) in Eq. (19), and averaging
over the ensemble, one can get the field correlations in the
frequency domain, viz.,〈

α̃∗out
j (
)α̃out

k (
′)
〉

= δ jkδ(
 + 
′)

[
1

2
+ 4γμ2

0(
1 − 
2 − μ2

0

)2 + 4
2)

]

+ 4γπ (μ je
−iφ j + μ0μ j+2e+iφ j+2 )

× (μkeiφk + μ0μk+2e−iφk+2 )δ(−
)δ(
′)(
1 − 
2 − μ2

0

)2 + 4
2
(20)

and〈
α̃out

j (
)α̃out
k (
′)

〉
= γ

[
μ0

(
1 + 
2 + μ2

0

)
(δ j,k+2 + δ j+2,k )δ(
 + 
′)(

1 − 
2 − μ2
0

)2 + 4
2

+ 4γπ (μ je
iφ j + μ0μ j+2e−iφ j+2 )

× (μke−iφk + μ0μk+2e−iφk+2 )δ(
)δ(
′)(
1 − 
2 − μ2

0

)2 + 4
2

]
. (21)

The intensity in each mode is obtained from Eq. (20)
by setting j = k and then taking an inverse Fourier trans-
form. Figure 3(a) displays the transmitted OPO field intensity
for a mode α j , depicting its dependency on the pumping
and injection parameters μ0 and μ j . In all analyzed situa-
tions we considered μ1 = μ2 = μ3 = μ4 ≡ μ and φ2 = φ3 =
φ1 = φ4 = 0 such that all modes exhibit the same statisti-
cal behavior. In addition, we choose g = 0.01. Solid curves
represent analytical results as in Eq. (20), while symbols
show the results from numerical solutions of the system (9),
referring to the solution of the complete set of equations with-
out the nondepletion approximation. Numerical integrations
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FIG. 3. (a) The intensities of the converted beams are presented
as a function of the pumping beam parameter μ0 in five different
injection scenarios. Curves: analytical solution on the nondepletion
regime [Eq. (20)]. Symbols: numerical integration of Eq. (9). Inset:
detailed enlargement of the behavior around μ0 = 0. (b) Density plot
of the relative difference ε between intensities in the numerical and
analytical solutions [Eq. (22)]. Contour lines are spaced by 0.2 (only
the first three values are shown for clarity).

of Eq. (9) were performed with a second-order predictor-
corrector method [37], and both time and ensemble averages
are considered after a suitable transient time.

At this point, it is important to highlight the strong
agreement between the analytical and numerical curves, par-
ticularly in regimes where μ0 < 0.3 and μ j < 0.2μ0, as they
exhibit a nearly perfect overlap. The blue curve (squares)
refers to the null injection case. The inset represents a zoom in
the region where the pumping parameter is less than 15% of
the OPO threshold, which shows that in this regime the non-
depletion approximation agrees very well with the numerical
solution. As expected, in all results the intensity transmitted
for μ0 = 0 is worth 0.5, bearing in mind that all mathematical
developments took place in the Wigner representation where
this value represents the energy of the vacuum state [33].
Figure 3(b) shows a density plot where the color intensity
represents the relative distance between output intensities in
the numerical and analytical solutions, namely,

ε ≡
∣∣〈α∗out

j αout
j

〉
num − 〈

α∗out
j αout

j

〉
ana

∣∣〈
α∗out

j αout
j

〉
num

. (22)

In the predominantly light green region, below the 0.1 contour
line, one finds the typical values of μ0 and μ in which the non-

depletion approximation agrees very well with the numerical
solution, such that ε < 0.1.

V. EPR CORRELATIONS

In a more formal context, entanglement is defined by
the presence of nonclassical correlations among subsystems
within a quantum system. Such correlations are marked by the
impossibility of representing the system’s density matrix as a
convex combination of factorized density matrices. This fun-
damental concept of separability between subsystems forms
the basis for the Duan-Simon criterion, as proposed by Duan
and Simon [38], which serves as a valuable tool for assessing
entanglement in continuous variables. Here, we utilize the
Duan-Simon criterion to detect the presence of entanglement
within the beams generated by our injected OPO. To do so,
we calculate the necessary spectral variances using a dual
approach: analytical methods incorporating the nondepletion
approximation (14), and numerical solutions for Eq. (5).

The Duan-Simon criterion [38] constitutes a mathe-
matical inequality based on correlations between different
combinations of amplitude and phase quadratures (Einstein-
Podolsky-Rosen continuous variables) of the interacting
modes. Therefore, in order to implement this criterion in our
system, we define the quadratures

Xj ≡ a∗
j + a j and Yj ≡ −i(a∗

j − a j ), (23)

which are subsequently rescaled using the following
transformations:

x0 = g
√

2γrX0, y0 = gY0,

x j = g
√

2γrXj, y j = gYj . (24)

With this, Eq. (9) takes the form

dx0

dτ
= γr

⎡
⎣2μ0 − x0 −

2∑
j=1

(x jx j+2 − y jy j+2)

⎤
⎦

+ 2gγr�x0 ,

dy0

dτ
= γr

⎡
⎣−y0 −

2∑
j=1

(x j j j+2 + y jy j+2)

⎤
⎦

+ 2gγr�y0 ,

dx j

dτ
= 2μ j cos φ j − x j + 1

2
(x0x j+2 + y0y j+2)

+ g
√

2�x j ,

dy j

dτ
= 2μ j sin φ j − y j + 1

2
(x0y j+2 − y0x j+2)

+ g
√

2�y j , (25)

where, analogously to Eq. (7), we assign x5 ≡ x1 and x6 ≡ x2

(and similarly to the y quadrature). It is worth mentioning that
Eq. (25) constitute a set of coupled stochastic equations with
Gaussian noise satisfying [34]

〈�xi (τ )〉 = 〈�yi(τ )〉 = 0

〈�xi (τ )�x j (τ
′)〉 = 〈�yi (τ )�y j (τ

′)〉 = δi jδ(τ − τ ′). (26)
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The occurrence of quadrature quantum correlations become
evident by defining new quadratures that encompass both the
signal and idler modes, namely,

x+
j, j+2 = x j + x j+2√

2
, x−

j, j+2 = x j − x j+2√
2

,

y−
j, j+2 = y j − y j+2√

2
, y+

j, j+2 = y j + y j+2√
2

. (27)

In these new variables, the equations with nondepletion ap-
proximation of the pump beam read

dx+
j, j+2

dτ
= (2μ j cos φ j + 2μ j+2 cos φ j+2) − (1 − μ0)x+

j, j+2

+ g
√

2(�x j + �x j+2 ),

dy+
j, j+2

dτ
= (2μ j sin φ j + 2μ j+2 sin φ j+2) − (1 + μ0)y+

j, j+2

+ g
√

2(�y j + �y j+2 ),

dx−
j, j+2

dτ
= (2μ j cos φ j − 2μ j+2 cos φ j+2) − (1 + μ0)x−

j, j+2

+ g
√

2(�x j − �x j+2 ),

dy−
j, j+2

dτ
= (2μ j sin φ j − 2μ j+2 sin φ j+2) − (1 − μ0)y−

j, j+2

+ g
√

2(�y j − �y j+2 ). (28)

Interestingly, this change of variables decouples the set of
equations in terms of the variables representing the combined
quadratures. Nevertheless, Eq. (28) still entail correlations via
the noise terms that are combined in the process, causing the
suppression of quantum fluctuations (squeezing) in a pair of
quadratures, at the cost of increasing fluctuations (antisqueez-
ing) in the remaining pair, all according to the Heisenberg
uncertainty principle.

Therefore, in order to verify the squeezing and anti-
squeezing situations, we calculated the correlation spectra
associated with the combinations of the four quadratures
of interest. We will proceed from here with calculations
in the frequency domain since from an experimental point
of view it is the quantity easily accessed outside the
cavity.

Applying a Fourier transform to Eq. (28), we get

x̃+
j, j+2(
) = 1

1 − μ0 + i


{
2
√

πδ(
)(μ j cos φ j

+ μ j+2 cos φ j+2) + g
√

2
[
�̃x j (
) + �̃x j+2 (
)

]}
,

ỹ+
j, j+2(
) = 1

1 + μ0 + i


{
2
√

πδ(
)(μ j sin φ j

+ μ j+2 sin φ j+2) + g
√

2
[
�̃y j (
) + �̃y j+2 (
)

]}
,

x̃−
j, j+2(
) = 1

1 + μ0 + i


{
2
√

πδ(
)(μ j cos φ j

− μ j+2 cos φ j+2) + g
√

2
[
�̃x j (
) − �̃x j+2 (
)

]}
,

ỹ−
j, j+2(
) = 1

1 − μ0 + i


{
2
√

πδ(
)(μ j sin φ j

− μ j+2 sin φ j+2) + g
√

2
[
�̃y j (
) − �̃y j+2 (
)

}
,

(29)

where the noise terms, now in Fourier space, must obey〈
�̃mj (
)

〉 = 0,〈
�̃mj (
)�̃mk (
′)

〉 = δ jkδ(
 + 
′). (30)

Once more applying the input-output relation Eq. (19), we
derive the expressions for the correlations beyond of the cavity
(extracavity).

〈ỹ+
j, j+2ỹ+∗

j, j+2〉out = δ(
 + 
′)
[

1 − 4μ0

(1 + μ0)2 + 
2

]
+ 8γπδ(
)δ(
′)

(μ j sin φ j + μ j+2 sin φ j+2)2

(1 + μ0)2 + 
2
,

〈x̃−
j, j+2x̃−∗

j, j+2〉out = δ(
 + 
′)
[

1 − 4μ0

(1 + μ0)2 + 
2

]
+ 8γπδ(
)δ(
′)

(μ j cos φ j − μ j+2 cos φ j+2)2

(1 + μ0)2 + 
2
,

〈ỹ−
j, j+2ỹ−∗

j, j+2〉out = δ(
 + 
′)
[

1 + 4μ0

(1 − μ0)2 + 
2

]
+ 8γπδ(
)δ(
′)

(μ j sin φ j − μ j+2 sin φ j+2)2

(1 − μ0)2 + 
2
,

〈x̃+
j, j+2x̃+∗

j, j+2〉out = δ(
 + 
′)
[

1 + 4μ0

(1 − μ0)2 + 
2

]
+ 8γπδ(
)δ(
′)

(μ j cos φ j + μ j+2 cos φ j+2)2

(1 − μ0)2 + 
2
. (31)

It is noticeable that the injection terms solely impact the zero-
frequency component of the correlation spectra. Away from
this frequency, one may identify the light noise spectrum with
the expressions of the averages of the combined quadratures
provided by Eq. (31) as in

V mk,k+2
nl,l+2

(
)δ(
 + 
′)

= 〈�mk,k+2(
)�nl,l+2(
′)〉, (32)

where m, n refer to any of the combined quadratures x±
or y± and �mj, j+2(
) ≡ mj, j+2(
) − 〈mj, j+2(
)〉. Here,
V mk,k+2

nl,l+2 (
) is the extracavity noise spectrum of light. Formally,
when m = n and k = l , we get

〈�mk,k+2(
)�mk,k+2(
′)〉 = 1 ⇒ shot noise,

〈�mk,k+2(
)�mk,k+2(
′)〉 < 1 ⇒ squeezing,

〈�mk,k+2(
)�mk,k+2(
′)〉 > 1 ⇒ antisqueezeing.
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FIG. 4. (a) Noise spectrum for squeezing and antisqueezing quadratures when μ0 = 0.2, μ j = 0.01μ0 and φ j = 0. (b) Duan-Simon
spectrum. Points: numerical simulations. Lines: analytical results with nondepletion approximation, Eq. (31).

By the Duan-Simon criterion, there is entanglement if the
inequality

〈�mk,k+2(
)2〉 + 〈�nl,l+2(
)2〉 � 2 (33)

is violated, which happens when we select pairs of quadra-
tures that are simultaneously squeezed, that is, EPR pairs such
as {x−

k,k+2, y+
k,k+2} and {x+

k,k+2, y−
k,k+2}.

Figure 4 provides an overview of the correlation spectra
and the Duan-Simon criterion for the system, with μ0 = 0.2
and μ j = 0.01μ0. Both plots display the results of numeri-
cal simulations for the complete equations (points), as well
as the analytical solutions in the nondepletion regime (solid
lines). Figure 4(a) showcases both the squeezed 〈x−x−〉 and
the antisqueezed 〈x+x+〉 spectra, while Fig. 4(b) presents
the Duan-Simon spectrum. Notably, the spectrum curve con-
sistently remains below 2 (thus violating the Duan-Simon
condition), with its minimum value occurring around 
 = 0.
We should mention that the zero-frequency components ob-
tained with the numerical solutions lie outside the plot scale,
as expected due to the presence of the delta functions in
Eq. (31). Generally, it is observed that the spectra curves
of the system without seed injection closely resemble the
case illustrated in Fig. 4. This observation suggests that the
injection of a seed can effectively drive the oscillating modes
while preserving the entanglement.

VI. DISCRETE VARIABLES
BELL INEQUALITY VIOLATION

In this section, we propose an experiment that aims to
verify the violation of Bell’s inequality using discrete vari-
ables instead of continuous variables obtained elsewhere [26].
The advantage here is that we do not need to use homodyne
measurement on the output fields, which proves to be a diffi-
cult task. In the present case, verifying the violation of Bell’s
inequality to test the theory of local realism seems to be more
viable through the use of less sophisticated measuring devices.
Specifically, Bell-type quantum correlations can be verified
and quantified using the scheme illustrated in Fig. 5. In this
scheme, S is a source that emits pairs of linearly polarized
photons in the horizontal (H) and vertical (V ) directions in

the first-order Hermite-Gauss modes HG01 and HG10, which
are sent to two observers: Alice (A) and Bob (B). The source
S illustrated in the diagram internally separates the photons
based on their polarization. Consequently, photons polarized
as H are sent to Alice, while those polarized as V are sent to
Bob. Therefore, each pair emitted by the source is described
by a state of four modes: Ah, Av Bh, and Bv , in which the
indices h and v refer to the modes HG10 horizontal and HG01

vertical, respectively. Alice and Bob can mix their respective
modes using appropriate optical elements C to subsequently
perform measurements {θA, θ ′

A} and {θB, θ ′
B} referring to Â+,

Â−, B̂+, and B̂− modes. Alice and Bob can perform single
photon measurements resulting in R ∈ {0, 1} at each detector.
Repeating this procedure, they can build the joint statistics of
correlations between them, given by

Ri j (θA, θB) = 〈
Ri

A(θA)R j
B(θB)

〉
, (34)

FIG. 5. A diagram for a Bell test.

043701-7



L. G. S. OLIVEIRA et al. PHYSICAL REVIEW A 109, 043701 (2024)

where i, j ∈ {+,−}. We can construct a function based on the
four possible combinations, as outlined in [26]

E (θA, θB) = M

N
, (35)

where

M = R++(θA, θB) + R−−(θA, θB)

− R+−(θA, θB) − R−+(θA, θB), (36)

and N is a normalization term given by

N = R++(θA, θB) + R−−(θA, θB)

+ R+−(θA, θB) + R−+(θA, θB), (37)

that is, the sum of all possible outcomes.
The quantity E (θA, θB) accounts for the expectation values

for each set of measures. These expectation values can be
used in the construction of the Clauser-Horne-Shimony-Holt
(CHSH) inequality

B = |E (θA, θB) + E (θ ′
A, θ ′

B) + E (θ ′
A, θB) − E (θA, θ ′

B)| � 2,

(38)

an inequality that determines the range of possible outcomes
according to local realism but that can be violated if applied
to entangled states. The maximum violation occurs when the
experimental setup angles are θA = {π/8, 3π/8} and θB =
{0, π/4}.

The correlation represented in Eq. (34) can be constructed
by continuous variables with amplitudes in positive-P repre-
sentation, based on normal ordering, as

Ri j
N = 〈Â†

i (θA)Âi(θA)B̂†
j (θB)B̂ j (θB)〉. (39)

However, using the Wigner representation, based on symmet-
ric ordering, Eq. (39) can be mapped into

Ri j
S = 〈[Â†

i (θA)Âi(θA) − 〈Â†
i (θA)Âi(θA)〉].

× [B̂†
j (θB)B̂ j (θB) − 〈B̂†

j (θB)B̂ j (θB)〉]〉, (40)

where the averages of the intensities were subtracted in the
calculation of the correlation function. As one of our main
results, we compute below the CHSH inequality in both rep-
resentations.

The transformations applied by the elements CA and CB,
which modify the modes within the Alice and Bob frames,
can be expressed as follows:

A+ = cos (θA)a1 + sin (θA)a2,

A− = sin (θA)a1 − cos (θA)a2,

B+ = cos (θB)a3 + sin (θB)a4,

B− = sin (θB)a3 − cos (θB)a4, (41)

where the amplitudes ai are associated with the seeded fields
from Eq. (3). Now, using these amplitudes, we proceed by
computing Eq. (35) in both normal and symmetrical order-
ings. It can be demonstrated that both Eq. (39) and (40) yield

identical numerators, namely,

M(α, β ) = cos(2α) cos(2β )E1 + cos(2α) sin(2β )E2

+ sin(2α) cos(2β )E3 − sin(2α) sin(2β )E4,

(42)

with

E1 = 〈a∗
1a1a∗

3a3〉 + 〈a∗
2a2a∗

4a4〉
− 〈a∗

1a1a∗
4a4〉 − 〈a∗

2a2a∗
3a3〉

+ (〈a∗
1a1〉 − 〈a∗

2a2〉) ∗ (〈a∗
4a4〉 − 〈a∗

3a3〉),

E2 =〈a∗
1a1a∗

3a4〉 + 〈a∗
1a1a∗

4a3〉
− 〈a∗

2a2a∗
3a4〉 − 〈a∗

2a2a∗
4a3〉,

E3 = 〈a∗
1a2a∗

3a3〉 + 〈a∗
2a1a∗

3a3〉
− 〈a∗

1a2a∗
3a4〉 − 〈a∗

2a1a∗
4a4〉,

E4 = 〈a∗
1a1a∗

3a3〉 + 〈a∗
2a2a∗

4a4〉
− 〈a∗

1a1a∗
4a4〉 − 〈a∗

2a2a∗
3a3〉

+ (〈a∗
3a4〉 − 〈a∗

4a3〉) ∗ (〈a∗
1a2〉 − 〈a∗

2a1〉). (43)

For further calculations, we assume we are dealing with
Gaussian variables, whose higher-order correlations reduce to
combinations of second-order ones, as

〈abcd〉 = 〈ab〉〈cd〉 + 〈ac〉〈bd〉 + 〈ad〉〈bc〉 − 2〈a〉〈b〉〈c〉〈d〉.
(44)

The normalization process [Eq. (37)] produces remarkably
diverse outcomes depending on the representation one em-
ploys. Specifically, in the case of symmetrical ordering, it
becomes

NS = 〈a∗
1a1a∗

3a3〉 + 〈a∗
1a1a∗

4a4〉
+ 〈a∗

2a2a∗
3a3〉 + 〈a∗

2a2a∗
3a3〉, (45)

while in normal ordering

NN = NS − 1 − [〈a∗
1a1〉 + 〈a∗

2a2〉 + 〈a∗
3a3〉 + 〈a∗

4a4〉]. (46)

Incorporating all the previously obtained results into Eq. (37),
we generate a graph depicting the Bell parameter B against
frequency.

In summary, we show in Fig. (6) the function B defined
in (38) on the Wigner (dashed lines) and positive-P (solid
lines) representations for three different injection scenarios,
corresponding to μ j = 0, μ j = 0.01μ0, and μ j = 0.03μ0

(from lighter to darker colors). Once again, symbols represent
numerical solutions and lines the analytical result with
nondepletion approximation. In the null injection case, one
observes the Bell inequality violation up to μ0 ≈ 0.4 on the
positive-P case.

As envisioned and discussed in Ref. [39], it is important
to note that the violation of the Bell inequality depends
on the ordering of quantum operators; it can be violated
under normal ordering (positive-P representation) but is not
violated under symmetric ordering (Wigner representation).
This discussion can be deepened in the classical domain
considering the Cauchy-Schwartz inequality [40], where
the authors have shown that the violation occurs only in
the normal ordering of the operators. On can summarize
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FIG. 6. Verification of the CHSH inequality through computa-
tion of function B from Eq. (38), shown here as a function of
the pump intensity. The three different injection regimes depicted
correspond to μ j = 0, μ j = 0.01μ0, and μ j = 0.03μ0 (lighter to
darker colors). Symbols: numerical simulations. Solid: positive-P
representation. Dashed: Wigner representation.

these results in two cases: experimental setups based only
on homodyne detection are described in symmetric ordering,
where background vacuum is also measured, leading to no
violation of Bell-type inequalities; experimental setups based
on direct intensity measures are described in normal ordering,
which can violate the Bell inequalities [41].

Here, when μ j = 0.01μ0, one observes again a viola-
tion but in a smaller region, up to μ0 ≈ 0.2. It is also
noted that in the case where μ j = 0.03μ0, one has an even
smaller violation region, indicating that the injection degrades
the entanglement. We observe that the slight mismatch be-
tween numerical and analytical results seen for small μ0 is
not due to any significantly different behavior, but only to
a slow statistical convergence of numerical results in this
regime, as we could observe by comparing many distinct
realizations.

Finally, in Fig. 7 we show the schematic diagram of the
experimental proposal for observing the violation of Bell in-
equalities in the injected OPO. The theory described in Sec. II
relies on a simultaneous resonance of the converted (and in-
jected) fields in the OPO cavity. It is important to point out
that this condition is not trivially achieved, since astigmatic
effects, coming from the nonlinear crystal birefringence, may
prevent this situation [22]. It is important to mention that the
injected seed beams are necessary to drive the OPO operation
with the required spatial modes. Otherwise, if the OPO is left
with the pump input alone, the fundamental Gaussian mode,
which has a lower oscillation threshold, will take over and
dominate the device operation. The seed beams allow for
spatial mode control while adding an acceptable amount of
noise. In practice, a two-crystal setup can be used to overcome
this issue [20]. In this proposal, initially, the pumping beam is
separated from the converted beams by means of a dichroic
mirror (DM). The converted beams are then split on a polar-
izing beam splitter (PBS) and distributed to Alice and Bob.
Alice receives the horizontally polarized beams and Bob the
vertically polarized ones. Alice and Bob have Dove prisms

FIG. 7. An experimental proposal to measure Bell correlations in
entangled beams generated by an injected OPO.

that perform the mixtures CA,B, according to the diagram
depicted in Fig. 5. Two Mach-Zehnder interferometers with
additional mirrors, often referred to as MZIM as introduced
by Ref. [42], separate the incoming fields of the Alice and
Bob in A+, A−, B+, and B−, which are mapped on Eq. (41).
Subsequently, these signals are mixed and detected on two
arrays with beam splitters and photodetectors. An articulated
assemble can move the mirrors M1, M2, and M3 to positions
M ′

1, M ′
2, and M ′

3, respectively, enabling the exchange between
the fields A+ and A− so that on can obtain all the correlations
〈A+B+〉, 〈A−B+〉, 〈A+B−〉, and 〈A−B−〉. The photocurrents
generated by the photodetectors are used so as to obtain the
needed correlations indicated in Eq. (43).

VII. CONCLUSION

In summary, this study demonstrates the efficacy of in-
jecting a signal into the lower-frequency first-order spin-orbit
modes of the nondegenerate optical parametric oscillator for
the generation of nonclassical states of light. Our findings re-
veal that this technique successfully amplifies the intensity of
low-frequency modes below the standard oscillation threshold
while preserving quantum correlations. We have derived and
solved stochastic equations to describe the system’s dynamics,
both analytically and numerically, under stationary and
dynamic nondepletion conditions. This analysis validates the
compatibility between analytical and numerical nondepletion
results. To assess entanglement, we calculated quantum corre-
lations between the beams’ quadratures and employed them to
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construct the Duan-Simon criterion and CHSH inequalities,
the latter serving as a tool to observe Bell’s inequalities
within the system. Conclusively, we propose an experimental
setup utilizing a weakly injected OPO for Bell’s inequalities
measurement based on coincidences measurements. Our find-
ings highlight the system’s capability to generate spin-orbit
hyperentangled states, establishing it as a valuable resource
for applications in quantum technology and fundamental
physics.
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