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Radiation damping of a Rayleigh scatterer illuminated by a linearly polarized plane wave
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We investigate the radiation damping experienced by a dielectric spherical particle when it is illuminated by an
electromagnetic plane wave within the Rayleigh regime. We derive the equivalent electric dipole of the moving
particle and subsequently calculate the electromagnetic force acting on it from two different approaches. In the
first approach, we calculate the force from the integration of stress tensor and field momentum. In the second one,
we calculate the force directly from the integration of the force density. Our derivations reveal that the damping
coefficient is equal to 6Pscat/mc2 along the propagation direction, whereas it is Pscat/mc2 along perpendicular
directions. Here, Pscat denotes the power scattered by the particle, and mc2 represents the particle’s mass energy.
The radiation damping derived in this paper sets upper limits on the quality factor of optically levitated objects
and ensures the existence of a steady-state solution of the particle’s dynamics.
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I. INTRODUCTION

Ashkin, in his pioneering 1970 paper on the trapping
of particles by radiation pressure, writes “the extension to
vacuum of the present experiments on particle trapping in
potential wells would be of interest since then any motions are
frictionless” [1]. Later, in 1976, based on the Doppler effect,
he provides an estimate for the friction in vacuum (radiation
damping) and concludes that the particle’s oscillation will
damp out with a half-time of roughly half a year [2]. Over
the past decade, optical trapping of levitated nanoparticles in
high vacuum has gained renewed interest [3–5], and it has
been shown that the particle’s motion accelerates due to the
random momentum transfer from photon scattering, so-called
photon recoil heating [6]. Radiation damping was predicted
to counteract this heating mechanism in order to establish a
stable equilibrium [7].

The rates of radiation damping and recoil heating are
fundamental parameters in the study of optomechanics con-
cerning levitated nanoparticles [6,8]. In his renowned 1905
paper on special relativity, Einstein calculated the radiation
pressure acting on a moving totally reflecting mirror, em-
ploying the principle of energy conservation [9]. From this
calculation, the radiation damping rate for a movable mirror
could be derived by linearizing the radiation pressure with
respect to the particle’s velocity. Further analysis of the fric-
tion forces due to the electromagnetic radiation for mirrors
has been presented for one-dimensional structures such as
Fabry-Pérot cavities [10,11]. Moreover, radiation reaction
forces of accelerated charges and two-level systems such
as atoms has been extensively studied in the literature
[12–18]. The radiation reaction of charged particles is usually
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studied by using retarded Liénard-Wiechert fields [19]. When
an atom is moving toward a red-detuned laser, its momentum
decreases due to the Doppler effect [18]. In a paper by one of
our authors [7], the radiation damping of a polarizable particle
interacting with an incident plane wave was derived by inte-
grating the Maxwell stress tensor in the rest frame. However,
we have found that this analysis is not complete, and that the
contribution of the field momentum has to be accounted for
when the integration is performed in the particle’s rest frame.
Moreover, the scattered far field of a moving particle is no
longer transverse in the laboratory frame, which affects the
net momentum flux.

In this paper, we revise the derivation for the radiation
damping, taking into account the two mentioned corrections.
We also present an alternative derivation by directly integrat-
ing the Lorentz force density. The results obtained from both
approaches are in agreement.

In the following, we explore the scattering problem of a
moving dielectric particle in the Rayleigh regime when it is
illuminated by an incident plane wave in Sec. II. Then, we
investigate the calculation of the force acting on the moving
particle in Sec. III. We introduce two approaches for calcu-
lating the force, and consequently the radiation damping. The
first involves surface integration of the stress tensor and field
momentum in the particle’s rest frame, presented in Sec. III A.
The second method entails directly integrating the force den-
sity, presented in Sec. III B. Finally, the conclusions are made
in Sec. IV.

II. DIPOLE APPROXIMATION FOR A MOVING PARTICLE

Consider a dielectric spherical particle moving with ve-
locity v and being illuminated by a monochromatic linearly
polarized plane wave. The plane wave is assumed to polar-
ized along x direction, and propagating along the z direction.
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Hence, the incident wave in the laboratory frame can be
written as

Ei = Re[E0x̂ei(kz−ωt )], (1a)

Hi = Re

[
E0

η0
ŷei(kz−ωt )

]
, (1b)

where ω is the angular frequency of the incident wave, and
k = ω/c is its wave number. Here, η0 and c denote the
characteristic impedance and the speed of light in vacuum,
respectively.

When v � c, the incident electric field in the rest frame of
the particle can be expressed as [20]

E′
i = Re[E0(x̂ + β × ŷ)eik(z′−β·r′ )e−iω′t ′

], (2)

where r′ = r − vt and t ′ = t − v · r/c2 are the space and
time in that frame, and β = v/c represents the normalized
velocity of the particle. The incident wave in the rest frame
is also a monochromatic plane wave with angular frequency
of ω′ = ω(1 − βz ). In fact, we are dealing with a not moving
spherical particle in the rest frame being illuminated by a
monochromatic field E′

i. When the particle’s radius is much
smaller than the wavelength of the incident wave referred to
as the Rayleigh regime, the particle acts as an electric dipole.
The induced electric dipole is given by

p = Re[pe−iω′t ′
]

= Re[α(ω′)E0(x̂ + β × ŷ)eik(z′
p−β·r′

p)e−iω′t ′
], (3)

where α denotes the polarizability of the particle. For a spher-
ical particle with radius Rp and dielectric constant εp, the
polarizability can be written as

α(ω) = α0

1 − iω3α0/6πε0c3
, (4)

with α0 = 4πε0R3
p(εp − 1)/(εp + 2) being the quasistatic po-

larizability of a sphere [21–24].
In the rest frame, the electromagnetic fields scattered by

the particle can be written as

E′
s = Re[ω′2μ0G0(r′, r′

p; ω′) · pe−iω′t ′
], (5a)

H′
s = Re[−iω′∇ × G0(r′, r′

p; ω′) · pe−iω′t ′
]. (5b)

Here, G0 represents the dyadic Green’s function in the free
space, given by

G0(r′, r′
p; ω′) = eik′R′

4πR′

[(
1 + i

k′R′ − 1

k′2R′2

)
I

+
(

3

k′2R′2 − 3i

k′R′ − 1

)
R′R′

R′2

]
, (6)

with k′ = ω′/c being the wave number of the field in the rest
frame, and R′ = r′ − r′

p [25]. Without loss of generality, we
assume that the particle is located at the origin in the rest
frame, i.e., r′

p = 0. Then, the scattered electromagnetic fields
in the rest frame can be written as

E′
s = Re

⎧⎪⎨
⎪⎩ω′2μ0α(ω′)E0

ei(k′R′−ω′t ′ )

4πR′

⎡
⎢⎣

(1 − βz )(A1 + A2 sin2 θ ′ cos2 φ′) + βxA2 sin θ ′ cos θ ′ cos φ′

(1 − βz )A2 sin2 θ ′ cos φ′ sin φ′ + βxA2 sin θ ′ cos θ ′ sin φ′

βxA1 + (1 − βz )A2 sin θ ′ cos θ ′ cos φ′ + βxA2 cos2 θ ′

⎤
⎥⎦

⎫⎪⎬
⎪⎭, (7a)

H′
s = Re

⎧⎪⎨
⎪⎩

ω′2μ0

η0
α(ω′)E0

ei(k′R′−ω′t ′ )

4πR′

⎡
⎢⎣

βxA3 sin θ ′ sin φ′

(1 − βz )A3 cos θ ′ − βxA3 sin θ ′ cos φ′

−(1 − βz )A3 sin θ ′ sin φ′

⎤
⎥⎦

⎫⎪⎬
⎪⎭. (7b)

Here, (R′, θ ′, φ′) represents the spherical coordinate system in the rest frame of the particle which is considered as

x′ = R′ sin θ ′ cos φ′, (8a)

y′ = R′ sin θ ′ sin φ′, (8b)

z′ = R′ cos θ ′, (8c)

and the coefficients A1, A2, and A3 are defined by

A1 = 1 + i

k′R′ − 1

k′2R′2 , (9a)

A2 = −1 − 3i

k′R′ + 3

k′2R′2 . (9b)

A3 = 1 + i

k′R′ . (9c)

To get the far fields, it suffices to substitute A1, A3 → 1, and A2 → −1.
Now, we can obtain the scattered fields in the laboratory frame from the following transformations [26]:

Es = E′
s − η0β × H′

s, (10a)

Hs = H′
s + 1

η0
β × E′

s. (10b)
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Hence, the scattered fields in the laboratory frame can be written as

Es = Re

{
ω′2μ0α(ω′)E0

ei(k′R′−ω′t ′ )

4πR′ es(θ
′, φ′)

}
, (11a)

Hs = Re

{
ω′2μ0

η0
α(ω′)E0

ei(k′R′−ω′t ′ )

4πR′ hs(θ
′, φ′)

}
, (11b)

where

es(θ
′, φ′) =

⎡
⎢⎣

(1 − βz )(A1 + A2 sin2 θ ′ cos2 φ′) + βxA2 sin θ ′ cos θ ′ cos φ′ + βyA3 sin θ ′ sin φ′ + βzA3 cos θ ′

(1 − βz )A2 sin2 θ ′ cos φ′ sin φ′ + βxA2 sin θ ′ cos θ ′ sin φ′ − βxA3 sin θ ′ sin φ′

βxA1 + (1 − βz )A2 sin θ ′ cos θ ′ cos φ′ + βxA2 cos2 θ ′ − βxA3 cos θ ′

⎤
⎥⎦, (12)

and

hs(θ
′, φ′) =

⎡
⎢⎣

βxA3 sin θ ′ sin φ′ + βyA2 sin θ ′ cos θ ′ cos φ′ − βzA2 sin2 θ ′ cos φ′ sin φ′

(1 − βz )A3 cos θ ′ − βxA3 sin θ ′ cos φ′ + βz(A1 + A2 sin2 θ ′ cos2 φ′) − βxA2 sin θ ′ cos θ ′ cos φ′

−(1 − βz )A3 sin θ ′ sin φ′ + βxA2 sin2 θ ′ cos φ′ sin φ′ − βy(A1 + A2 sin2 θ ′ cos2 φ′)

⎤
⎥⎦. (13)

III. FORCE CALCULATION

According to the Lorentz force law, the electromagnetic
force density exerted on a charge density ρ and a current
density j is given by

f = ρE + j × B, (14)

where ρ and j are the charge and current densities, respec-
tively. We can also express the force density as

f = ∇ · T − ∂g
∂t

, (15)

in which

T = ε0EE + μ0HH − 1
2 (ε0|E|2 + μ0|H|2)I (16)

is the stress tensor, and

g = μ0ε0E × H (17)

is the momentum of the electromagnetic fields. When
v � c, the Lorentz transformation implies ∇ = ∇′ −
(v/c2)∂t and ∂t = ∂t ′ − v · ∇′. Hence, we can also express the
force density as

f = ∇′ · T + (v · ∇′)g − ∂

∂t ′
(

g + v
c2

· T
)
. (18)

To obtain the total force acted on the particle, we should
calculate

∫
fd3r. Since the Jacobian determinant is equivalent

to |J(r, r′)| = 1 + O(v2), the total force can also be calcu-
lated from

∫
fd3r′. Therefore, the total force exerted upon the

particle can be written as

F =
∮

T · ds′ +
∮

g(v · ds′) −
∫

∂

∂t ′

(
g + v

c2
· T

)
d3r′.

(19)
We can also apply a time average to eliminate the high oscil-
lating force terms. The time-averaged force can be obtained
from

〈F〉 =
∮

〈T〉 · ds′ +
∮

〈g〉(v · ds′). (20)

We can calculate the force acted on the moving particle
from two distinct approaches: calculating the surface inte-
gral of the stress tensor and the field momentum, or directly
calculating the volume integral of the force density. In the
following, we investigate these two approaches in detail,
separately.

A. Surface integration of stress tensor and field momentum

The time-averaged force acting on the particle can be de-
termined by calculating the surface integrals of stress tensor
and field momentum according to Eq. (20). As seen in Sec. II,
the total electromagnetic fields can be represented as the com-
bination of incident and scattered fields. Consequently, both
the stress tensor and field momentum can be decomposed into
three parts:

T = Tii + Tss + Tis, (21a)

g = gii + gss + gis. (21b)

Tii and gii are the components of the stress tensor and the
field momentum that solely pertain on the incident fields that
are defined as

Tii = ε0EiEi + μ0HiHi − 1
2 (ε0|Ei|2 + μ0|Hi|2)I, (22a)

gii = μ0ε0Ei × Hi. (22b)

Tss and gss are the ones that only pertain on the scattered
field that are described by

Tss = ε0EsEs + μ0HsHs − 1
2 (ε0|Es|2 + μ0|Hs|2)I, (23a)

gss = μ0ε0Es × Hs. (23b)

Eventually, Tis and gis represent the mutual terms, defined
as

Tis = ε0EiEs + ε0EsEi + μ0HiHs + μ0HsHi

−(ε0Ei · Es + μ0Hi · Hs)I, (24a)

gis = μ0ε0(Ei × Hs + Es × Hi ). (24b)
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We have evaluated the surface integrals of the stress tensor
components in Appendix A. The results are∮

〈Tii〉 · ds′ = 0, (25)∮
〈Tss〉 · ds′ = −ω4μ2

0ε0α
2
0E2

0

60πc
(6vxx̂ + 7vyŷ + 7vzẑ), (26)∮

〈Tis〉 · ds′ = ω4μ2
0ε0α

2
0E2

0

12π

(
1 − 4

vz

c

)
ẑ. (27)

We can also evaluate the field momentum integrals. In Ap-
pendix B we have demonstrated that∮

〈gii〉(ds′ · v) = 0, (28)∮
〈gss〉(ds′ · v) = ω4μ2

0ε0α
2
0E2

0

60πc
(vxx̂ + 2vyŷ + 2vzẑ), (29)∮

〈gis〉(ds′ · v) = −ω4μ2
0ε0α

2
0E2

0

12πc
vzẑ. (30)

Therefore, the time-averaged force exerted upon the particle
is

〈F〉 = Pscat

c
ẑ − Pscat

c2
(vxx̂ + vyŷ + 6vzẑ), (31)

where Pscat = ck4α2
0E2

0 /12πε0 is the power scattered by the
particle. The first term in the above expression represents the
radiation pressure force that acts on the particle along the
propagation direction. The second one represents the radia-
tion damping force experienced by the particle. Hence, the
radiation damping tensor can be defined as

�rad = Pscat

mc2

⎡
⎢⎣

1 0 0

0 1 0

0 0 6

⎤
⎥⎦. (32)

B. Volume integration of the force density

Here, we present another approach for deriving the radi-
ation damping. We calculate the force acting on the moving
particle directly from the volume integration of the force den-
sity. According to the Lorentz force law, the force exerted on
a charge density ρ and the current density j can be obtained
from

F =
∫

ρE + j × Bd3r, (33)

where the volume integral should be taken over the charge
distribution.

In the rest frame, the induced dipole p is not moving and is
located at position r′

p. Thus, the charge and current densities
in that frame can be written as

ρ ′ = −∇′ · [pδ(r′ − r′
p)], (34a)

j′ = ∂p
∂t ′ δ(r′ − r′

p). (34b)

Then, we can obtain the charge and current densities in
the laboratory frame from ρ = ρ ′ + v

c2 · j′ and j = j′ + ρ ′v,
respectively. Hence, we can express ρ and j as a function of

laboratory-frame variables as

ρ = −∇ · pδ[r − rp(t )] − p · ∇δ[r − rp(t )], (35a)

j =
[
∂p
∂t

+ (v · ∇)p − v∇ · p
]
δ[r − rp(t )]

−v(p · ∇δ[r − rp(t )]). (35b)

Upon substituting ρ and j from Eqs. (35a) and (35b) into
the force expression and computing the volume integral, one
obtains

F =
[

(p · ∇)E + ∂p
∂t

× B

− B × (v · ∇)p + v × (p · ∇)B
]

r=rp(t )

. (36)

We can also express the force as a function of the rest frame
variables,

F =
[

(p · ∇′)E′ + ∂p
∂t ′ × B′

+∂p
∂t ′ ×

(
v
c2

× E′
)

−
(

p · v

c2

)
∂E′

∂t ′

]
r′=r′

p

, (37)

in which E′ = E + v × B and B′ = B − (v/c2) × E represent
the electric and magnetic fields in the rest frame, respectively.

As discussed in Sec. II, the electromagnetic fields in the
particle’s rest frame are monochromatic with angular fre-
quency ω′. Hence, we can represent the fields as

E′ = Re[E′e−iω(1−βz )t ′
], (38a)

B′ = Re[B′e−iω(1−βz )t ′
], (38b)

with E′ and B′ being the complex amplitude of the elec-
tric and magnetic fields, respectively. Upon substituting these
expressions in Eq. (37), it can be easily shown that the time-
averaged force acting on the particle can be written as

〈F〉 = 1
2 Re

[
p∗

k
∇′E ′

k + iω(1 − βz )(p∗ · E′)
v
c2

]
r′=r′

p

. (39)

When calculating the force, it is important to account for the
total electric field. We can decompose the electric field that
needs to be incorporated into the force expression into two
parts:

E′ = E′
inc + E′

rad. (40)

The first term is the incident electric field, given by

E′
inc = E0(x̂ + β × ŷ)eik(z′−β·r′ ). (41)

The second term is referred to as the radiation field, defined as

E′
rad = ω2μ0 Im[G0(r′, r′

p)] · p. (42)

It should be noted that the remaining part of the scattered
field that is proportional to the real part of G0 is singular at
the particle’s position, and should not be considered when
calculating the force.

Now, we can decompose 〈F〉 into two parts:

〈F〉 = 〈Finc〉 + 〈Frad〉. (43)
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The first term represents the force that E′
inc applies to the

induced dipole, given by

〈Finc〉 = kE2
0

2
(1 − 2βz )Im[α]ẑ − ωkE2

0

2
βzIm

[
∂α

∂ω

]
ẑ. (44)

Upon using Eq. (4), it can be easily shown that 〈Finc〉 can be
simplified to

〈Finc〉 = Pscat

c

(
ẑ − 5

vz

c
ẑ
)

. (45)

The second force term represented by 〈Frad〉 is the force that
E′

rad applies to the induced dipole. By employing the follow-
ing relations that can be easily demonstrated from the Taylor
expansion of G0,

Im[G0(r′
p, r′

p)] = ω

6πc
I, (46a)

Im[∇G0(r′
p, r′

p)] = 0, (46b)

we can find that

〈Frad〉 = −Pscat

c2
v. (47)

Therefore, the total time-averaged force acting on the particle
is

〈F〉 = Pscat

c
ẑ − Pscat

c2
(vxx̂ + vyŷ + 6vzẑ). (48)

This result matches the one obtained in Sec. III A through the
integration of the stress tensor and field momentum.

The particle moving initially at a constant velocity v0 will
exponentially slow down with the rate of the radiation damp-
ing if there is no counteracting heating mechanism. However,
the radiation pressure shot noise will cause such a heating
mechanism and the particle will equilibrate at a finite speed.

IV. CONCLUSIONS

In summary, we have derived the radiation damping expe-
rienced by a moving dielectric particle exposed to an incident
plane wave using two distinct approaches: One involves the
surface integration of the stress tensor and field momentum,
and the other involves the integration of the force density,
directly. Our analysis has shown that the damping coefficient

along the propagation direction is 6Pscat/mc2, while it equates
to Pscat/mc2 in perpendicular directions. We note that radia-
tion damping is a necessary ingredient for the existence of a
steady state solution of the particle’s dynamics. While zero-
point field fluctuations heat the particle’s motion via radiation
pressure shot noise, radiation damping cools the motion and
gives rise to a steady-state solution in which heating and cool-
ing are balanced. Such an equilibrium is the prerequisite for
Einstein’s famous fluctuation formula and the particle nature
of radiation [27].

APPENDIX A: DERIVATION OF STRESS
TENSOR INTEGRALS

Here, we provide a detailed derivation of stress tensor inte-
grals. As previously discussed in Sec. III, the stress tensor is
decomposed into three components. One of these components
is Tii that represents the stress tensor of the incident wave,

as defined in Eq. (22a). Substituting the incident fields from
Eq. (1) results in∮

〈Tii〉 · ds′ =
∮

1

2
Re

{
ε0E2

0

[
(e∗

i · R̂′)ei + (h∗
i · R̂′)hi

−1

2
(ei · e∗

i + hi · h∗
i )R̂′

]}
ds′. (A1)

Here, ei = (1, 0, 0) and hi = (0, 1, 0) represent the direction
of the incident electric and magnetic fields, respectively, and
R̂′ = (sin θ ′ cos φ′, sin θ ′ sin φ′, cos θ ′). After evaluating the
integration over the polar angle, i.e., φ′, we obtain

∮
〈Tii〉 · ds′ = πε0E2

0

∫ π

0

⎡
⎣ 0

0
− cos θ ′

⎤
⎦R′2 sin θ ′dθ ′. (A2)

It can be easily shown that the above integral vanishes.
Consequently, ∮

〈Tii〉 · ds′ = 0. (A3)

Now, we aim to calculate the surface integral of 〈Tss〉. As
defined in Eq. (23a), Tss is the component of the stress tensor
associated solely with the scattered fields. Substituting the
incident fields from Eq. (11) yields

∮
〈Tss〉 · ds′ =

∮
1

2
Re

{
ω′4μ2

0ε0α
2
0E2

0

16π2R′2

[
(e∗

s · R̂′)es + (h∗
s · R̂′)hs − 1

2
(es · e∗

s + hs · h∗
s )R̂′

]}
ds′. (A4)

We can use the far-field values when calculating the above expression. After evaluating the integration over the polar angle, i.e.,
φ′, it becomes

∮
〈Tss〉 · ds′ = ω′4μ2

0ε0α
2
0E2

0

32π

∫ π

0

⎡
⎢⎣

βx
(− 5

4 + 2 cos θ ′ − 3
2 cos2 θ ′ − 2 cos3 θ ′ + 3

4 cos4 θ ′)
βy

(− 7
4 − 1

2 cos2 θ ′ + 1
4 cos4 θ ′)

− cos θ ′ − cos3 θ ′ + βz
(−1 + 2 cos θ ′ − 2 cos2 θ ′ + 2 cos3 θ ′ − cos4 θ ′)

⎤
⎥⎦ sin θ ′dθ ′. (A5)

If we evaluate the integral above and retain terms up to first order in β, one obtains

∮
〈Tss〉 · ds′ = −ω4μ2

0ε0α
2
0E2

0

60πc
(6vxx̂ + 7vyŷ + 7vzẑ). (A6)
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Eventually, we want to calculate the surface integral of the mutual component of the stress tensor, as defined in Eq. (27).
Upon substituting the incident and scattered fields from Eqs. (1) and (11), respectively, we obtain∮

〈Tis〉 · ds′ =
∮

1

2
Re

{
ω′2μ0ε0α(ω′)E2

0
ei(k′R′−ω′t ′−kz+ωt )

4πR′ [(e∗
i · R̂′)es + (es · R̂′)e∗

i + (h∗
i · R̂′)hs + (hs · R̂′)h∗

i

−(e∗
i · es + h∗

i · hs)R̂′]

}
ds′. (A7)

If we retain terms up to first order in β and compute the integral over φ′, the expression becomes

∮
〈Tis〉 · ds′ = Re

⎡
⎢⎣k′α(ω′)E2

0

8
lim

k′R′→0

⎧⎪⎨
⎪⎩k′R′

∫ π

0
eik′R′(1−cos θ ′ )

⎡
⎢⎣

Cx
0 + Cx

1 cos θ ′ + Cx
2 cos2 θ ′ + Cx

3 cos3 θ ′

Cy
0 + Cy

1 cos θ ′ + Cy
2 cos2 θ ′

Cz
0 + Cz

1 cos θ ′ + Cz
2 cos2 θ ′ + Cz

3 cos3 θ ′

⎤
⎥⎦ sin θ ′dθ ′

⎫⎪⎬
⎪⎭

⎤
⎥⎦. (A8)

The coefficients appearing in the x component of the above
expression are defined as

Cx
0 = βx[A3 + ik′R′(A1 + A2)], (A9a)

Cx
1 = βx(2A1 + 3A2 − ik′R′A3), (A9b)

Cx
2 = βx[−3A3 − ik′R′(A1 + A2)], (A9c)

Cx
3 = βx(−A2 + ik′R′A3). (A9d)

The ones appeared in the y component are given by

Cy
0 = βy(−A3 − ik′R′A1), (A10a)

Cy
1 = −2βyA1, (A10b)

Cy
2 = βx(A3 + ik′R′A1), (A10c)

and eventually the ones in the z component are

Cz
0 = −(1 − βz )A3, (A11a)

Cz
1 = −2A1 − βzA2, (A11b)

Cz
2 = −(1 + βz )A3, (A11c)

Cz
3 = βzA2. (A11d)

Upon performing the integral and taking the limit, the
resultant expression is∮

〈Tis〉 · ds′ = ω4μ2
0ε0α

2
0E2

0

12π

(
1 − 4

vz

c

)
ẑ. (A12)

APPENDIX B: DERIVATION OF FIELD
MOMENTUM INTEGRALS

Here, we provide a detailed derivation of the field mo-
mentum integrals that appeared in Eq. (20). As discussed

previously, the field momentum can be decomposed into there
components: gii, gss, and gis. According to the definition of gii

given in Eq. (22b), and upon substituting the incident fields
from Eq. (1), one obtains∮

〈gii〉(ds′ · v) =
∮

1

2
Re

[
ε0μ0E2

0

η0
êi × ĥ∗

i

]
(ds′ · v), (B1)

which can be expressed as∮
〈gii〉(ds′ · v)

= Re

⎧⎨
⎩

∫ π

0

∫ 2π

0

ε0E2
0

2

⎡
⎣0

0
1

⎤
⎦(βx sin θ ′ cos φ′

+βy sin θ ′ sin φ′ + βz cos θ ′)R′2 sin θ ′dθ ′dφ′

⎫⎬
⎭. (B2)

Upon computing the above integral, we can easily demon-
strate that ∮

〈gii〉(ds′ · v) = 0. (B3)

Now, we aim to calculate the 〈gss〉 integral. According to
the definition of gss given in Eq. (23b), and substituting the
scattered fields from Eq. (11), we obtain∮

〈gss〉(ds′ · v) =
∮

1

2
Re

{
ω′4μ2

0ε0α
2
0E2

0

16π2R′2 ês × ĥ∗
s

}
(ds′ · v),

(B4)
that can be further expanded into

∮
〈gss〉(ds′ · v) = 1

2
Re

⎧⎨
⎩

∫ π

0

∫ 2π

0

ω4μ2
0ε0α

2
0E2

0

16π2R′2

⎡
⎣sin θ ′ cos2 θ ′ cos φ′ + sin3 θ ′ sin2 φ′ cos φ′

sin θ ′ sin φ′ − sin3 θ ′ sin φ′ cos2 φ′

cos θ ′ − sin2 θ ′ cos θ ′ cos2 φ′

⎤
⎦

×(βx sin θ ′ cos φ′ + βy sin θ ′ sin φ′ + βz cos θ ′)R′2 sin θ ′dθ ′dφ′

⎫⎬
⎭. (B5)

If we evaluate the integral above and retain terms up to first order in β, one obtains∮
〈gss〉(ds′ · v) = ω4μ2

0ε0α
2
0E2

0

60πc
(vxx̂ + 2vyŷ + 2vzẑ). (B6)
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Eventually, we aim to calculate the mutual term. According the definition of gis given in Eq. (24b), it can be easily shown that∮
〈gis〉(ds′ · v) =

∮
1

2
Re

{
ω′2μ0ε0α(ω′)E2

0
ei(k′R′−ω′t ′−kz+ωt )

4πR′ [êi × ĥ∗
s + ês × ĥ∗

i ]

}
(ds′ · v). (B7)

Since we want to calculate the above expression up to first-order terms in β, we can retain êi × ĥ∗
s + ês × ĥ∗

i up to zero order in
beta. Then, the above expression can be written as

∮
〈gis〉(ds′ · v) = Re

⎡
⎣k′α(ω′)E2

0

8π
lim

k′R′→0

⎧⎨
⎩k′R′

∫ π

0

∫ 2π

0
eik′R′(1−cos θ ′ )

⎡
⎣ A2 sin θ ′ cos θ ′ cos φ′

A3 sin θ ′ sin φ′

A3 cos θ ′ − A1 − A2 sin2 θ ′ cos2 φ′

⎤
⎦

×(βx sin θ ′ cos φ′ + βy sin θ ′ sin φ′ + βz cos θ ′) sin θ ′dθ ′

⎫⎬
⎭

⎤
⎦. (B8)

Upon evaluating the above expression and retaining terms up to first order in β, one obtains∮
〈gis〉(ds′ · v) = −ω4μ2

0ε0α
2
0E2

0

12πc
vzẑ. (B9)
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