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Chirality-induced emergent spin-orbit coupling in topological atomic lattices
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Spin-orbit coupling is of fundamental interest in both quantum optical and condensed matter systems alike. In
this work, we show that optically induced electronic excitations in lattices of V-type atoms exhibit an emergent
spin-orbit coupling when the geometry is chiral. This spin-orbit coupling arises naturally from the electric dipole
interaction between the atomic sites and leads to a nontrivial topology for the lattice band structure. Using a
general quantum optical model, we determine analytically the conditions that give rise to spin-orbit coupling
and characterize the behavior under various symmetry transformations. We demonstrate that chirality-induced
spin-orbit coupling can result from either the chirality of the underlying lattice geometry or the combination
of an achiral lattice with a suitably chosen external quantization axis. We then discuss how these results are
influenced by dissipation, which breaks time-reversal symmetry and illuminates the distinction between true
and false chirality. Our results demonstrate that chiral atom arrays are a robust platform for realizing spin-orbit-
coupled topological states of matter.
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I. INTRODUCTION

The spin-orbit (SO) interaction refers to the coupling of a
particle’s intrinsic angular momentum to its motional degrees
of freedom. For electrons in condensed matter systems, SO
coupling can result in spin-momentum locking and nontriv-
ial topological properties, resulting in new phases of matter
including topological insulators [1,2]. Spin-orbit coupling
is also relevant to the study of electron transport in chiral
molecules, which have emerged as a promising new platform
for spintronics devices [3,4]. In particular, such phenomena
are of considerable interest in the development of spin tran-
sistors, spin diodes, and other related technologies [5–8].

Angular momentum in photonic and quantum optical sys-
tems can also lead to phenomena analogous to conventional
SO coupling. In these systems, the role of the electron spin
is played by either the orthogonal polarizations of circularly
polarized light or the internal angular momentum states of
microresonators or atoms. Recently, various platforms have
demonstrated the SO coupling of photons [9–12], as well as
photonic analogs of the quantum spin Hall effect [13]. In cold
atoms, time-reversal pairs of internal hyperfine states can act
as pseudospin-1/2 systems that resemble electronic spin de-
grees of freedom [14]. Coupling these states to coherent laser
fields can produce synthetic SO potentials in ultracold Fermi
gases [15–17] and Bose-Einstein condensates [18]. In addition
to ultracold gases comprised of moving atoms, the hyperfine
levels of atoms or atomlike emitters arranged in ordered lat-
tices can also be mapped onto pseudospin-1/2 states [19].
Such atomic arrays support the transport of optically induced
electronic excitations in a manner analogous to electrons in
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traditional crystal lattices [20–22], thus providing an orbital
degree of freedom. The effective SO coupling produced in
these systems can be leveraged as quantum simulation plat-
forms to study SO dynamics in a highly tunable environment.

In this work, we demonstrate that the pseudospin-1/2 ex-
citations of arrays of dipole-coupled atoms with a V-type
level structure experience an effective SO coupling when the
geometry is chiral. Our findings are distinct from those of
previous works in that here the SO coupling results from the
geometrical dependence of the dipole-dipole interaction and
emerges naturally from the chirality of the system. We show
that the associated photonic band structures of such arrays
exhibit a finite spin texture and a topologically nontrivial Zak
phase. Through a general symmetry analysis, we determine
the analytical conditions that give rise to SO coupling in these
arrays and explain how the SO coupling vanishes when the
chirality is lost. We then discuss how these results are influ-
enced by dissipation, which breaks time-reversal symmetry
and illuminates the distinction between true and false chirality.
Finally, we present a series of examples for different lattice
configurations. Our results demonstrate that chiral atom arrays
are a robust platform for realizing SO-coupled topological
states of matter.

The remainder of the paper is organized as follows.
Section II describes the theoretical model used to encode
the pseudospin-1/2 degree of freedom in atomic arrays. Sec-
tion III derives the necessary requirements for emergent SO
coupling in terms of a broken spin-inversion symmetry. Sec-
tion IV relates spin-inversion symmetry to more conventional
symmetry operations, including rotations, reflections, inver-
sions, and time reversal. Section V provides examples of
chiral lattices, characterized by emergent SO coupling and
topologically nontrivial band structures. Section VI demon-
strates how an achiral lattice, when combined with a suitable
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FIG. 1. Schematic of the V-type level structure considered in
this work. The excited-state orbitals have resonant frequency ω0 and
spontaneous emission rate �0. Emitters are coupled with coherent
and dissipative hopping rates Jσσ ′

i j and �σσ ′
i j , respectively.

orientation of the atomic quantization axis, can also yield SO
coupling and nontrivial topology. Section VII summarizes the
results and proposes suggestions for future work.

II. THEORETICAL FORMALISM

We consider ordered arrays of dipole-coupled quan-
tum emitters (e.g., atoms, molecules, or quantum dots) in
free space at fixed positions within the laboratory frame.
We assume the emitters are tightly trapped at their respective
locations such that the motional degrees of freedom can be
neglected. The pseudospin degree of freedom for each emitter
is encoded in a V-type level structure consisting of a single
ground state |g〉 and two hyperfine states |↑〉 and |↓〉 cor-
responding to the two orthogonal polarizations of circularly
polarized light (Fig. 1). The bare hyperfine states are assumed
to have identical resonance frequencies ω0 = 2πc/λ0, where
λ0 is the wavelength of each optical transition and c is speed
of light in vacuum.

A. Dipole-dipole interactions

The transport of optically induced electronic excitations
between quantum emitters in free space involves long-range
interactions mediated by a radiation field. It is convenient
to trace out the field degrees of freedom in the Born and
Markov approximations to obtain an effective descriptive in
terms of the matter operators only [20,23–26]. In free space,
the effective interactions between quantum electric dipoles at
points ri and r j are determined by the dyadic Green’s tensor

G(ri j, ω0) = eik0ri j

4πk2
0r3

i j

((
k2

0r2
i j + ik0ri j − 1

)
1

− (
k2

0r2
i j + 3ik0ri j − 3

)ri j ⊗ ri j

r2
i j

)
, (1)

where ri j = ri − r j , ri j = |ri j |, and k0 = ω0/c (see also
Appendix A). The coherent and dissipative parts of the dipole-
dipole interaction are then given by

Jσσ ′
i j = − 3

2λ0�0ε
†
iσ · ReG(ri j, ω0) · ε jσ ′ (2)

�σσ ′
i j = 3λ0�0ε

†
iσ · ImG(ri j, ω0) · ε jσ ′ , (3)

where εiσ is the circular polarization vector for orbital σ ∈
{↑,↓} on emitter i, �0 ≡ �σσ

ii = ω3
0|℘iσ |2/3π h̄ε0c3 is the

spontaneous emission rate associated with each excited-state
orbital, ℘iσ is the transition dipole matrix element vector,
and ε0 is the vacuum permittivity. The interactions therefore
depend only on the scalar distance between the emitters and
on the relative orientations of the polarization vectors. These
polarization vectors are defined with respect to a quantization
axis q̂ about which the optically excited orbitals are circularly
polarized. In practice, this quantization axis can be fixed in the
laboratory frame by an external electric or magnetic field. The
orientation of the quantization axis relative to the symmetry
planes of the lattice is directly related to the emergence of
SO coupling in chiral systems (Sec. III). For general q̂, the
polarization vectors for left and right circularly polarized ex-
citations are given by

ε↑↓ = 1√
2

(d̂1 ± id̂2), (4)

where ↑ (↓) corresponds to + (–), d̂1 and d̂2 denote the
orthonormal vectors defining the polarization plane, and d̂1 ×
d̂2 = q̂.

B. Open-system Hamiltonian

Throughout this work, we focus on the single-excitation
subspace which is sufficient to observe chirality-induced SO
coupling. The unitary dynamics for an arbitrary arrange-
ment of N V-type quantum emitters interacting via the
dipole-dipole interactions described above is given by the
Hamiltonian

H =
N∑

i=1

∑
σ

ω0 |σi〉 〈σi| +
∑
i �= j

∑
σ,σ ′

Jσσ ′
i j |σi〉 〈σ ′

j | (5)

(we set h̄ ≡ 1 here and throughout). Here the state |σi〉 =
|g, g, . . . , σ, . . . , g〉 denotes a single excitation in orbital |σ 〉
at site i with all the other emitters in the ground state.
The nonunitary contributions of collective dissipation and
single-emitter spontaneous emission are included via the anti-
Hermitian term

HA = − i

2

N∑
i, j

∑
σ,σ ′

�σσ ′
i j |σi〉 〈σ ′

j | . (6)

The total non-Hermitian effective Hamiltonian describing the
full open-system dynamics is then

Heff = H + HA

=
N∑

i=1

∑
σ

ω0 |σi〉 〈σi| − 3

2
λ0�0

∑
i �= j

∑
σ,σ ′

Gσσ ′
i j |σi〉 〈σ ′

j | ,

(7)

where Gσσ ′
i j = ε

†
iσ · G(ri j, ω0) · ε jσ ′ . We may further trace

over the ground state of each emitter and denote the excited

states using the basis vector mapping |↑〉 = (1 0)
T

and

|↓〉 = (0 1)
T

such that the circularly polarized excitations
at each emitter site behave as pseudospin-1/2 degrees of free-
dom characterized by the 2 × 2 Pauli matrices. The operator
σz = |↑〉 〈↑| − |↓〉 〈↓| then quantifies the relative spin popu-
lation in each emitter.
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Finally, it is useful to define a set of collective operators
that act on the spin indices of each emitter simultaneously.
We define

Sα ≡ 1 ⊗ σα (8)

for α ∈ {x, y, z}, where 1 is the identity matrix acting on the
spatial indices. The pseudospin operator for a delocalized state
extending across multiple emitters then follows simply as Sz.

C. Photonic band structures

In order to characterize the SO-coupling properties of
pseudospin-1/2 atomic lattices, we will assess the pho-
tonic band structures obtained by transforming the real-space
Hamiltonian into momentum space. For simplicity, we limit
the discussion to lattices that are periodic only in one di-
rection. In this case, the site index for a non-Bravais lattice
composed of N sublattices can be decomposed into i =
(m, μ), where m ∈ [1, M] indexes the unit cell along the axis
of periodicity and μ ∈ [1,N ] denotes the sublattice index.
In the limit of large M, the substitution |σi〉 = |m, μ, σ 〉 =
(1/

√
M )

∑
k exp(ik · rmμ) |k, μ, σ 〉 for quasimomentum k

yields Heff = ∑
k H (k), where the Bloch Hamiltonian

H (k) =
∑
μ,ν

∑
σ,σ ′

hμσ,νσ ′ (k) |k, μ, σ 〉 〈k, ν, σ ′| (9)

has matrix elements [21,22]

hμσ,νσ ′ (k) = ω0δμνδσσ ′ + χ I
μσ,νσ ′ + χ II

μσ,νσ ′ (10)

for

χ I
μσ,νσ ′ = −3

2
λ0�0

∑
Rμ �=0

e−ik·RμGσσ ′ (Rμ)δμν, (11)

χ II
μσ,νσ ′ = −3

2
λ0�0

∑
Rμ

e−ik·RμGσσ ′ (Rμ + nμν )(1 − δμν )

(12)

(see also Appendix B). Here the (infinite) set of Rμ denotes
vectors of the underlying Bravais lattice and nμν = nμ − nν

is the basis vector pointing from sublattice ν to μ within a
given unit cell. The off-diagonal terms χ I and χ II describe
interactions between emitters on the same and different sub-
lattices, respectively. The infinite sums are easily computed
numerically and typically converge rapidly. Finally, the band
structure is obtained by numerically diagonalizing H (k) at
each point in the Brillouin zone. We note that, like the real-
space Hamiltonian, H (k) is (in general) non-Hermitian.

III. CONDITIONS FOR SPIN-ORBIT COUPLING

The emergence of SO coupling within pseudospin-1/2
atomic lattices requires a nontrivial spin texture for the Bloch
modes. Put differently, it is a necessary and sufficient condi-
tion that the spin 〈Sz〉 be nonzero at some point in the Brillouin
zone in order to observe SO coupling. As a main result, we
now determine analytically the conditions for 〈Sz〉 �= 0. In
particular, we show that SO coupling emerges in systems
that lack inversion symmetry about axes in the polarization
plane, which motivates a generalized definition of chirality for
pseudospin-1/2 atomic excitations.

Quite generally, the spin of each Bloch mode is constrained
to be zero if there exists a symmetry of the Bloch Hamiltonian
that reverses the spin of each mode for all k. We can define this
spin-inversion symmetry through its action on the states asso-
ciated with each unit cell. Each unit cell at position R along
the Bravais lattice has 2N states |R, a〉. Here a = (μ, σ ) is a
compound index denoting the combination of sublattice μ and
spin σ . The spin-inversion operator can then be written as

W |R, a〉 =
∑

b

Wab |R, b〉 , (13)

where W = V ⊗ σx is a 2N × 2N matrix and V is an N × N
unitary matrix acting on the sublattice indices. Note that
this symmetry leaves the position vector R unchanged (the
quasimomentum k is also unchanged by virtue of the Fourier
transform). In other words, W is an operator that reverses the
spin but leaves the lattice geometry, including the position
along the Bravais lattice, invariant, up to a unitary transfor-
mation of the sublattice indices.

To see that this symmetry prohibits spinful Bloch bands,
consider a general Bloch Hamiltonian H (k) with orthonor-
mal eigenstates |u(k)〉 and corresponding eigenvalues ε(k).
Bloch’s theorem guarantees orthonormality [20], and we do
not require H (k) to be Hermitian or time-reversal invariant
(see also Sec. IV B). If W is a symmetry of H (k), then
[H (k),W ] = 0 such that

W H (k) |u(k)〉 = H (k)W |u(k)〉 = ε(k)W |u(k)〉 . (14)

The states |u(k)〉 and |u′(k)〉 ≡ W |u(k)〉 are therefore both
eigenstates of H (k) with the same eigenvalue (for simplicity,
we ignore the subtleties arising from multiband gauge am-
biguities that are resolved via the sewing matrix formalism
[27,28]). Noting that σ †

x σzσx = −σz, the spins of these Bloch
states satisfy

〈u′(k)|Sz|u′(k)〉 = 〈u(k)|W †SzW |u(k)〉
= − 〈u(k)|Sz|u(k)〉 . (15)

Now, by orthonormality, we must have 〈u(k)|u′(k)〉 = δuu′ . If
〈u(k)|u′(k)〉 = 1, then there is no degeneracy and |u′(k)〉 =
eiφ(k) |u(k)〉 for φ(k) ∈ R. In this case, it follows trivially from
Eq. (15) that 〈Sz〉 = 0. If, on the other hand, 〈u(k)|u′(k)〉 =
0, then the states are orthogonal with equal and oppo-
site spin. However, because the states are degenerate, the
linear combinations |u±(k)〉 ≡ (1/

√
2)[|u(k)〉 ± |u′(k)〉] are

also eigenstates of H (k) with the same eigenvalue. These su-
perposition states satisfy 〈Sz〉 = 0 by construction. It follows
that if W is a symmetry of the Bloch Hamiltonian, then one
may always construct a basis such that all Bloch modes have
zero spin.

The remaining task is to relate this result back to the ge-
ometrical properties of the system. For W to be a symmetry
of the Bloch Hamiltonian, there must exist a unitary transfor-
mation that relates the original and spin-flipped configurations
while preserving the mutual orientation of the basis and Bra-
vais lattice vectors relative to the quantization axis q. If such a
transformation does not exist, then the spin-inversion symme-
try of the combined lattice-quantization axis system is broken.
We may therefore take this as the definition of chirality for
pseudospin-1/2 systems. Indeed, Refs. [29,30] found that any
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chiral observable in the electric dipole approximation must
be defined relative to an external vectorial quantity (in this
case the quantization axis). In the following section, we will
demonstrate how this generalized definition of chirality has a
straightforward interpretation in terms of orthogonal transfor-
mations of the real-space lattice geometry.

IV. SYMMETRY ANALYSIS OF SPIN BANDS

In this section we demonstrate how spin-inversion sym-
metry can be satisfied under a variety of different conditions
depending on the geometrical and time-reversal properties
of the underlying lattice. These concepts are then applied
to specific lattice geometries in Secs. V and VI in order to
demonstrate emergent SO coupling (or lack thereof) through
pedagogical examples.

A. Orthogonal group symmetries

In order to study how the condition for nontrivial spin
textures relates back to the geometry of the system, we now
consider transformations under representations of the orthog-
onal group O(3) (see also Appendix C for more detail). If
the unit cell is invariant under an orthogonal transformation
U , then the operator corresponding to this symmetry may be
written as [27]

U |R, a〉 =
∑

b

Uab |UR, b〉 , (16)

where U is a 2N × 2N unitary matrix. The particular form of
U depends on the symmetry operation in question and on the
structure of the unit cell. Nevertheless, a number of general
relations can be deduced that apply to all Hamiltonians of the
form (7).

We are particularly interested in transformations that sat-
isfy Eq. (13) for spin-inversion symmetry. The simplest case
occurs for lattices that possess a mirror plane. In this case,
the basis vectors nμ exist in mirror-symmetric pairs such that
nν = RMnμ for reflection operator RM through the plane
(note also that μ = ν when the lattice vectors Rμ lie in the
mirror plane). If this mirror plane also contains the quantiza-
tion axis, then the corresponding operator (written as Rq,M)
acts on the basis states as

Rq,M |R, μ, σ 〉 = |Rq,MR, ν, σ̄ 〉 , (17)

where |σ̄ 〉 = σx |σ 〉 denotes the spin-flipped state [see
Eq. (C8)]. This transformation satisfies Eq. (13), provided
Rq,MR = R, that is, if the lattice possesses a mirror plane that
contains the quantization axis and the Bravais lattice vectors,
then the spin of each Bloch mode is guaranteed to be zero.

The transformation (17) is not the only form of W that
imposes trivial spin textures. Rotoreflections are also possible,
so long as the combined operation satisfies Eq. (13). To flip
the spin, the rotation should be by an angle π about an axis
lying in the polarization plane [see also Eq. (C9)]. Denoting
this rotation by R⊥(π ), the transformation

R⊥(π )Rq |R, μ, σ 〉 = |R⊥(π )RqR, ν, σ̄ 〉 (18)

also fulfills Eq. (13) but for a broader class of lattice ge-
ometries that satisfy R⊥(π )RqR = R and R⊥(π )Rqnμ = nν .

The physical interpretation of this result is that the Bloch
modes have zero spin when the polarization plane contains
a symmetry axis of improper rotation.

The considerations above justify the notion of spin-
inversion symmetry breaking as a form of generalized
chirality for pseudospin-1/2 systems. Whereas true chirality
is usually defined as a lack of any axis of improper rota-
tion, here we only require that such an axis not lie in the
polarization plane. The latter definition naturally encompasses
the former but also includes additional configurations where
the chirality stems from the mutual orientation of the lattice
vectors and the quantization axis rather than from the lattice
geometry alone (Sec. VI).

B. Time-reversal symmetry

In addition to the geometry of the system, the behavior
under time reversal T also influences the spin properties of
the system. The dipole-dipole interaction present in Eq. (5)
leads to the hopping of pseudospin-1/2 excitations between
sites i and j with a rate determined by the Green’s tensor
(1). This process neglects electronic exchange interactions,
which is a good approximation when the spacing between
adjacent emitters is much larger than the spatial extent of the
atomic wave functions. In this case, the circularly polarized
excitations at each emitter site can be described using bosonic
statistics and with a bosonic time-reversal operator. Generally,
a Hamiltonian H is T invariant if and only if there exists a
unitary operator UT such that T HT −1 = H for T = KUT ,
where K is the antiunitary complex conjugation operator
K : i → −i [31]. The particular form of UT depends on the
choice of basis. For Hamiltonians of the form (5) written in
the pseudospin basis defined in Sec. II B, the time-reversal
operator is given by

T = KSx (19)

and acts explicitly on the basis states as

T |R, μ, σ 〉= T |R, μ〉 ⊗
(

1
0

)
= |R, μ〉 ⊗

(
0
1

)
= |R, μ, σ̄ 〉.

(20)

We note that this definition in terms of the pseudospin ba-
sis states is perfectly consistent with the textbook definition
of complex conjugation acting on spherical harmonics [32].
Clearly, T is bosonic and satisfies T 2 = 1. This represents
an important distinction from traditional electronic systems
and significantly influences the spin textures of the resulting
photonic bands.

In traditional band theory, spin-1/2 electrons obeying
fermionic statistics exist as degenerate Kramers’ pairs when T
symmetry is preserved. If inversion symmetry is also present,
this constraint requires at least a twofold degeneracy at every
point in the Brillouin zone. If inversion symmetry is broken,
T invariance still requires this degeneracy be preserved at all
T -invariant quasimomenta. In either case, the spin of each
excitation may be interpreted as a vector on the Bloch sphere.

In bosonic bands, no such degeneracy is required. For the
pseudospins described by Eq. (4), the polarization of each
excitation is instead given by a vector on the Poincaré sphere
[33,34] with left and right circular polarizations residing at
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the north and south poles, respectively. In contrast to the
fermionic case (where an equal superposition of ↑ and ↓ spins
results in an equal magnitude spin-1/2 excitation pointing in
the orthogonal plane), vectors residing along the equator of
the Poincaré sphere do not carry angular momentum, that is,
an equal superposition of left and right circularly polarized
excitations yields a linearly polarized excitation of pseudospin
0 [see Eq. (4)]. Whereas the T operator acting on a fermionic
system corresponds to a complete inversion of the Bloch vec-
tor through the origin, the bosonic T results in a reflection
through the Poincaré sphere equatorial plane and leaves vec-
tors residing in this plane unchanged.

For the Hamiltonians considered here, the Hermitian part
(5) is always T invariant. In later sections, we will consider
the influence of broken T symmetry as induced by the anti-
Hermitian part of Heff [Eq. (6)]. To this end, it is instructive to
present a more detailed description of the behavior under T .
In particular, direct application of Eq. (19) demonstrates that
the pseudospin operator is time odd, obeying T SzT −1 = −Sz.
If the Hamiltonian is time-reversal invariant, then [H, T ] = 0
and

T HT −1 = KSxH (KSx )−1 = SxH∗S−1
x = H. (21)

A general Bloch Hamiltonian H (k) = e−ik·rHeik·r then satis-
fies

T H (k)T −1 = eik·rSxH∗S−1
x e−ik·r = H (−k), (22)

where H (−k) = SxH∗(k)S−1
x . The Brillouin zone contains a

set of time-reversal-invariant momenta k = �i, where −�i =
�i + Gμ and Gμ is a reciprocal lattice vector Gμ · Rμ = 2π
(to avoid ambiguity with other quantities denoted by �, we
will always use a superscript to denote time-reversal-invariant
momenta) [27]. At these points, the Bloch Hamiltonian satis-
fies [H (�i ), T ] = 0. To see how the bosonic T influences the
degeneracy of the resulting Bloch bands, we again consider
|u(k)〉 as a general eigenstate of H (k) with eigenvalue ε(k).
As in the previous section, the spin associated with this state
is given by 〈Sz〉. Away from the �i points, the spin of this state
is in general nonzero (Sec. III). Applying Eq. (22), the Bloch
Hamiltonian for a time-reversal-invariant system satisfies

T H (k) |u(k)〉 = H (−k)T |u(k)〉 = ε(k)T |u(k)〉 (23)

such that |u′(−k)〉 ≡ T |u(k)〉 is an eigenstate of H (−k) with
the same energy ε′(−k) = ε(k). The states at k and −k nec-
essarily have opposite spin

〈u′(−k)|Sz|u′(−k)〉 = 〈u(k)|T †SzT |u(k)〉
= 〈u∗(k)|SxSzS−1

x |u∗(k)〉
= − 〈u(k)|Sz|u(k)〉 , (24)

where the second step follows from Sx = S†
x = S−1

x and the
third step from the Hermiticity of Sz. However, because T 2 =
1, |u(k)〉 and |u′(k)〉 need not represent orthogonal states. In
the absence of accidental degeneracies, these states are instead
equal (up to a phase) such that each band is symmetric about
�i in energy and antisymmetric in spin. The requirement at
k = �i then follows simply as

〈u(�i )|Sz|u(�i )〉 = − 〈u(�i )|Sz|u(�i )〉 = 0 (25)

for each band individually and no twofold spin degeneracy is
required.

In position space, the eigenstates are equal superpositions
of states at k and −k. The antisymmetric spin textures re-
quired by T invariance therefore dictate that all position space
eigenstates have zero spin. However, this does not preclude
the emergence of nontrivial spin textures, which requires only
that the spin be nonzero at a single point in the Brillouin zone.
If this point has nonzero dispersion, then the antisymmetric
nature of the spin bands, together with the symmetric nature
of the energy bands, implies SO coupling for all T -invariant
systems with nonzero spin. If T symmetry is broken, this
antisymmetric condition need not apply and the position space
eigenstates may also exhibit nonzero spin.

Finally, it should be noted that in the absence of any Zee-
man splitting term, the Hermitian Hamiltonian (5) is always
T invariant, regardless of the lattice geometry. However, the
non-Hermitian Hamiltonian Heff explicitly breaks T symme-
try through the anti-Hermitian term (6), which introduces
dissipation to the otherwise unitary system. Under certain
conditions, SO coupling may emerge through Heff but not
through H , that is, by breaking T symmetry. In analogy with
the work of Barron [35], we refer to systems exhibiting SO
coupling in the presence of T symmetry as truly chiral and
those for which this SO coupling vanishes in the presence of
T symmetry as falsely chiral.

C. Inversion and anti-inversion symmetries

If the lattice contains an inversion center at position R = 0,
then the parity P operator may be written as [27]

P |R, a〉 =
∑

b

Pab |−R, b〉 , (26)

where P = V ⊗ 1 for unitary V , that is, P acts by invert-
ing the spatial coordinates of the unit cell, up to a unitary
transformation on the sublattice indices. We require that P
leave the spin indices invariant because angular momentum is
an axial vector. In this case, the Bloch bands are inversion
symmetric about k = �i and the Bloch Hamiltonian satis-
fies PH (k)P−1 = H (−k). Similarly, when the Hamiltonian
is time-reversal invariant, the Bloch bands are symmetric
in energy and antisymmetric in spin. Suppose now that the
Hamiltonian is invariant not under P or T but under the
unitary operator

P̄ = P ⊗ σx. (27)

Then P̄ acts as the parity operator but treats the spin degree
of freedom as a polar vector that is odd under inversion [for
a one-dimensional (1D) lattice, we may also interpret this
operation as a series of rotations]. Consequently, [H, P̄] = 0
implies P̄H (k)P̄−1 = H (−k) such that

P̄H (k) |u(k)〉 = H (−k)P̄ |u(k)〉 = ε(k)P̄ |u(k)〉 . (28)

In analogy with Eqs. (23) and (24), the states |u(k)〉 and
P̄ |u(k)〉 have equal energy and opposite spin on opposite
sides of the Brillouin zone. The operator P̄ therefore acts as a
sort of anti-inversion by enforcing a spin antisymmetry about
k = �i. Importantly, this symmetry is a property of the lattice
geometry and the orientation of the quantization axis and is
independent of the behavior under T .
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FIG. 2. (a) Schematic of the helical lattice geometry for pitch a
and N = 3. The gray dashed rectangle denotes one unit cell, whereas
the yellow solid rectangle denotes one sublattice. (b) Top-down view
of the helical lattice. The sublattices are arranged with radial position
r0 and azimuthal separation 2π/N .

V. CHIRAL LATTICES

We are now in a position to study specific lattice geome-
tries. We first consider chiral lattices, which we define as those
exhibiting either true or false chirality for all orientations of
q̂. The quintessential chiral structure is a right circular helix,
which serves as a paradigmatic example. This structure is
periodic along its longitudinal helical axis which, without loss
of generality, we choose to be parallel to the z axis (Fig. 2).
The lattice vectors of the underlying Bravais lattice are then
given by Rμ = al ẑ for lattice constant a and l ∈ Z. For a
right-handed helix periodic along the z axis with radius r0,
pitch a, and N emitters per unit cell, the emitter positions are
given by

r j = r0 cos(φ j )x̂ + r0 sin(φ j )ŷ + aφ j

2π
ẑ, (29)

where φ j = 2π ( j − 1)/N . The relative coordinate between
emitters i and j can then be written as ri j = xi j x̂ + yi j ŷ + zi j ẑ
for

xi j = −2r0 sin
(

(μ − ν)
π

N
)

sin
(

(μ + ν)
π

N
)
,

yi j = 2r0 sin
(

(μ − ν)
π

N
)

cos
(

(μ + ν)
π

N
)
,

zi j =
(

(μ − ν)
a

N + al
)
. (30)

Here μ = i mod N + 1 and ν = j mod N + 1 for integers
i, j ∈ [1, N] and l denotes the number of unit cells between
i and j (i.e., l = 0 if i and j are in the same unit cell). We note
that with this choice of coordinates, the μ = 1 sublattice lies
on the +x axis.

A. Longitudinal circular polarization

As a demonstration of true chirality, we first orient the
quantization axis to lie along the axis of periodicity (q̂ = ẑ).
In this case, r0 = �i = � j and the spin-flip interaction is found

FIG. 3. (a) Band structures for the left-handed (left) and right-
handed (right) helices when q̂ = ẑ. The spin bands are nontrivially
antisymmetric about k = �i, irrespective of T invariance. The sys-
tem exhibits true chirality with a quantized nontrivial Zak phase.
Additional parameters are N = 3, r0 = 0.05λ0, and a = 0.175λ0.
(b) Top-down view of the helical unit cell for q̂ = ẑ. The μ =
2 sublattice serves as an anti-inversion for the lattice, and the
corresponding transformation P̄ : (k̂, σ ) → (−k̂, σ̄ ) enforces an-
tisymmetric Bloch bands. If dissipation is neglected, the spin
antisymmetry is also protected by T symmetry.

to be

G↑↓
i j = 3r2

0λ0�0

4πk2
0r5

i j

sin2

(
φi − φ j

2

)
e−i(φi+φ j )

× eik0ri j
(
3 − k2

0r2
i j − i3k0ri j

)
, (31)

where φi = tan−1(yi/xi ). A reflection through the y-z plane
then takes φi → −φi such that G↑↓

i j → G↓↑
i j (see also Ap-

pendix C). The spin dynamics are therefore interchanged by
reflections perpendicular to the polarization plane that trans-
form the right-handed helix to its left-handed mirror image.

The photonic band structures for left- and right-handed
helices are shown in Fig. 3(a). Because the helix geometry
lacks an axis of improper rotation, the symmetry [H (k),W ] �=
0 is broken for all unitary W and the Bloch bands exhibit
nontrivial spin textures. As a consequence of this broken sym-
metry, the longitudinally polarized helix supports bulk helical
modes that experience SO coupling. This effect is illustrated
by the spin antisymmetry of the band structures. Away from
the points �i = 0,±π/a, each Bloch mode acquires a finite
group velocity v(k) = ∂ε(k)/∂k along the axis of periodicity.
Because of the spin antisymmetry, these modes exhibit a he-
licity η = 〈Sz〉 v/| 〈Sz〉 v| that is symmetric about �i. When
dissipative interactions are neglected, i.e., the Hamiltonian
is of the form (5), this antisymmetry is protected by time-
reversal symmetry. Invariance of the group velocity under
reflection through the y-z plane (Ryz) then dictates that the
two chiralities support equal and opposite helical modes.
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Specifically for q̂ = ẑ, the broken spin-inversion symmetry
persists regardless of whether the Hamiltonian is T invari-
ant. When dissipative interactions are included, the Hermitian
Hamiltonian (5) is replaced by the non-Hermitian effective
Hamiltonian (7). In this case, T symmetry is broken and
Eq. (24) no longer holds. However, the spin antisymme-
try of the Bloch bands persists because the non-Hermitian
Hamiltonian remains invariant under P̄ . In other words, the
z-polarized helix contains a 1D anti-inversion center at the
center of the unit cell.

To verify that the Hamiltonian is invariant under this
transformation, we construct explicitly the associated matrix
representation. The anti-inversion center lies at the azimuthal
angle φ0 = π (N − 1)/N (as measured from the x axis) along
an axis that bisects the angle between sublattices μ = 1 and
μ = N . With this point chosen as the origin, the unit cell is
symmetric under the combined operation of 1D spatial inver-
sion and spin flip. As demonstrated in Fig. 3(b), this operation
is equivalent to a π rotation about the φ0 axis. Therefore, P̄
reverses the direction of R (or equivalently k) and flips the
spin while simultaneously exchanging the positions of the
three sublattices (for odd N the central sublattice remains
fixed). As such, the symmetry operation can be represented as
P̄ = X ⊗ σx, where X is the N × N antidiagonal exchange
matrix acting on the sublattice indices. With the above choice
of origin, the basis states of each unit cell then transform as

P̄ |R, μ, σ 〉 = X ⊗ σx |−R, μ, σ 〉 . (32)

One may verify explicitly that [Heff , P̄] = 0 and that the
spin antisymmetry follows accordingly as in Eq. (28). The
net result is that the longitudinally polarized helix exhibits
antisymmetric spin textures that are protected by anti-
inversion symmetry (or equivalently rotational symmetry).
This property manifests even in the presence of time-reversal
invariance: The system is truly chiral.

To examine the topological properties of the Bloch bands,
we compute the Zak phase

ϕ =
∮
C

Tr[A(k)] · dk. (33)

Here Amn(k) = i 〈umk|∇kunk〉 is the non-Abelian Berry con-
nection matrix evaluated over a closed loop C around the first
Brillouin zone (see Appendix D). The Zak phase is defined
modulo 2π and is quantized to either 0 (trivial) or ±π (topo-
logically nontrivial) when the Hamiltonian commutes with P
or P̄ . The finite spin textures exhibited by the longitudinally
polarized helix induce a nontrivial topology in the energy
bands. The associated SO-coupled dynamics is therefore topo-
logically protected by the chirality of the geometry. Because
of the anti-inversion center at φ0, the Zak phase is quantized
to ±π .

B. Transverse circular polarization

The symmetry properties of the non-Hermitian Hamil-
tonian are altered when the quantization axis is oriented
perpendicular to the axis of periodicity. As an example, we
consider the helix of Eq. (29) but with q̂ pointing along the φ0

axis [Fig. 4(a)]. Because the lattice geometry is unchanged,
it remains true that there is no unitary W enforcing 〈Sz〉 = 0.

FIG. 4. (a) Top-down view of the helical unit cell for q oriented
along the φ0 axis. The μ = 1 and μ = 3 sublattices are separated by
an angle π in the polarization plane such that the μ = 2 sublattice
serves as a true inversion center. Inversion symmetry transforms
P : (k̂, σ ) → (−k̂, σ ), enforcing spin symmetric Bloch bands. If the
Hamiltonian is also T invariant, the additional relation T : (k̂, σ ) →
(−k̂, σ̄ ) requires 〈Sz〉 = 0. (b) Band structures for the φ0-polarized
helix. The system is P invariant with a quantized Zak phase. When
T symmetry is broken (left), the spin bands are symmetric about
k = �i and the Zak phase is topologically nontrivial. If T symmetry
is restored (right), the combined PT symmetry causes both the spin
textures and the Zak phase to vanish. The system is therefore falsely
chiral. The helix parameters are the same as in Fig. 3.

However, the twofold rotational symmetry of the lattice no
longer corresponds to P̄ . Instead, the π rotation that swaps the
μ = 1 and μ = 3 sublattices leaves the spin projection along
q̂ invariant. Consequently, the system exhibits a true inversion
center and is parity symmetric with

P |R, μ, σ 〉 = X ⊗ 1 |−R, μ, σ 〉 . (34)

The spin bands are therefore symmetric about k = �i

[Fig. 4(b)] and the Zak phase is quantized to ±π .
If dissipative interactions are neglected, then the Hamilto-

nian also commutes with T and the spin bands must also be
antisymmetric [Eq. (24)]. The combined PT symmetry then
forces 〈Sz〉 = 0 for all k and the SO coupling is lost. In turn,
the system becomes topologically trivial and the Zak phase is
zero for each band. With this choice of quantization axis, the
helix is only falsely chiral.

For completeness, we also present the case where q̂ does
not correspond to a symmetry axis of the unit cell (e.g.,
lies at an angle π/4 from the x axis in the x-y plane). This
configuration is not invariant under P or P̄ . Hence, when T
symmetry is broken, the spin bands are neither symmetric nor
antisymmetric (Fig. 5). If however dissipation is neglected,
then the Hamiltonian is T invariant and the antisymmetric
spin textures are restored. In either case, the Zak phase is not
quantized.
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[H, T ] = 0[Heff , T ] = 0

FIG. 5. Band structures for the transversely polarized helix in the
absence of both P and P̄ invariance. When T symmetry is broken
(left) the spin bands are neither symmetric nor antisymmetric about
k = �i. When T symmetry is restored (right) the spin bands become
antisymmetric. In both cases, the Zak phase is not quantized. The
helix parameters are the same as in Figs. 3 and 4.

VI. CHIRAL SETUPS

The spin-inversion symmetry breaking required for finite
SO coupling need not come from the lattice geometry alone.
If the lattice contains a mirror plane, there may still exist a
choice of quantization axis such that the Bloch bands exhibit
nontrivial spin textures. We refer to this scenario as a chiral
setup because not all orientations of q̂ satisfy [H (k),W ] �= 0
for unitary W .

A concrete example is demonstrated by a lattice arranged
into an oblique triangular prism. If the triangular faces are
isosceles, then the lattice possesses a mirror plane along the
axis of periodicity [Fig. 6(a)]. For simplicity, we choose the
emitter positions to be circumscribed about a right circular

cylinder such that xi j and yi j are given by Eq. (30) and

zi j =
⎧⎨
⎩

0, μ, ν ∈ {2, 3}
a/2, μ > ν

−a/2, μ < ν,

(35)

where μ and ν are defined as before. For q̂ = x̂, the quan-
tization axis lies in the mirror plane [Fig. 6(b)] and the
reflection operator Rxz acts as in Eq. (17). This mirror reflec-
tion commutes with both the Hermitian and non-Hermitian
Hamiltonians such that the geometry is spin-inversion sym-
metric irrespective of the behavior under T . It follows that
〈Sz〉 must vanish for all k, and the system is not chiral at all.

By contrast, if the quantization axis is instead oriented
along the y axis, then Rxz leaves the spin invariant, and the
SO coupling is therefore preserved. Because the unit cell does
not contain a center of (anti-)inversion, the Bloch bands are
not fully (anti)symmetric and the Zak phase is not quantized.
Nevertheless, the antisymmetry of the nontrivial spin textures
is consistent with T symmetry, and thus the system is truly
chiral.

VII. CONCLUSION

In summary, we have demonstrated that the pseudospin-
1/2 excitations admitted by chiral arrangements of V-type
quantum emitters experience an emergent SO coupling and
nontrivial topology. We have defined the conditions for
SO coupling in terms of a broken spin-inversion symme-
try and provided a complete characterization under different
symmetry transformations. Our results describe a general phe-
nomenon that is unique to chiral systems and can be achieved
either with a chiral lattice or via suitable orientation of the
quantization axis. Because the emergence of SO coupling is

FIG. 6. (a) Lattice geometry for an oblique triangular prism. Each triangular face represents a single unit cell. The faces are assumed to be
isosceles with the x-z plane chosen as the mirror plane. (b) Top-down view of the oblique triangular prism unit cell for q̂ = x̂ (top) and q̂ = ŷ
(bottom). (c) Band structures for the oblique triangular prism. When q is oriented in the mirror plane (left), the spin textures vanish irrespective
of the behavior under T . If q is instead oriented orthogonal to the mirror plane, then the SO coupling can be nonzero. In both cases, the Zak
phase is not quantized. Additional geometrical parameters are the same as in Figs. 3–5.
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dictated by the symmetries of the Bloch bands, the symmetry
analysis given above is complete within the single-excitation
regime. Nevertheless, an interesting follow-up would be to
analyze the dynamics of such arrays in the multiexcitation
regime. In this case, the V-type level structure imposes a
hard-core boson constraint in which each atomic orbital is at
most singly occupied. The ensuing nonlinearity induced by
the hard-core interaction is expected to result in modifications
of the transport phenomena. In this regard, chiral atom arrays
could serve as a promising platform for new quantum optical
devices and for studying atomic analogs of many-body topo-
logical physics in condensed matter systems.
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APPENDIX A: ELECTROMAGNETIC GREEN’S TENSOR

In free space, the effective interactions between quan-
tum emitters are determined by the dyadic Green’s tensor

G(r, r′, ω), which is the solution to the wave equation

∇2G(r, r′, ω) − ω2

c2
G(r, r′, k) = δ(r − r′)1 (A1)

for observational coordinates r, source coordinates r′, and
frequency ω. For the case where the emitters located at po-
sitions r j are well approximated by point electric dipoles,
the Green’s tensor between emitters i and j depends only on
the relative coordinate ri j = ri − r j . In the Born and Markov
approximations, the Green’s tensor may further be regarded
as dispersionless and is given by [20,23–26]

G(ri j, ω0) = eik0ri j

4πk2
0r3

i j

((
k2

0r2
i j + ik0ri j − 1

)
1

− (
k2

0r2
i j + 3ik0ri j − 3

)ri j ⊗ ri j

r2
i j

)
, (A2)

with ri j = |ri j | and k0 = ω0/c. Consequently, the polarization
(or photon-spin)-dependent dipole-dipole interaction between
emitters i and j is given by Jσσ ′

i j − (i/2)�σσ ′
i j , where [20]

Jσσ ′
i j = −μ0ω

2
0℘

†
iσ · ReG(ri j, ω0) ·℘jσ ′ , (A3)

�σσ ′
i j = 2μ0ω

2
0℘

†
iσ · ImG(ri j, ω0) ·℘jσ ′ (A4)

describe the coherent and dissipative parts of the interaction,
respectively, and μ0 is the vacuum permeability.

APPENDIX B: PHOTONIC BAND STRUCTURES FOR QUASI-1D NON-BRAVAIS LATTICES

Beginning with the real-space non-Hermitian effective Hamiltonian, we expand the site index i = (m, μ) to yield

Heff =
M∑

m=1

N∑
μ=1

∑
σ

ω0 |m, μ, σ 〉 〈m, μ, σ | − 3

2
λ0�0

M∑
m,n=1

N∑
μ,ν=1

∑
σ,σ ′

(1 − δmnδμν )Gσσ ′
mμ,nν |m, μ, σ 〉 〈n, ν, σ ′| , (B1)

where m and n index the unit cells along the axis of periodicity, M is the number of unit cells, μ and ν are the sublattice indices,
and N denotes the number of sublattices. Note that in this notation, Gσσ ′

mμ,mμ = 0. We now make the discrete Fourier transform

|m, μ, σ 〉 = (1/
√

M )
∑

k exp(ik · rmμ) |k, μ, σ 〉 to arrive at

Heff = ω0

M

M∑
m=1

N∑
μ=1

∑
σ

∑
k,k′

ei(k′−k)·rmμ |k, μ, σ 〉 〈k′, μ, σ | − 3

2

λ0�0

M

M∑
m,n=1

N∑
μ,ν=1

∑
σ,σ ′

∑
k,k′

e−ik·rmμeik′ ·rnν Gσσ ′
mμ,nν |k, μ, σ 〉 〈k′, ν, σ ′|

(B2)
for k = kk̂ and k = π j/Ma. Here a = |rm+1,μ − rmμ| is the lattice spacing between adjacent unit cells and j = 0, . . . , 2M is an
integer. Noting that the Green’s tensor depends only on the relative coordinate Rl

μν ≡ rmν − rnν for l = m − n, the second term
can be written as

−3

2

λ0�0

M

∞∑
l=−∞

M∑
m=1

N∑
μ,ν=1

∑
σ,σ ′

∑
k,k′

ei(k′−k)·rmμe−ik′ ·Rl
μν Gσσ ′

mμ,lν |k, μ, σ 〉 〈k′, ν, σ ′| . (B3)

In the limit of large M, the identity

M∑
m=1

ei(k′−k)·rmμ = Mδkk′ (B4)

yields the partially diagonalized Hamiltonian

Heff =
N∑

μ=1

∑
k

∑
σ

ω0 |k, μ, σ 〉 〈k, μ, σ | − 3

2
λ0�0

∑
k

N∑
μ,ν=1

∑
σ,σ ′

∞∑
l=−∞

e−ik·Rl
μν Gσσ ′

mμ,lν |k, μ, σ 〉 〈k, ν, σ ′| . (B5)
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Changing notation slightly, we may drop the superscript on Rl
μν by replacing the sum over l with a sum over the entire set

of Rμ = Rμν − nμν . Here Rμ denotes a Bravais lattice vector on sublattice μ and nμν denotes the basis vector pointing from
sublattice ν to sublattice μ. Writing Gσσ ′

mμ,lν as Gσσ ′ (Rμ + nμν ), the Hamiltonian takes the form Heff = ∑
k H (k), where the

Bloch Hamiltonian

H (k) =
N∑

μ,ν=1

∑
σ,σ ′

hμσ,νσ ′ (k) |k, μ, σ 〉 〈k, ν, σ ′| (B6)

has matrix elements hμσ,νσ ′ (k) = ω0δμνδσσ ′ + χ I
μσ,νσ ′ + χ II

μσ,νσ ′ for

χ I
μσ,νσ ′ = −3

2
λ0�0

∑
Rμ �=0

e−ik·RμGσσ ′ (Rμ)δμν, (B7)

χ II
μσ,νσ ′ = −3

2
λ0�0

∑
Rμ

e−ik·(Rμ+nμν )Gσσ ′ (Rμ + nμν )(1 − δμν ). (B8)

Finally, to enforce periodicity of the Brillouin zone, it is necessary to apply the local gauge transformation [36] bkμσ →
e−ik·nμbkμσ . A redefinition of H (k) to include this k-dependent phase transforms

χ II
μσ,νσ ′ → −3

2
λ0�0

∑
Rμ

e−ik·RμGσσ ′ (Rμ + nμν )(1 − δμν ) (B9)

and ensures that H (k + Gμ) = H (k) for any reciprocal lattice vector Gμ · Rμ = 2π .

APPENDIX C: SPIN DYNAMICS UNDER ROTATIONS
AND REFLECTIONS

Because the elements of O(3) preserve spatial distances
and the spin-preserving interaction Gσσ

i j depends only on ri j ,
it is sufficient to consider the effects of group multiplication
on the spin-flip interaction alone. It is convenient to work in
cylindrical coordinates and in the (d̂1, d̂2, q̂) basis such that
ri = �i cos(φi )d̂1 + �i sin(φi)d̂2 + rqq̂, where �i is the radial
coordinate of emitter i and φi is the corresponding azimuthal
coordinate measured in the polarization plane. Substituting
the circular polarization vectors of Eq. (4) into Eq. (2), the
spin-flip amplitude is then

G↑↓
i j = 3λ0�0

16πk2
0r5

i j

e−2i(φi+φ j )(eiφ j �i − eiφi� j )
2eik0ri j

× ( − 3 + k2
0r2

i j + i3k0ri j
)
, (C1)

with

φi = tan−1(ri · d̂2/ri · d̂1). (C2)

The inverse process G↓↑
i j is given by taking φi → −φi and

φ j → −φ j . Equation (C1) demonstrates that for ri j ‖ q̂, the
spin-flip interaction vanishes (�i = � j and φi = φ j). In this
case, Eq. (5) is diagonal in spin space and the dynamics are
those of two uncoupled bosonic subspaces. If, on the other
hand, the emitters are not collinear with the quantization axis
(ri j ∦ q̂), then the spin-flip amplitude can be nonzero and lead
to spin mixing. Note, however, that this is not a sufficient con-
dition for nontrivial spin textures, which require the breaking
of spin-inversion symmetry (Sec. III).

The sign of (C2) is the only quantity in the Hamilto-
nian that distinguishes ↑ from ↓. Thus, any spin-dependent
dynamics must be encoded in this phase, and orthogonal
transformations that change the sign of this phase must map

spin-↑ dynamics to spin-↓ dynamics and vice versa. We first
consider proper rotations R, which satisfy det(R) = 1.

Definition 1. Let Rb(α) denote the orthogonal operator
specifying azimuthal rotation by an angle α about an axis b.

In the (d̂1, d̂2, q̂) basis, a rotation about the quantization
axis has the matrix representation

R̂q(α) =
⎛
⎝cos(α) − sin(α) 0

sin(α) cos(α) 0
0 0 1

⎞
⎠. (C3)

Acting with this operator on an arbitrary lattice geometry
yields the transformed position vectors

R̂q(α)ri =
⎛
⎝cos(α)ri · d̂1 − sin(α)ri · d̂2

sin(α)ri · d̂1 + cos(α)ri · d̂2

ri · q̂

⎞
⎠ ≡ r′

i. (C4)

Invoking the identity tan−1(u) ± tan−1(v) = tan−1[(u ±
v)/(1 ∓ uv)], the phase (C2) transforms as

φ′
i = tan−1

(
sin(α)ri · d̂1 + cos(α)ri · d̂2

cos(α)ri · d̂1 − sin(α)ri · d̂2

)

= tan−1

⎛
⎝ tan(α) + ri·d̂2

ri ·d̂1

1 − ri·d̂2

ri ·d̂1
tan α

⎞
⎠ = φi + α. (C5)

Hence, rotations about q contribute only an overall phase to
the spin-flip interaction and can be gauged away by a suitable
redefinition of the φi = 0 reference value.

We now consider improper rotations (reflections) R, satis-
fying det(R) = −1.

Definition 2. Let Rq(α) denote the orthogonal operator
specifying reflection through a plane containing q that makes
an angle α with the d1 axis.
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The corresponding matrix representation is

R̂q(α) =
⎛
⎝cos(2α) sin(2α) 0

sin(2α) − cos(2α) 0
0 0 1

⎞
⎠. (C6)

Because rotations about q leave φi invariant (up to an arbitrary
constant), it follows that all reflections Rq(α) have an equiva-
lent effect on the spin dynamics. In more detail, we may write
the combined rotoreflection operation as

Rq(α)Rq(α′) = Rq(α′ + α/2) ≡ Rq(α′′). (C7)

Then for r′′
i ≡ Rq(α′′)ri, the corresponding azimuthal coordi-

nate in the polarization plane is given by

φ′′
i = tan−1

(
sin(2α′′)ri · d̂1 − cos(2α′′)ri · d̂2

cos(2α′′)ri · d̂1 + sin(2α′′)ri · d̂2

)

= tan−1

(
−ri · d̂2

ri · d̂1

)
= −φi, (C8)

where the second step follows by setting α′ = −α/2. It fol-
lows that any reflection Rq(α′) reverses the spin dynamics.

In addition to reflections through planes containing the
quantization axis, the sign of (C2) can also be reversed under
rotations about orthogonal axes. For simplicity, we consider
here only rotations about the d̂1 axis, though those about
other axes in the polarization plane follow similarly. In this
case, the transformed vector r′′′

i ≡ Rd1 (β )ri has the azimuthal
coordinate

φ′′′
i = tan−1

(
cos(β )ri · d̂2 − sin(β )ri · q̂

ri · d̂1

)
, (C9)

and φ′′′
i = −φi for β = π .

APPENDIX D: TOPOLOGICAL CLASSIFICATION

For a non-Bravais lattice with N sublattices, the Hamilto-
nian (9) gives rise to 2N Bloch modes of the form |ψnk〉 =
eik·r |unk〉, where n is the band index. If the system admits a
band gap, then the isolated M bands on one side of the gap

obey the U (M) gauge freedom

|unk〉 →
M∑

m=1

Umn(k) |umk〉 , (D1)

where the M × M unitary matrix Umn describes an equiv-
alence class of physically identical Bloch manifolds. The
non-Abelian Berry connection for each isolated manifold then
follows as [37,38]

Amn(k) = i 〈umk|∇kunk〉 . (D2)

For a closed loop C around the first Brillouin zone, the Berry
phase is given by

ϕ =
∮
C

Tr[A(k)] · dk = −Im{ln[det(WC )]}, (D3)

where WC is the Wilson loop for the path C traversed in
reciprocal space. In one dimension and for discretized k =
k0, . . . , kL, the Wilson loop may be written as [39,40]

WC = P exp

( ∮
C

−iAmn(k)dk

)

=
L−1∏
i=0

exp
( − iA(ki,ki+1 )

mn dk
)
, (D4)

where P is the path-ordering operator and

exp
( − iA(ki,ki+1 )

mn dk
) ≈ δmn − iA(ki,ki+1 )

mn dk

= δmn + 〈
umki

∣∣ ( ∣∣unki+1

〉 − ∣∣unki

〉 )
= M (ki,ki+1 )

mn (D5)

for overlap matrix M (ki,ki+1 )
mn = 〈umki |unki+1〉. Equation (D4)

holds provided the cell-periodic functions are specified in the
periodic gauge where |unk0〉 = |unkL 〉. In this case, the Wilson
loop is easily computed as

WC =
L−1∏
i=0

M (ki,ki+1 )
mn . (D6)

Importantly, while Amn(k) is gauge dependent, the 1D Berry
phase (or Zak phase) is gauge-invariant modulo 2π . In gen-
eral, the Zak phase for the 1D Bloch bands can assume any
value, but is quantized to either 0 (trivial) or π (nontrivial) in
the presence of either inversion or anti-inversion symmetry.
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