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Cauchy-Riemann beams
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Leveraging operator techniques, we address the paraxial wave equation governing a field formed by the
multiplication of a Gaussian function and an entire function; notably, the latter adheres to the Laplace equa-
tion, ∇2

⊥ f (x + iy) = 0, a direct consequence of satisfying the Cauchy-Riemann equations. Our theoretical and
experimental exploration brings to light the intrinsic rotation of this field during propagation, elucidated by the
incorporation of the quantum (Bohm) potential. This straightforward result holds promise, enabling the analytical
deduction of the Fraunhofer or Fresnel diffraction pattern. Essentially, it simplifies the extraction of the Fresnel
or Fourier transform from a function satisfying the Cauchy-Riemann equations.
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I. INTRODUCTION

Over the past five decades, the scientific community has
seen the emergence of numerous solutions to the paraxial
equation, which are crucial in the study of wave propa-
gation. These solutions have explored various coordinate
systems, ranging from specific field forms to more general
ones. While examples of these solutions can be found in
a wide range of references [1–16], they by no means con-
stitute an exhaustive account of the field. Two distinctive
approaches are presented in Refs. [17,18]. In the former,
a method is presented for calculating trajectories of opti-
cal vortices of Gaussian beams in terms of paraxial modes.
Meanwhile, in the latter, the approach involves breaking
down the paraxial equation into a system of two equations.
The field’s magnitude and phase are considered as sepa-
rate entities and a structurally stable ansatz is proposed for
the field intensity. The resulting solution encompasses func-
tions wherein the complex amplitude can be represented
by a complex entire function multiplied by a Gaussian
distribution.

In this paper, we introduce an approach aimed at de-
riving closed-form solutions to the paraxial equation. Our
approach builds upon the well-established fact that entire
functions are solutions to the Laplace equation. The solutions
we present are equivalent to those presented by Abramochkin
et al. [18], where complex amplitudes of fields were initially
represented by entire functions multiplied by a real Gaus-
sian function at z = 0. Leveraging concepts from quantum
optics operators, we formulate closed-form expressions that
precisely describe the propagation of these fields. One in-
triguing characteristic of these beams is their innate ability to
undergo self-transformation during a Fourier transform opera-
tion, provided an axis rotation is allowed, i.e., the function that
describes the field at the plane z = 0 and its Fourier transform
are scaled and rotated versions of each other. To shed light
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on this phenomenon, we propose a fresh interpretation of the
field’s rotation based on the quantum Bohm potential. Our
innovative approach not only contributes to a deeper under-
standing of these wave fields but also extends their practical
applications. By providing a new perspective on their behavior
and properties, our research aims to enhance comprehension
and open up new avenues for utilizing these wave phenomena
across various fields.

It is well known that an analytic function f (x + iy) satisfies
the Cauchy-Riemann equations and, in turn, is a solution
of the Laplace equation, i.e., ∇2

⊥ f (x + iy) = 0, with ∇2
⊥ =

∂2

∂2
x

+ ∂2

∂2
y

denoting the transverse component of the Laplacian

[19–21]. Undoubtedly, when the function f exhibits multi-
valued behavior within specific regions or at certain points
in the complex plane, it remains eligible for classification as
an analytic function, subject to specific limitations. In light
of these considerations, and in the context of optical scalar
fields, we have chosen to designate such fields as Cauchy-
Riemann beams (CRBs). These beams denote functions that
are differentiable within a certain region, potentially spanning
the entire complex plane, and satisfying the Cauchy-Riemann
equations. It is worth noting that Abramochkin et al. (among
others, e.g., Kotlyar et al. [22]) had already observed indi-
cations of these fields, initially labeling them as spiral-type
beams [18,23].

We organize our work as follows: Section II delves into
the theoretical foundations of Cauchy-Riemann beams, dis-
cussing the paraxial equation and the concept of square
integrability associated with the Cauchy-Riemann equations.
These discussions encompass the analytical properties and
experimental evidence linked to Cauchy-Riemann beams.
Moreover, this section examines the Fraunhofer and Fresnel
diffraction phenomena exhibited by Cauchy-Riemann beams.
In Sec. III, we introduce the quantum Bohm potential and its
mathematical formulation to explain the rotation of Cauchy-
Riemann beams. Finally, Sec. IV presents the concluding
remarks of the research, summarizing the key findings and
their implications.
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II. CAUCHY-RIEMANN BEAMS

Let f (x + iy) be a solution to the Laplace equation; thus,
this function is a solution to the paraxial equation

∇2
⊥E (x, y, z) + 2ik

∂E (x, y, z)

∂z
= 0, (1)

where k = 2π
λ

is the wave number.
Certainly, similar to Bessel beams [1], these solutions

are not physically realizable because they are not square
integrable. In light of this, drawing inspiration from Bessel-
Gauss beams [2], we seek a generalized version that
incorporates a Gaussian factor to render the field square in-
tegrable. It is essential to emphasize that not all analytic
functions, when multiplied by such Gaussian factors, be-
come square integrable. To achieve this goal, we write the
paraxial equation as a Schrödinger-like equation, ∂E (x,y,z)

∂z =
i

2k ∇2
⊥E (x, y, z), whose formal solution can be written as

E (x, y, z) = exp(i z
2k ∇2

⊥)E (x, y, 0), being E (x, y, 0) the ini-
tial field at z = 0. In the subsequent analysis, we adopt
an approach involving operators less commonly employed
in physical optics [21,24]. This approach, however, proves
advantageous in obtaining solutions to the paraxial equa-
tion when an initial condition is provided. As a result, in
Cartesian coordinates, the field at location z is calculated as

E (x, y, z) = exp

[
− i

2k
z
(
p̂2

x + p̂2
y

)]
E (x, y, 0), (2)

where we have introduced the operators p̂x = −i ∂
∂x and

p̂y = −i ∂
∂y , which obey the following commutation rela-

tions: [x, p̂x] = [y, p̂y] = i and [x, y] = [x, p̂y] = [y, p̂x] =
[ p̂x, p̂y] = 0. Now, we write the initial condition as
E (x, y, 0) = exp[−g(x2 + y2)] f (x + iy), with g taking val-
ues in the complex number domain (g ∈ C). By substituting
this initial condition into Eq. (2), we obtain E (x, y, z) =
exp[− i

2k z( p̂2
x + p̂2

y )] exp[−g(x2 + y2)] f (x + iy). As a subse-
quent step, we introduce the identity operator Î , expressed
as Î = e

i
2k z( p̂2

x+p̂2
y )e− i

2k z( p̂2
x+p̂2

y ). Therefore, the equation that de-
scribes the field E (x, y, z), incorporating this identity operator,
is given as follows,

E (x, y, z) = exp

[
− i

2k
z
(
p̂2

x + p̂2
y

)]
exp[−g(x2 + y2)]

× exp

[
i

2k
z
(
p̂2

x + p̂2
y

)]

× exp

[
− i

2k
z
(
p̂2

x + p̂2
y

)]
f (x + iy). (3)

The previous equation has two fundamental ingredients. The
first one is that the set of operators p̂2

q, q2, and qp̂q + p̂qq (with
q = x, y) is closed under commutation. Consequently, by us-
ing the Hadamard lemma [25,26], it is possible to demonstrate
that e−i Z

2 p̂2
q e−gq2

ei Z
2 p̂2

q = e−g[q2−Z (qp̂q+p̂qq)+Z2 p̂2
q], with q = x, y,

where we rescaled the propagation distance to Z = z/k. The
second, and more significant, aspect (which serves as the
inspiration for the work’s title), is that an analytic function
f (x + iy) satisfies the Cauchy-Riemann equations, and acts
as an eigenfunction of the transverse Laplacian operator, with

an eigenvalue equal to zero. Therefore, from Eq. (3), it follows
that

E (x, y, z) = e−g[x2−Z (x p̂x+p̂xx)+Z2 p̂2
x]

× e−g[y2−Z (yp̂y+p̂yy)+Z2 p̂2
y] f (x + iy). (4)

The commutation-closed characteristic of the operator set
permits the factorization of the exponential operator in the
aforementioned equation [27],

e−g[q2−Z (qp̂q+p̂qq)+Z2 p̂2
q] = eα(z)q2

eβ(z)(qp̂q+p̂qq)eγ (z)p̂2
q , (5)

where α(z) = −g
w(z) , β(z) = −π

4 − i
2 ln[iw(z)], and

γ (z) = − gZ2

w(z) , with w(z) = 2igZ + 1, for q = x, y
respectively. Therefore, as a direct consequence of
eγ (z)( p̂2

x+p̂2
y ) f (x + iy) = f (x + iy), by substituting Eq. (5)

into Eq. (4), we can represent the solution as E (x, y, z) =
eα(z)(x2+y2 )eβ(z)(x p̂x+p̂xx+yp̂y+p̂yy) f (x + iy). Finally, the last
exponential in the above equation is the well-known squeeze
operator that may be applied to the analytic function to give

E (x, y, z) =
exp

[ − g(x2+y2 )
w(z)

]
w(z)

f

(
x + iy

w(z)

)
. (6)

The preceding result provides a comprehensive understanding
of the propagation of fields that satisfy the Cauchy-Riemann
equations, which are modulated at z = 0 by either a Gaussian
function, a quadratic-phase function, or both. This representa-
tion proves to be versatile and generic, rendering it suitable
for a wide array of scenarios in which these equations are
applicable. As illustrative examples, we consider the en-
tire functions f1(x + iy) = cos[ 2π

T (x + iy)] and f2(x + iy) =
J1[ 2π

T (x + iy)], where J1(ζ ) is the Bessel function with n = 1.
Figure 1 shows both the numerical and the experimental in-
tensity distribution of the fields given by Eq. (6), on the planes
z = 0.0 m and z = 0.5 m, with the parameters T = 0.0008 m,
the x and y coordinates ranging from −0.2 to 0.2 cm, and the
constant g = 1.25 × 107 m−2.

A. Experimental setup

For the generation of experimental fields, we utilize a
synthetic phase hologram capable of encoding any complex
field s(x, y) = a(x, y) exp[iφ(x, y)], where a(x, y) and φ(x, y)
represent the amplitude and phase modulation, respectively.
The synthetic phase hologram is given by [28]

h(x, y) = exp{if[a(x, y)] sin[φ(x, y)]}. (7)

For instance, the function f [a(x, y)] can be evaluated through
the relationship J1 f [a(x, y)] = Aa(x, y). The maximum value
of A that satisfies Eq. (7) is A = 0.5819, corresponding to the
peak value of the first-order Bessel function J1(α), which, in
turn, occurs at α = 1.84. By using a 4 f -optical system, shown
in Fig. 2, we displayed the corresponding synthetic phase
hologram on a phase-only spatial light modulator (PLUTO,
Holoeye GmbH), which is impinged by a collimated He-Ne
laser (λ = 633 nm), to generate the different reported fields.
The field intensities at z = 0.5 m, depicted in Figs. 1(c) and
1(g), demonstrate a rotational difference concerning the field
intensities shown in Figs. 1(a) and 1(e) at z = 0.0 m.
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FIG. 1. Intensity distribution of the field with f (x + iy) =
cos[ 2π

T (x + iy)] at z = 0.0 m, (a) theoretical, and (b) experimental;
in (c) and (d) we present the same situation, but with the prop-
agation distance z = 0.5 m. (e) and (f) depict the theoretical and
experimental results, respectively, when f (x + iy) = J1[ 2π

T (x + iy)]
at z = 0.0 m; and at z = 0.5 m we have (g) and (h). The parameters
are g = 1.25 × 107 m−2, T = 0.0008 m, and λ = 633 nm, all within
a viewing window in millimeters.

B. Fresnel diffraction

To examine in greater detail the field distribution and its
characteristics when the parameter g takes complex values,
i.e., g = gR + igI (with gR > 0, gI � 0), the quadratic phase
term associated to gI can be regarded as a thin lens with a
focal length of 1/2gI . In this sense, the field at Z = 1/2gI is
determined according to Eq. (6) as follows:

E

(
x, y,

1

2gI

)
= − igI

gR
exp

[
− g2

I

gR
(x2 + y2)

]

× exp
[
igI

(
x2 + y2

)]
f

[
− igI

gR
(x + iy)

]
. (8)

FIG. 2. The experimental setup employed for synthesizing a de-
sired optical field involves a linearly polarized He-Ne laser (λ =
633 nm) directed onto a spatial light modulator (SLM). The SLM
exhibits the required synthetic phase hologram. By utilizing a 4 f -
optical system and a binary spatial filter (SF), we can selectively
isolate one of the diffracted orders from the synthetic phase holo-
gram. The chosen order carries the desired complex field spatial
distribution, allowing for a precise synthesis of the desired optical
field after an optical Fourier transform operation.

Comparing the above equation with the field predicted by the
Fresnel integral of diffraction, one can deduce that the field
given by Eq. (6) at the plane Z = 0, with gR taking a real
positive value, is a self-transforming field under the Fourier
transform operator. In general, the field at Z = 1/(2gI ) is a
scaled version of the field at Z = 0 (without the thin lens
factor) and undergoes an axis rotation of −π/2 rad. An in-
teresting example arises when gI = gR. In this case, the field
at Z = 1/(2gI ) is a replica of the field at Z = 0 (without the
quadratic phase term) with an axis rotation of −π/2 rad. Next,
we analyze the field properties in the far-field region.

C. Fraunhofer diffraction

Continuing along the same line of thought, when the condi-
tion 2Z|gR + igR| � 1 is met, indicating far-field diffraction,
and replacing Z = λz/2π , after some algebraic manipula-
tions, Eq. (6) can be reformulated as follows,

E (x, y, z) = − iπ

λzg∗ exp

[
iπ (x2 + y2)

λz
− π2

g∗
(x2 + y2)

λ2z2

]

× f

[
π

λz

(
− ix

g∗ + y

g

)]
, (9)

where the symbol ∗ denotes the complex conjugate. Therefore,
comparing the above equation with the field given by the
Fraunhofer integral of diffraction, one can conclude that the
Fourier transform of the field described by Eq. (6) at the plane
Z = 0 is given by

F{e−g(x2+y2 ) f (x + iy)} = π

g∗ exp

[
−π2

g∗
(
v2

x + v2
y

)]

× f

[
π

(
− ivx

g∗ + vy

g

)]
, (10)

where vx and vy are the spatial frequencies in Cartesian coor-
dinates. Aside from the axis rotation of the entire function, it
is remarkable that this family of functions is self-transforming
under the Fourier transform operator.

Finally, we note that the total axis rotation the field un-
dergoes as it propagates across the whole z axis is −π rad.
However, the axis rotation as the field propagates from z = 0

043528-3



H. M. MOYA-CESSA et al. PHYSICAL REVIEW A 109, 043528 (2024)

up to the far-field region is −π/2 rad, for gI = 0, and tends to
−π rad when gI is much larger than gR. For the case of neg-
ative gI , the field rotates less than −π/2 rad as it propagates
from z = 0 to the far-field zone. In general, the rate of rotation
of the axis is not linear with z, being zero in the far field.

III. BOHM FORMALISM

It is well known that Airy waves bend while they propa-
gate [29–32]. Furthermore, their Bohm trajectories [33] may
be demonstrated in hydrodynamic systems [34], where the
quantum potential is linear. The rotation suffered by the
Cauchy-Riemann beams during propagation may also be at-
tributed to the so-called quantum potential. In the Bohm
formalism, we have that by writing

E (x, y, z) = A(x, y, z) exp[iS(x, y, z)], (11)

the differential equations that obey the amplitude and the
phase are 1

2 S2
x + 1

2 S2
y + VB + St = 0, where, as we are dealing

with free-space propagation, we have omitted the standard
potential, and

∂A

∂z
+ Sx

∂A

∂x
+ Sy

∂A

∂y
+ 1

2
(SxxA + SyyA) = 0, (12)

where the subindices represent partial derivatives, and the
dependence on x, y, z has been omitted. The quantum or Bohm
potential is

VB(x, y, z) = −1

2

∇2
⊥A(x, y, z)

A(x, y, z)
. (13)

The Bohm potential for the Cauchy-Riemann beams, Eq. (6),
is given by

Q(x, y, z) = 2g

w(z)
− 2g2(x2 + y2)

w(z)2
+ 2g(x + iy)

w(z)2

f ′( x+iy
w(z)

)
f
( x+iy

w(z)

) ,

(14)

where the prime denotes derivative with respect to the argu-
ment.

For the functions used in Fig. 1, namely cosine and Bessel
functions, the quantum potential exists and produces the ef-
fect of rotating the field, but its expressions are complex.
A function of the form f (x + iy) = exp[η(x + iy)2], besides
delivering a simple quantum potential, that produces the same
rotating effect as seen in Fig. 3 theoretically and experimen-
tally, is a good example to show that not any entire function
has square-integrable properties, as for |η| � |g| the field has
infinite energy. The propagated field in this case is given by

E (x, y, z) = e−g x2+y2

R(z) e−i�G

R(z)
eη

(x+iy)2

R2 (z)
e−2i�G

e−i�G , (15)

where �G = arctan(2gZ ) is the so-called Gouy phase, which
may explained with the help of the quantum Bohm potential
[35] and R(z) = |w(z)|. From the above equation, we get

A(x, y, z) =
exp

[ − g(x2+y2 ) cos �G

R(z)

]
R

×exp

[
η[(x2 − y2) cos(2�G) + 2xy sin(2�G)]

R2(z)

]
,

(16)

FIG. 3. The left column represents the intensity of the field for
f (x + iy) = exp[η(x + iy)2], while the right column shows the ex-
perimental results. The parameters used in the experimental setup
are as follows: T = 8 × 10−4 m, g = 12

T 2 (1 + i), and η = 2
3 g. (a) and

(b) depict the intensity distribution at z = 0.0 m, and (c) and (d) dis-
play the intensity at z = 0.45 m using Eq. (6).

and

S(x, y, z) = − �G + g(x2 + y2) sin �G

R(z)

+ η[2xy cos(2�G) − (x2 − y2) sin(2�G)]

R2(z)
,

(17)

FIG. 4. The Bohm potential VB(x, y) for the Cauchy-Riemann
field given in (18) at distances z from 0.0 to 1.5 × 10−7 in increments
of 0.5 × 10−7: (a) z = 0.0, (b) z = 0.5 × 10−7, (c) z = 1.0 × 10−7,
and (d) z = 1.5 × 10−7. The independent variables, x and y, vary
from −2.0 × 10−4 to 2.0 × 10−4, and the range of the Bohm po-
tential is scaled in each of the figures. The values of the parameters
are g = 1.25 × 107 and η = 1.0 × 107. The colors, being scaled, are
solely to emphasize the “rotation” of the Bohm’s potential.
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from where we readily may find the quantum potential

VB = − 2(x2 + y2)

(
η2

R4
+ g2

R2
cos2 �G

)
+ 2g

R
cos �G

+ 4gη

R3
cos �G[cos(2�G)(x2 − y2) + 2xy sin(2�G)],

(18)

where we have omitted the dependence on z of the function
R(z). The Bohm potential, responsible for the rotation of the
beams, is plotted in Fig. 4 for several propagation distances.
Since we are considering propagation in free space, there is no
potential (index of refraction) that may affect the electromag-
netic field. Therefore, the rotation is produced by the quantum
potential, that in the case of Eq. (18) resembles a gradient-
index (GRIN) medium [36,37] which depends quadratically
on the positions x and y and changes with the propagation
distance.

IV. CONCLUSIONS

We have demonstrated a solution to the paraxial equa-
tion using an unconventional approach in the field of paraxial
optics, specifically by employing the operator technique from

quantum mechanics, and more precisely, quantum optics;
this approach is grounded in the fact that ∇2

⊥ f (x + iy) = 0.
Consequently, it follows that f (x + iy) serves as an eigen-
function of the Laplacian operator in two dimensions with
an eigenvalue zero, an attribute stemming from f (x + iy)
satisfying the Cauchy-Riemann equations. In addition, we
have explored specific cases of the general result provided
by Eq. (6), which holds significant interest in the field of
diffractive optics. It allows for the straightforward determi-
nation of Fresnel and Fraunhofer diffraction for a wide range
of initial conditions when considering g in the complex num-
ber domain. It is worth noting that experimental evidence
supports the observation that this solution exhibits rotation.
Furthermore, we have developed the Bohm quantum potential
to elucidate the reason behind the observed rotation in these
solutions.

Such Cauchy-Riemann beams could be helpful in optical
trapping systems [38]. Elucidation of their rotational behavior
and unique phase structures can contribute significantly to
greater precision in the manipulation of microscopic particles
within such arrangements. This task is particularly relevant
in the context of optical traps, because the paraxial equa-
tion characterizes the behavior of light near the optical axis
of a thin lens.
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