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Exploiting separation-dependent coherence to boost optical resolution
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The problem of resolving pointlike light sources not only serves as a benchmark for optical resolution but
also holds various practical applications ranging from microscopy to astronomy. In this paper, we aim to resolve
two thermal sources sharing arbitrary mutual coherence using the spatial mode demultiplexing technique. Our
analytical study includes scenarios where the coherence and the emission rate depend on the separation between
the sources, and is not limited to the faint sources limit. We consider the fluorescence of two interacting dipoles to
demonstrate that the dependence of emission characteristics on the parameter of interest can boost the sensitivity
of the estimation and noticeably prolong the duration of information decay.
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I. INTRODUCTION

The role of coherence in imaging problems has been in-
tensively studied and discussed for decades [1–3]. This topic
became especially interesting with the formulation of the
imaging problem in terms of parameters estimation [4,5].
A widely studied form of this problem is the estimation of
the separation between two point sources of light, which not
only serves as a benchmark for optical resolution but also
has numerous practical applications ranging from microscopy
to astronomy [6,7]. The parameter estimation approach to
this simple imaging problem allowed researchers to find an
ultimate quantum limit for the resolution [8–11]. The Fisher
information of the spatial-mode demultiplexing (SPADE)
technique was shown to saturate the quantum limit for inco-
herent [8,9,12] and partially coherent [13] faint sources. The
sensitivity measure based on the method of moments [14]
allowed researchers to study a more general case of bright
incoherent [15,16], fully coherent [17], and entangled [18]
sources, demonstrating nontrivial scaling of the sensitivity
with the brightness of the thermal sources and showing that
the SPADE approach remains quantum optimal in this more
general scenario. Moreover, the method of moments provides
a simple estimation strategy for the parameter of interest that
relies solely on the measured mean intensities and does not
require maximum likelihood estimation or other heavy com-
putations. At the same time, the sensitivity obtained from the
method of moments saturates the Cramér-Rao bound in the
limit of faint sources.

*ilya.karuseichyk@lkb.upmc.fr

In this paper we analyze the case of partially coher-
ent sources that sparked hot debates in the community
[13,19–26]. We aim to resolve two bright thermal sources
sharing arbitrary mutual coherence, including cases when the
latter depends on the separation between the sources. This
situation was partially covered in Ref. [26] using the ap-
proximation of faint sources and assuming a lossless optical
system. In this paper, we instead consider sources with ar-
bitrary brightness, since the approximation of faint sources
is not always applicable in practical situations. Furthermore,
previous findings indicate that the lossless model tends to
underestimate sensitivity in cases where the initial brightness
of the sources is known [13,25]. To address this limitation, our
model explicitly incorporates losses in the imaging system.

Our approach, employing the method of moments, extends
to scenarios where both mutual coherence and the emission
rate of the sources are dependent on the separation. This
method allows us to address a practically significant issue of
resolving two reflectors illuminated by a source of light with
finite coherence width, where a faint source limit is not always
applicable. We show that the finite coherence width of the
illumination can significantly enhance the optical resolution;
however, this enhancement becomes less pronounced with the
growing number of coherently emitted photons, i.e., for a
more extended coherence time of the illumination source.

In the second example, we resolve the separation between
two interacting dipole emitters. We show that the dependence
of emission characteristics on the separation can drastically
boost the estimation sensitivity. As a result, one can ob-
tain useful information about the dipoles’ separation on a
timescale significantly larger than the radiative lifetime of the
excited state of the dipole. For the late stages of decay, even
though the probability of detecting a photon is very small, the
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FIG. 1. The scheme of the two point sources resolving. The
sources emit light into orthogonal modes ŝ1,2 with a mutual co-
herence γ . The light propagates through the lossy imaging system
with transmissivity κ and PSF width σPSF before being decomposed
into spatial modes fm(x) with corresponding field operators âm and
subsequently detected.

detection event contains a lot of information because of the
strong interaction-induced correlations between the emitters.
We show that this effect is resistant to the dephasing of the
emitters and to the detection noise.

II. THE MODEL OF EMITTERS

We consider a traditional optical scheme for single-
parameter imaging in which the only estimated parameter is
the separation d between two pointlike light sources (Fig. 1).
All other parameters of the sources are assumed to be known,
i.e., the imaging setup can be aligned in such a way that both
sources lie on its x axis and the centroid of the sources lies
at the coordinate origin. Thus the problem can be treated in
one dimension with coordinates of the sources being x j =
(−1) jd/2. The sources emit light into orthogonal modes with
field operators ŝ1,2. Each of these modes describes a spherical
wave emitted by the corresponding source during its coher-
ence time. We only consider equally bright sources emitting
thermal light, including cases of correlated emission. Since
these stochastic sources do not have any external phase ref-
erence, the emitted state should be symmetric over the global
phase shift. This implies that 〈ŝ j〉 = 0 and 〈ŝ j ŝk〉 = 0. Thus
the state is fully characterized by the first-order coherency
matrix

�
(1)ŝ
jk = 〈ŝ†

j ŝk〉 =
(

N γ N
γ ∗N N

)
, (1)

where N is the average number of photons emitted by each
source per its coherence time. Assuming the coherence time of
the sources to be fixed we refer to N as brightness and define
sources with N � 1 as faint sources. Note, however, that the
number of photons emitted by such sources per integration
time of the detection system can still be large if the coherence
time of the sources is short compared to the integration time.
Unlike most research on this topic, our approach allows for
studying bright thermal sources with N > 1, demonstrating
the nontrivial scaling of the separation estimation sensitivity
with this parameter. The complex number γ = γ0eiφ with

−1 � γ0 � 1 and 0 � φ < π stands for the mutual coherence
between the sources. In the general case, γ can depend on
the separation. The presence of a nondiagonal part in the co-
herency matrix corresponds to correlations of the quadratures

Vjk = 1

2
〈{Q̂ j, Q̂k}〉

=

⎛
⎜⎜⎝

N + 1
2 0 N Re γ N Im γ

0 N + 1
2 −N Im γ N Re γ

N Re γ −N Im γ N + 1
2 0

N Im γ N Re γ 0 N + 1
2

⎞
⎟⎟⎠, (2)

with quadrature vector �̂Q = (q̂1, p̂1, q̂2, p̂2)T , with q̂ j =
(ŝ†

j + ŝ j )/
√

2 and p̂ j = i(ŝ†
j − ŝ j )/

√
2. In this case mutual

coherence originates from thermal correlations, as opposed
to coherent states where mutual coherence comes from a
nonzero mean field.

III. FIELD TRANSFORMATION THROUGH
THE IMAGING SYSTEM

Light emitted by the point sources propagates through a
diffraction-limited imaging system with transmissivity κ (see
Fig. 1). The corresponding transformation of the field opera-
tors in the paraxial approximation can be represented as [10]

ĉ j = √
κ ŝ j + √

1 − κ v̂ j, (3)

where operators ĉ j are associated with the images of the
sources u0(x − x j ), and u0(x) is the point spread function
(PSF) of the imaging system, which is assumed to be transla-
tionally invariant, and thus κ does not depend on the position
of the source. Here we assume, without losing generality, that
the magnification factor of the imaging system equals 1. Field
operators v̂i are associated with auxiliary mutually nonorthog-
onal modes [v̂i, v̂

†
j ] �= δi j in the vacuum state. These auxiliary

modes describe losses of light, that unavoidably appear due
to the finite aperture of the imaging system and in the general
case lead to mode nonorthogonality [ĉ j, ĉ†

k ] �= δ jk .
The measurements are performed in the spatial modes

fm(x) with the corresponding field operators âm, which can
be expressed as [17]

âm =
∑

j

(∫
f ∗
m(x)u0(x − x j )dx

)
ĉ j + v̂′

m, (4)

where v̂′
m are non-normalized field operators of auxiliary vac-

uum modes.
In most cases, the PSF is symmetric, i.e., u0(−x) = u0(x).

Thus it is often reasonable to use a symmetric mode basis for
the measurement, i.e., perform SPADE in a basis of modes
with well-defined parity:

fm(−x) = (−1)m fm(x). (5)

Photon counting in such symmetric bases was shown to be
quantum optimal in other scenarios [12,15,17]. In this case
Eq. (4) reduces to

âm =
2∑

j=1

(−1) jmβm ĉ j + v̂′
m, (6)
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where

βm =
∫

dx f ∗
m(x) u0

(
x − d

2

)
. (7)

The average photon number in the measurement modes
reads

Nm = 〈N̂m〉 = 〈â†
mâm〉 = ξm + ζmγ0 cos φ, (8)

where

ξm = 2κNβ2
m, ζm = 2κNβ2

m (−1)m. (9)

The second term in (8) accounts for light interference arising
from partial coherence. The reader may notice that the aver-
age detected photon numbers depend solely on the real part
of the degree of mutual coherence, Re γ = γ0 cos φ. However,
as we show in the following, the imaginary part Im γ does
influence the photon counting statistics and, consequently,
changes the sensitivity of the parameter estimation.

All the field characteristics after passing through the imag-
ing system contain sources’ original brightness N only in
combination with the transmissivity factor κ . Thus the impor-
tant parameter of this problem is the combination κN , which
defines the brightness of the sources imaged with a given
optical system.

The total number of photons detected in K measurement
modes equals

ND =
K∑

m=0

Nm = 2κN (A + δγ0 cos φ). (10)

Coefficients A and δ do not depend on the measurement basis
if it is full (K → ∞) and symmetric (5):

A =
K∑

m=0

β2
m −−−→

K→∞
1, (11)

δ =
K∑

m=0

β2
m(−1)m −−−→

K→∞

∫
u0

(
x − d

2

)
u0

(
x + d

2

)
dx.

(12)

In this limit (K → ∞), the coefficient δ depends only on the
shape of the PSF u0(x) and the value of the separation d , repre-
senting the overlap between images of the sources. In the case
of a full measurement basis all the photons that passed through
the imaging system are being detected. Generally, the total
number of detected photons ND (10) depends on the separation
d through the overlap δ. One can leverage this dependence
to achieve a more accurate estimation of the separation d ,
only provided that the losses are correctly accounted for in
the model [13,25]. If the theoretical model is defined with an
arbitrary loss factor, measuring only one observable does not
provide useful information.

IV. MEASUREMENT SENSITIVITY

To describe the sensitivity of the SPADE measurement,
we use the method of moments [14,27]. This method studies
the estimators d̃ that are based only on the measured sample
means x(μ)

m of the observables X̂m. The variance �2d̃ of such

estimators is bounded as

�2d̃ � 1

μM
, (13)

where μ is the number of measurement repetitions (assumed
to be large, so that the central limit theorem can be applied
and the statistics of the sample means x(μ)

m can be considered
Gaussian). The sensitivity M is defined as

M =
K∑

m,n=0

∂Xm

∂d
(�−1)mn

∂Xn

∂d
, (14)

with Xm = 〈X̂m〉 being the mean values of observables, and �

the measurement covariance matrix, with elements

�mn = 〈X̂mX̂n〉 − 〈X̂m〉〈X̂n〉. (15)

The derivation of the bound (13) and a simple estimator that
saturates this bound are presented in Appendix A.

In the considered scheme, the observables X̂m are the pho-
ton number operators of the modes fm(x):

X̂m = N̂m = â†
mâm. (16)

Exploiting the property of nondisplaced Gaussian states

〈â†
mâmâ†

nân〉 = 〈â†
mâm〉〈â†

nân〉 + 〈â†
mâ†

n〉〈âmân〉 + 〈â†
mân〉〈âmâ†

n〉
(17)

and Eq. (6) we find the photon number covariance matrix

� = diag( �Y1 + �Y2) + �Y1 �Y T
1 + �Y2 �Y T

2 + 1 − γ 2
0

2
sin2 φ �ζ �ζ T ,

(18)

where diag(�x) is a diagonal matrix with diagonal elements
equal to xn and

�Y1,2 = 1 ± γ0

2
(�ξ ± �ζ cos φ), (19)

with �ξ and �ζ defined in Eq. (9).
In the limit of faint sources, κN � 1, the covariance matrix

(18) becomes diagonal �nm = δnmNm, and the sensitivity M
(14) coincides with the Fisher information. In this case only
the real part of the mutual coherence Re γ = γ0 cos φ defines
the measurement statistics.

In the more general scenario, determining the sensitivity M
requires inverting the nondiagonal photon number covariance
matrix � (18). It is possible to do analytically by applying the
Sherman-Morrison formula [28] three times, but the resulting
general expressions are very bulky. Therefore, we decided
to focus on several special cases for which the inversion
simplifies.

V. CONSTANT MUTUAL COHERENCE

A. Real-valued coherence (γ = γ0)

First, we consider separation-independent real-valued co-
herence γ = γ0 ∈ R, i.e., φ = 0. For this case, the photon
number covariance matrix reduces to

� = diag( �Y1 + �Y2) + �Y1 �Y T
1 + �Y2 �Y T

2 . (20)
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FIG. 2. The normalized sensitivity MRe = MRe4σ 2
PSF/2κN for different real values of the mutual coherence γ and numbers of emitted

photons N multiplied by the transmissivity κ vs separation d .

The inversion of this matrix gives

�−1
mn = δmn(ξn + γ0ζn)−1 − tmn, (21)

where

tmn =
⎧⎨
⎩

2/h1, if m and n are both even
2/h2, if m and n are both odd
0, otherwise,

(22)

with

h1,2 = 2 + 2κN (1 ± γ0)(A ± δ), (23)

and A and δ are defined in Eqs. (11) and (12).
If the mutual coherence γ and the brightness N are inde-

pendent of the separation, i.e., ∂γ0/∂d = 0, and ∂N/∂d = 0,
the derivative of the measured signal is

∂Nm

∂d
= 2

Nm

βm

∂βm

∂d
. (24)

Then the normalized sensitivity of the separation estimation is

MRe

2κN
= �k2 − γ0β − 2κN (A′ + δ′)2

×
(

(1 + γ0)2

2h1
+ (1 − γ0)2

2h2

)
, (25)

where

�k2 = 4
K∑

m=0

(
∂βm

∂d

)2

, (26)

β = −4
K∑

m=0

(
∂βm

∂d

)2

(−1)m, (27)

δ′ = ∂δ

∂d
= 2

K∑
m=0

(−1)mβm
∂βm

∂d
, (28)

A′ = ∂A

∂d
= 2

K∑
m=0

βm
∂βm

∂d
. (29)

All these quantities are measurement basis independent for
full symmetric bases:

�k2 −−−→
K→∞

∫ (
∂u0(x)

∂x

)2

dx, (30)

β −−−→
K→∞

∫
∂u0(x − d/2)

∂x

∂u0(x + d/2)

∂x
dx. (31)

In this scenario, the sensitivity expressed in (25) coincides
with the quantum Fisher information [10,11]. This implies

the possibility of constructing an estimator d̃ ({N (μ)
m }) based

solely on the observed sample mean numbers of counts N
(μ)
m

in any basis with the parity defined in Eq. (5) and achieving the
ultimate resolution limit dictated by the quantum Cramér-Rao
bound.

To calculate numerical values of the sensitivity M (25)
we consider the so-called soft-aperture imaging system with
Gaussian PSF

u0(x) =
(

1

2πσ 2
PSF

)1/4

exp

[
− x2

4σ 2
PSF

]
, (32)

where σPSF is the PSF width. Then for the full symmetric
measurement basis, we have

δ = exp

[
− d2

8σ 2
PSF

]
, �k2 = 1

4σ 2
PSF

, (33)

β = σ 2
PSF − (d/2)2

4σ 4
PSF

exp

[
− d2

8σ 2
PSF

]
. (34)

The sensitivity calculated with Eq. (25) is shown in Fig. 2. The
first plot corresponds to a small number of emitted photons
and matches other results obtained in the same limit [13,25].
With an increasing number of photons, there is a reduction in
the sensitivity for the separations d ≈ σPSF. This reduction is
also present in the QFI and occurs due to the quadratic term of
the noise in the thermal statistics [10]. However, as we show
in the next section, this drop does not occur even for bright
thermal states, if their mutual coherence degree γ is not a real
number.

B. Imaginary coherence (γ = iγ0)

Another interesting example that we consider is that of
a purely imaginary degree of coherence γ = iγ0 ∈ I, which
corresponds to a relative phase φ = π/2 between the sources.
In this case, the measured mean photon numbers Nm do not
contain an interference term, i.e., it is the same as for a pair of
incoherent sources. However, the presence of coherence does
influence the covariance matrix

� = diag(�ξ ) + 1 + γ 2
0

2
�ξ �ξT + 1 − γ 2

0

2
�ζ �ζ T , (35)

which only depends on γ 2
0 and thus is not affected by its sign.

The inverse of this matrix reads

�−1
mn = δmnξn − (−1)m+nη1 + η2 − 2κNδ[(−1)n + (−1)m]

η1η2 − (2κNδ)2
,

(36)
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FIG. 3. The normalized sensitivity MIm = MIm4σ 2
PSF/2κN for different imaginary values of the mutual coherence γ and numbers of

emitted photons N multiplied by the transmissivity κ vs separation d .

where η1,2 = 2κNA + 2(1 ± γ 2
0 )−1. In this case, the normal-

ized sensitivity takes the form

MIm

2κN
= �k2 − 2κN

η1(δ′)2 + η2(A′)2 − 2κNδA′δ′

η1η2 − (2κNδ)2
. (37)

It is plotted in Fig. 3 for different values of the mutual coher-
ence and sources’ intensities.

One can see that in the limit of faint sources the sensitivity

MIm

2κN
κN→0−−−→ �k2 (38)

is the same for any imaginary degree of mutual coherence,
including the case of incoherent sources.

However, for bright incoherent thermal sources the sen-
sitivity per photon drops significantly in the sub-Rayleigh
region d < σPSF, while for sources with imaginary mutual co-
herence, this drop is smaller or does not occur at all for perfect
coherence γ = i. Generally, if imaginary coherence is close to
the complex unity then the sensitivity can be expressed as

MIm

2κN
= �k2 − 2κN (δ′)2 (1 − γ0) + O[(1 − γ0)2]. (39)

This means that the presence of correlations between sources
can improve the sensitivity of the separation estimation even
in cases when no interference is visible in the mean values Nm.
One can use a simple intuition to interpret this observation:
two incoherent thermal sources do not share any correlations,
while mutually coherent sources are correlated in the number
of photons, even if they do not interfere due to the mutual
phase φ = π/2. Utilizing these correlations allows one to
cancel part of the intensity noise in the measurement modes,
resulting in a more precise estimation of the separation.

VI. PARAMETER-DEPENDENT COHERENCE

Now let us consider the situation when the mutual coher-
ence γ depends on the separation d of the sources. Below we
will discuss in details physical examples of such systems, but
first, we analyze the general case of real-valued separation-
dependent mutual coherence γ (d ) = γ0(d ) ∈ R.

This dependence leads to an additional term in the
derivative

∂Nm

∂d
= 2

Nm

βm

∂βm

∂d
+ ∂γ0

∂d
ζm (40)

and in the sensitivity

Mγ0(d ) = MRe + �Mγ0(d ), (41)

where

�Mγ0(d )

2κN
= 2γ ′

0

[
δ′

(
1

h1
+ 1

h2

)
+ A′

(
1

h1
− 1

h2

)]
+ (γ ′

0)2

×
[

A − δγ0

1 − γ 2
0

− 2κN

(
(A + δ)2

2h1
+ (A − δ)2

2h2

)]
,

(42)

and MRe is defined in Eq. (25).
The additional sensitivity �Mγ0(d ) originates from the fact

that in the case of separation-dependent coherence, the mea-
surement results change faster with changing separation, and
one can do estimation with higher precision. The extra sensi-
tivity �Mγ0(d ) typically has maxima around the maxima of γ ′

0,
i.e., in the regions of fast-changing mutual coherence.

In the limit of faint sources, the additional sensitivity takes
the form

�Mγ0(d )

2κN
κN→0−−−→ 2γ ′

0δ
′ + (γ ′

0)2 A − γ0δ

1 − γ 2
0

. (43)

This expression is valid for an arbitrary complex value of the
mutual coherence γ if one replaces γ0 with Re γ .

A. Finite coherence width of the illumination

In the first example, we investigate the estimation of sepa-
ration between two reflective objects. When illuminated with
light of finite coherence width, the mutual coherence of the
reflected light becomes dependent on the separation between
the reflectors (see Fig. 4).

FIG. 4. Objects reflect the light from the common thermal illu-
mination source with finite coherence width ωc.
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FIG. 5. Normalized sensitivity Mγ0 (d ) = Mγ0 (d )4σ 2
PSF/2κN in

case of the separation-dependent mutual coherence with Gaussian
profile (44).

In many cases, the transverse coherence of the illuminating
light can be effectively approximated by a Gaussian function.
In such scenarios, the field reflected by two small reflectors
exhibits mutual coherence:

γ0(d ) = exp

[
− d2

2ω2
c

]
, (44)

where the coherence width ωc can be adjusted by changing
the optical parameters of the illumination system.

Using the Gaussian PSF (32), we calculate the full sensi-
tivity (41) of the reflectors’ separation estimation (Fig. 5). The
red lines on the plots correspond to the spatially coherent il-
lumination. One can see that separation-dependent coherence,
compared to the fully coherent case, results in significantly
higher sensitivity for the separations close to the coherence
width of the illumination source d ≈ ωc, thus it is desirable
to use illumination with coherence width of the order of the
measured separations. A similar increase in the resolution,
when the coherence width of the source matches the size of
the features of the studied object, was observed earlier exper-

imentally and numerically for the case of quantum imaging
with pseudothermal light [29].

The coherence width of the light expands as it passes
through a diffractive imaging system. Thus, if the same optical
system (with PSF width σPSF) is used for the imaging and the
illumination of the object, the minimal achievable coherence
width of the illumination is ωc � 2σPSF. This case was studied
in Ref. [26] in the faint source limit, where an analogous
increase of the SPADE sensitivity was demonstrated for the
separations around the Rayleigh limit (in comparison to spa-
tially coherent illumination). However, as we show in Fig. 5,
for brighter sources this increase is much less noticeable. In
the extreme case of very bright sources, additional sensitivity
per photon (42) vanishes:

�Mγ0(d )

2κN
−−−→
N→∞

0. (45)

This is important to take into account for practical imaging
with pseudothermal sources, since this scenario often does
not fit into the faint sources approximation. Therefore, it is
crucial to aim for the utilization of an illumination source with
a short coherence time to ensure that the number of photons N
reflected by each imaged object per coherence time is small.

One could achieve better sensitivity in the sub-Rayleigh
regime via a smaller coherence width, which is achievable
in two possible scenarios: using an independent illumination
scheme with narrower PSF (for example, if the illumination
source is located closer to objects than the detection appara-
tus) or in the case of sources’ mutual coherence originating
from their interaction, which is considered in the next section.

B. Interacting emitters

Another possible scenario where the mutual coherence of
the emitted light depends on the distance between the sources
is the case of interacting emitters (see Fig. 6). As an example,
we consider two identical, dipole-dipole interacting two-level
systems prepared initially in their excited states. In this sce-
nario, each dipole emits precisely one photon during the decay
of the excited state. For simplicity, we assume that the dipole
moments are parallel to each other and the line connecting
them is orthogonal to the main optical axes of the imaging
system.

The time evolution of the quantum state of the two coupled
dipoles in the interaction picture can be described by the

FIG. 6. Dipoles emit partially coherent light due to the interaction.
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following master equation [30,31]:

d

dt
ρ̂ = −i f12[σ̂+

1 σ̂−
2 + H.c., ρ̂]

+ 1

2

2∑
j,l=1

g jl (2σ̂−
j ρ̂σ̂+

l − σ̂+
j σ̂−

l ρ̂ − ρ̂σ̂+
j σ̂−

l )

+
2∑

j=1

η j (2σ̂+
j σ̂−

j ρ̂σ̂+
j σ̂−

j − σ̂+
j σ̂−

j ρ̂ − ρ̂σ̂+
j σ̂−

j ),

(46)

where σ̂±
j are the dipoles’ transition operators. The first term

in Eq. (46) is proportional to the collective frequency shift f12

of the energy levels [31,32]. The second term describes the
spontaneous emission of the individual emitters ( j = l) and
their collective radiative decay ( j �= l). In the case of identical
dipoles,

g11 = g22 = 1/τ, (47)

g12 = 3

2

1

τ

(
sin z

z
+ cos z

z2
− sin z

z3

)
, (48)

where τ is the natural lifetime of the excited state of an
individual dipole, and z = 2πd/λ, with λ the wavelength
of the dipole transition. The final term in the master equa-
tion accounts for the dephasing of the dipoles with the rates ηi

(i = 1, 2), due to their different local environments.
The radiation of the dipoles is described in the transient

temporal modes ŝ1,2(t ), of duration �t � τ , centered around
time t . For these modes, the time-dependent coherency matrix
can be expressed through the atomic dipole correlators as

�
(1)ŝ(t )
jk = 〈σ̂+

j σ̂−
k 〉�t

τ
. (49)

The coherency matrix of the excited modes remains unaf-
fected by the collective shifts f12. However, as discussed
in Appendix B, the emission spectrum is influenced by f12.
Consequently, the measurement results and the sensitivity of
the measurement are independent of f12 exclusively in the
considered case of frequency-blind measurements.

Cross correlation of the atomic operators 〈σ̂+
1 σ̂−

2 〉 vanishes
if the collective decay rate g12 = 0. The crucial role of these
correlations in the emergence of quantum coherence was pre-
viously discussed in other contexts [33,34].

Both the unitless emission rate Ṅ = Nτ/�t =
�

(1)ŝ(t )
11 τ/�t and the degree of mutual coherence γ =

�
(1)ŝ
12 /�

(1)ŝ
11 depend on both time and separation; however, we

will not explicitly indicate it in our notations.

1. Model without dephasing (η1 = η2 = 0)

First, we examine the evolution of the dipoles’ state with-
out taking into account the dephasing process. The analytical
solution for the dipole correlators in this scenario is presented
in Appendix B. The associated emission rate Ṅ and the de-
gree of mutual coherence γ for different time instances t are
depicted in Fig. 7 as functions of the separation d normalized
by the wavelength λ.

FIG. 7. Properties of the dipoles radiation: the normalized emis-
sion rate Ṅ and the degree of mutual coherence γ vs separation
d . Dashed line, time t = 0.02τ ; solid line, t = 5τ . No dephasing
(η = 0).

One can see that at an early stage of the emission
(t = 0.02τ ) the dipoles fluoresce almost independently, with
the emission rate close to that of an individual dipole, Ṅ ≈
e−t/τ , and with almost no coherence, γ ≈ 0. However, after
some time, the dipole-dipole interaction creates correlations
and the difference with the individual dipole emission be-
comes evident in both the emission rate [35] and the mutual
coherence. Crucially, this difference depends on the separa-
tion between the dipoles, which allows for a measurement
of the separation with higher accuracy. Without accounting
for the decoherence process, the mutual coherence exhibits
a particularly strong dependence on separation during the
late emission stages (t > τ ) for separations d ≈ n λ

2 , n ∈ N.
Therefore, we can expect heightened sensitivity in estimating
separation around these points. Note that due to the geo-
metrical symmetry of the problem the mutual coherence γ

stays real at any moment, i.e., γ (t ) ∈ R ∀t . However, all
the conclusions below can be generalized to the case of
the complex degree of mutual coherence by replacing γ0

with Re γ .
The mean number of photons emitted by each dipole dur-

ing a short time interval �t � τ is low (N � 1). Furthermore,
the imaging system is characterized by high losses, κ � 1.
Therefore, irrespectively of the statistics of the sources, the
detection statistics can be described by a Poisson distribu-
tion which also approximates that of faint thermal sources
discussed earlier. Besides, the radiation emitted by the two
dipoles in the far field represents a superposition of two spher-
ical waves and therefore is locally equivalent to the radiation
emitted by two-point sources (see Appendix B). Thus, in the
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FIG. 8. Normalized sensitivity rate Ṁ (52) of two dipoles’ sep-
aration estimation vs time t . Light blue line, σPSF = 5λ; red line,
σPSF = λ; dashed line, noninteracting dipoles.

paraxial approximation, the model developed in the previous
sections can be applied to the problem of resolving dipoles.

The only modification required to Eq. (40) is the addition
of an extra term, associated with the separation-dependent
emission rate:

∂Nm

∂d
= 2

Nm

βm

∂βm

∂d
+ ∂γ0

∂d
ζm cos φ + Nm

N

∂N

∂d
. (50)

This extra dependence results in an additional term �MN (d )

in the sensitivity. In the limit κN = κṄ�t/τ � 1 it takes the
form

�MN (d ) = 2κN ′

N
[N ′(A + γ δ) + 2N (A + γ δ)′], (51)

where X ′ = ∂X/∂d . Combining all the contributions we get
the normalized sensitivity per unit time in the form

Ṁ = 4σ 2
PSF

2κ

τ

�t
(MRe + �Mγ0(d ) + �MN (d ) ). (52)

This quantity is plotted in Figs. 8 and 9.
As one can expect, at an early stage of emission the

problem resembles the resolving of two incoherent sources
(i.e., noninteracting emitters). In the context of independent
emitters, the sensitivity per unit time is directly proportional
to the emission rate, exhibiting an exponential decrease, as
indicated by Ṅ ≈ e−t/τ (depicted by the dashed black lines in
Figs. 8 and 9). In contrast, in the case of interacting emitters,
the sensitivity rate may even increase over time due to the
cumulative effects of interaction. The specific values of the
sensitivity depend on the ratio between the separation d , PSF
width σPSF, and wavelength λ. We present plots for the cases
of σPSF = λ and 5λ. In the paraxial approximation, the PSF
width of the imaging system typically significantly exceeds
the wavelength, i.e., σPSF > λ. Therefore, the case σPSF = λ

stretches the boundaries of our model. Nevertheless, we in-
vestigate this case to explore the model’s limits and offer an
illustrative example that is easy to analyze.

In Fig. 9, one can observe a pronounced enhancement
in sensitivity within regions where the emission character-
istics (the mutual coherence and the emission rate) exhibit
rapid changes with a change in separation. Meanwhile, the
sensitivity remains low around the extrema of the emission
characteristics. In typical cases, the sensitivity for interact-
ing dipoles is significantly larger and decaying significantly
slower compared to noninteracting dipoles. Even after more
than 15 lifetimes of the excited state, when the probability
of photon detection is very low, the average sensitivity rate
remains notably high due to the substantial amount of infor-
mation in “late” detection events.

It is important to note that the moment-based sensitivity
provides a limit for a local estimation strategy. The presence
of multiple narrow peaks in the sensitivity plot signals the
potential degeneracy of the estimator. Therefore, when deal-
ing with a low-resolution optical system (σPSF � λ), one may
require an increased number of measurement repetitions to
reach the saturation of the bound (13).

In general, the interaction between the emitters induces an
entanglement between them [36] and creates temporal cor-
relations of the emitted light [37]. However, if the losses in
the imaging system are large κ � 1, the detection events for
different time intervals can be considered independent. The
sensitivity of independent detection events is additive and thus
the total sensitivity can be calculated as

Mtot = 1

τ

∫ ∞

0
Ṁ dt, (53)

where Ṁ is defined in (52). The result of this calculation is
shown in Fig. 10. One can see that the interaction effects can
increase the total sensitivity of the separation estimation by
several orders of magnitude around the points d ≈ n λ

2 , n ∈ N,
where the mutual coherence of the emission strongly depends
on the separation, if the dephasing effect is not present. In
between these points, for the separations around d ≈ (n −
1
2 ) λ

2 , n ∈ N, both the emission rate and mutual coherence ex-
hibit extrema. Consequently, the sensitivity is not heightened
by the separation-dependent emission characteristics around
these specific points.

2. Model with dephasing (η1, η2 �= 0)

In realistic scenarios, the process of building up coher-
ence through the dipole-dipole interactions competes with the

FIG. 9. Normalized sensitivity rate Ṁ (52) of two dipoles’ separation estimation vs separation d . Light blue line, σPSF = 5λ; red line,
σPSF = λ; dashed line, noninteracting dipoles. No dephasing (η = 0).
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FIG. 10. Normalized total sensitivity Mtot (53) of two dipoles’
separation estimation vs separation d . Light blue line, σPSF = 5λ;
red line, σPSF = λ; dashed line, noninteracting dipoles. No dephasing
(η = 0).

coherence loss caused by dipoles’ individual dephasing. The
master equation (46) with dephasing can be solved analyti-
cally, however the solution is too long and cumbersome to
be presented within this paper. Nevertheless, it demonstrates
that the coherency matrix for our system only depends on the
average dephasing rate η = (η1 + η2)/2 of the dipoles. In the
following, we discuss the impact of dephasing for different
values of η. Figure 11 illustrates the emission characteristics
(the emission rate and the mutual coherence) at the time
instance t = 5τ . In the weak dephasing regime (η = 0.2/τ ),
where the dephasing time is substantially longer than the
natural lifetime of the excited state τ , the effect of dephasing
has a limited influence on the emission process. On the other
hand, when the dephasing process is faster than the emission

FIG. 11. Emission characteristics: normalized emission rate Ṅ
and degree of mutual coherence γ at the time moment t = 5τ . Red
line, dephasing-free model η = 0; light blue line, weak dephasing
η = 0.2/τ ; gray line, strong dephasing η = 2.0/τ .

FIG. 12. Normalized total sensitivity Mtot (53) for the model
with dephasing. Top inset: Weak dephasing η = 0.2/τ . Bottom inset:
Strong dephasing η = 2.0/τ . Light blue line, σPSF = 5λ; red line,
σPSF = λ; dashed line, noninteracting dipoles.

(η = 2.0/τ ), one can observe a significant decrease in the
mutual coherence γ .

As expected, the reduction in emission coherence due
to the dephasing effect leads to a weaker sensitivity boost.
Figure 12 illustrates the total sensitivity of the separation
estimation defined in (53). The top plot highlights the ro-
bustness of the considered scheme to weak dephasing, where
the sensitivity is only minimally affected, compared to the
dephasing-free case, shown in Fig. 10. Conversely, the bottom
plot in Fig. 12 reveals that strong dephasing significantly di-
minishes the sensitivity boost arising from dipole interaction.
However, even in this scenario, the sensitivity can be several
times higher compared to noninteracting dipole emission.

3. Model with detection noise

Another factor that can potentially significantly reduce
sensitivity is the presence of detection noise. If the detection
system produces dark counts or detects background light,
then late rare detection events may be dominated by these
false counts. To address this effect, we modify the detection
covariance matrix (18) as

�DC = � + NDCI, (54)

where I stands for the identity matrix, and NDC is the average
number of dark counts per detection mode. Here, the dark
counts are assumed to have Poisson statistics, being uncor-
related from each other and the measured signal.

Using the covariance matrix of noisy detection (54), we
numerically calculate the sensitivity (14), taking into account
the separation-dependent emission rate (B2) and mutual co-
herence (B3) of dipoles. We consider detection in the first four
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FIG. 13. Normalized sensitivity rate Ṁ of two dipoles’ separa-
tion estimation vs time t in case of noisy detection ṄDC = 0.5Ṅ0.

Hermite-Gauss modes and express the rate of dark counts rela-
tive to the rate of real counts at the early stages Ṅ0 = 2κ . Note
that the rate of real detection events exponentially decreases
with time, while the rate of dark counts remains constant.

The sensitivity rate for noisy detection is presented in
Fig. 13. Here we consider strong detection noise, with the
dark count rate being 50% of the initial rate of real counts
ṄDC = 0.5Ṅ0. Comparing this plot to the ideal case (Fig. 8),
one can observe a significant decrease in the sensitivity rate
for late detection events. After t = 5τ one obtains almost no
information about the separation of dipoles. This decrease
occurs because the dark count rate is much higher than the
rate of real counts for these late stages. As a result, in this
case, most of the useful information comes from the early and
intermediate radiation stages (t < 5τ ).

Integrating the sensitivity rate over time we obtain the total
sensitivity (53) for noisy detection and present it in Fig. 14. As
expected, compared to the ideal case (Fig. 10), the sensitivity
is suppressed in the presence of the detection noise. However,

FIG. 14. Normalized total sensitivity Mtot vs separation d for the
model with detection noise. Top inset: Low rate of the dark counts.
Bottom inset: Intense noise.

this is also the case for noninteracting dipoles. Thus, one can
still see a significant increase in the sensitivity (two to three
orders of magnitude for small separations) coming from the
dipole interaction, even for relatively intense detection noise
ṄDC = 0.5Ṅ0.

Curiously, in all the considered cases the sensitivity boost
is more pronounced for smaller separations, where the in-
teraction between the emitters is stronger. As a result, in
the context of single-parameter estimation, one can achieve
higher precision in estimating smaller separations compared
to larger ones.

Finally, we note that in the case of frequency-resolved
measurements, the collective frequency shift f12 may come
into play, such that one may be able to locally estimate the
dipoles’ separation via the emission spectrum. Therefore, by
integrating spectral and spatial approaches, the sensitivity
could be further enhanced by introducing frequency-resolving
detection into our scheme.

VII. CONCLUSION

We have analyzed the problem of resolving partially
coherent thermal sources with SPADE measurement. To
estimate the sensitivity of a separation estimation, we uti-
lized the method of moments, which allowed us to make
no assumptions about the brightness of the sources. We
have found analytical expressions for the sensitivity in-
cluding the cases of separation-dependent mutual coherence
and emission rate. We studied two specific examples of
separation-dependent coherence: a reflection of light coming
from a finite-coherence-width illumination source and creat-
ing mutual coherence due to the interaction of the emitters.
In both cases, we demonstrate the possibility of a significant
boost in the separation estimation sensitivity due to the addi-
tional mechanism of the parameter encoding to the problem.
Our analysis shows that for efficient resolving of the reflecting
objects one needs to use an illumination source with a narrow
coherence width (on the order of the reflectors’ separation)
and a short coherence time. This ensures the full advantage
of the separation-dependent coherence of the reflected light.
Examining the interacting emitters, we demonstrate that the
sensitivity of separation estimation can be increased by sev-
eral orders of magnitude compared to independent emitters.
This enhancement arises from the separation-dependent mu-
tual coherence and emission rates of the interacting dipoles.
The effect remains robust in the presence of weak dephasing
of dipoles. Although strong dephasing decreases the observed
resolution boost, it does not eliminate it entirely. We have
also demonstrated that the presence of detection noise reduces
sensitivity but preserves the relative boost caused by the inter-
action of dipoles.
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APPENDIX A: THE METHOD OF MOMENTS

Let us study the estimation of a parameter θ from measur-

ing a set of observables �̂X = (X̂1, X̂2, . . . )T . More specifically,
we limit ourselves to estimators θ̃ that are based on the sample
means x(μ)

m of these observables, obtained from μ repetitions
of the measurements:

θ̃ = f
(
x(μ)

1 , x(μ)
2 , . . .

)
. (A1)

Following the central limit theorem, for sufficiently large
statistics μ � 1 the sample means x(μ)

m follow the multivariate

Gaussian distribution N (〈 �̂X 〉, 1
μ
�). The Fisher information in

the case of Gaussian observation is given by [27]

F = ∂〈 �̂X T 〉
∂θ

(
1

μ
�

)−1
∂〈 �̂X 〉
∂θ

+ 1

2
Tr

[(
1

μ
�

)−1 ∂
(

1
μ
�
)

∂θ

(
1

μ
�

)−1 ∂
(

1
μ
�
)

∂θ

]

= μM + 1

2
Tr

[
�−1 ∂�

∂θ
�−1 ∂�

∂θ

]
, (A2)

where the derivatives of the vectors and matrices are defined
elementwise, and the sensitivity M is introduced in Eq. (14).
For μ � 1, the first term in Eq. (A2) dominates the second,
which consequently can be neglected. Then, the Cramér-Rao
bound [38] immediately gives

�2θ̃ � F−1 = 1

μM
, (A3)

proving the inequality (13).
Among the estimators in Eq. (A1), let us now consider θ̃

constructed as a solution of the algebraic equation

�cT �x(μ) = �cT 〈 �̂X 〉θ̃ , (A4)

where �c is a vector independent of θ̃ . Thus only the average

values 〈 �̂X 〉θ̃ depend on θ̃ in this equation. We assume the

function 〈 �̂X 〉θ̃ can be linearized within the interval θ̃ ± �θ̃ .
Then the variances of both sides of Eq. (A4) are given by

�cT �

μ
�c =

(
�cT ∂〈 �̂X 〉θ

∂θ

)2

�2θ̃ , (A5)

where we used the asymptotic unbiasedness of the estimator
E (θ̃ ) = θ , which follows from the central limit theorem. The
variance �2θ̃ of the estimator depends on the choice of the
linear coefficients �c and takes its minimal value for the coeffi-
cients [14]

�c = �−1 ∂〈 �̂X 〉θ
∂θ

, (A6)

calculated at the true values of the parameter θ . In this case,
the variance of the estimator is

�2θ̃ = 1

μ

�cT ��c(
�cT

∂〈 �̂X 〉θ
∂θ

)2 (A7)

= 1

μ

∂〈 �̂X T 〉θ
∂θ

�−1��−1 ∂〈 �̂X 〉θ
∂θ(

∂〈 �̂X T 〉θ
∂θ

�−1
∂〈 �̂X 〉θ

∂θ

)2 = 1

μM
, (A8)

i.e., it saturates the bound (A3). Thus the estimator θ̃ is the
optimal one from the class (A1). Moreover, since the estimator
is constructed as a solution of Eq. (A4), it relies solely on the
linear combination of the sample means

θ̃ = g(�cT �x(μ)
). (A9)

APPENDIX B: COHERENCY MATRIX
OF DIPOLE EMISSION

In the far field of the dipole, the positive-frequency part of
the emitted field operator in point �r reads [39]

�̂E (�r, t ) ∝ �r × [�r × �p]

|�r|3 σ̂−(t ), (B1)

where �p is a dipole moment.
This emission mode does not have the spherical symmetry;

however, in the far field, it is locally indistinguishable from
a spherical wave. Thus in a paraxial approximation, dipole
emitters can be considered as point sources.

Due to the proportionality (B1) between the emitted field

operator �̂E and the dipole transition operators σ̂−, the co-
herency matrix of the emitted field can be expressed as (49),
where all the constant factors, except for �t , are omitted since
they will later be included in the transmissivity factor κ . This
factor represents the coupling between the emission modes
and image modes of individual sources. Explicit calculation
of (49), giving the evolution (46), results in

Ṅ = 〈σ̂+
1 σ̂−

1 〉 = 〈σ̂+
2 σ̂−

2 〉 = e−g11t

2
(
g2

11 − g2
12

) [(g11 + g12)2e−g12t

+ (g11 − g12)2eg12t − 4g2
12e−g11t ], (B2)

Ṅγ = 〈σ̂+
1 σ̂−

2 〉 = 〈σ̂+
2 σ̂−

1 〉 = e−g11t

2
(
g2

11 − g2
12

) [(g11 + g12)2e−g12t

− (g11 − g12)2eg12t − 4g11g12e−g11t ], (B3)

where g jl is defined in (47). One can see that in the noninter-
acting limit g12 −→ 0 the emission rate decays exponentially,
Ṅ = e−t/τ , and the mutual coherence does not appear, γ = 0.
Note that the unitary component of the master equation (46),
featuring a collective frequency shift f12, does not impact
the coherency matrix of the excited modes. Nevertheless, the
spectra of the excited modes are influenced by f12. Conse-
quently, in instances of frequency-resolving measurement, the
dependence f12(d ) introduces an additional mechanism for
parameter encoding and, in general, enhances sensitivity.
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